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Abstract
There is a large class of real-world problems, such as warehouse transport, at different scales, swarm densities, etc., that can
be characterized as Central Place Foraging Problems (CPFPs). We contribute to swarm engineering by designing an Ordinary
Differential Equation (ODE)model that strives to capture the underlying behavioral dynamics of the CPFP in these application
areas. Our simulation results show that a hybrid ODEmodeling approach combining analytic parameter calculations and post-
hoc (i.e., after running experiments) parameter fitting can be just as effective as a purely post-hoc approach to computing
parameters via simulations, while requiring less tuning and iterative refinement. This makes it easier to design systems with
provable bounds on behavior. Additionally, the resulting model parameters are more understandable because their values
can be traced back to problem features, such as system size, robot control algorithm, etc. Finally, we perform real-robot
experiments to further understand the limits of our model from an engineering standpoint.

Keywords Swarm robotics · Foraging · ODE model · Diffusion

1 Introduction

Swarm Robotics (SR) is the study of the coordination of
large numbers of simple robots (Şahin, 2005). SR systems
can be homogeneous, i.e., single robot type and identi-
cal control software, or heterogeneous, i.e., multiple robot
types and control software (Ramachandran et al., 2020).
The main differences between SR systems and multi-robot
systems stem from the mechanisms on which SR systems
are based. Historically, those were principles of biological
mimicry or problem solving techniques inspired by natural
systems of agents such as bees, ants, and termites (Labella
and Dorigo, 2006), though modern SR systems typically
incorporate mathematically rigorous elements of multi-robot
system design (Castello et al., 2016).
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In this work, we study the Central Place Foraging Prob-
lem (CPFP) in which robots gather objects (blocks) across a
finite operating arena and bring them to a central location
(nest) under various conditions and constraints. Foraging
is one of the most studied applications of SR, due to its
straightforward mapping to real-world applications (Hecker
and Moses, 2015); for an extensive discussion of the state of
the art, see (Lu et al., 2020). The complexity of the foraging
task frequently gives rise to behavioral dynamics caused by
inter-robot interactions, in which the events robots experi-
ence, such as encountering other robots and objects, do not
form a homogeneous Poisson process; i.e., non-negligible
higher moments are present. We seek to understand—from
an engineering perspective—the practical limits of using
Poisson-based models to model foraging swarms. That is,
we do not seek to derive a generalized model that encom-
passes every possible variant of the foraging problem, but
rather to derive a practical model which is accurate on sce-
narios with high real-world utility; e.g., those that map to
important problems such as warehouse transport or supply
chain logistics in large outdoor spaces. Specifically, we are
interested in understanding underwhat conditions behavioral
dynamics in the foraging problem can and cannot be captured
by using ODE modeling, regardless of whether the actual
characteristics of the dynamics are strictly amenable to it.
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Our results, using a hybrid ODE model we developed, show
that behavioral dynamics can be captured in many scenarios
across scales, swarm densities, and other parameters, demon-
strating the utility of ODE modeling as an engineering tool
on many important problems.

2 Motivation and related work

Many SR systems have been designed around imitating natu-
ral systems, anduse heuristic decisionmaking (Castello et al.,
2016) rather than combining natural principles with a math-
ematical grounding (Talamali et al., 2020). Nevertheless,
heuristic approaches to swarm control have been effective for
robots that operate with incomplete information and limited
computing power. Researchers using this approach average
large numbers of simulation runs to develop accurate models
of swarm behavior and obtain empirical insights into real-
world problems (e.g., (Harwell andGini, 2019;Castello et al.,
2014; Matthey et al., 2009)). Alternatively, collective swarm
behaviors can be characterized by mathematically decon-
structing robot control algorithms; this is more difficult, but
provides the means to more precisely predict behavior a pri-
ori–without the need of repetitive experiments.

Under themean-field approximation, a system of N robots
can be replaced by a single robot that is placed in an external
field equivalent to the average effect of the other robots. The
canonical question when using this simplifying approxima-
tion is how large N must be for it to be valid. The mean-field
approximation has been used to model SR systems as asyn-
chronous and event-driven (Mather et al., 2013; Hsieh et al.,
2008; Lerman et al., 2006). Robots experience events in an
interval t according to a Poisson distribution:

P(k events in interval t) = e−λ (λt)k

k! (1)

where λ is the rate parameter, which is themean. The validity
of this approach is predicated on (a) all robot events are inde-
pendent, (b) the average rate of events per t is constant and
the same for all robots, and (c) two robots cannot experience
events at the same time. When these conditions hold, Eq. (1)
captures the first moment (λ) of the system by applying the
master equation used in statistical physics (Kampen, 2007).

Within this paradigm, macro- and microscopic models for
group dynamics and individual behavior over time are used
to model the change in the average behavior of the swarm,
which is easier than modeling the average behavior of the
swarm directly (Lerman and Galstyan, 2002; Berman et al.,
2007; Galstyan et al., 2005; Sugawara and Sano, 1997). In
themicroscopicmodel, discrete difference equations are used
to model the stochastic transitions between robot states and
state transitions for all robots. In the macroscopic model,

the swarm is conceptualized as a differentiable, continuous
quantity, and its dynamicsmodeledwith a set ofODEswhose
variables are the population fractions associated with the dif-
ferent roles. Using this ODEmodeling, the average behavior
of the swarm in the steady state can be recovered (Berman et
al., 2007).

Extensions to this line of research to capture higher
order moments of behavioral dynamics include ensem-
ble time-delay filtering (Mather et al., 2013; Hsieh et al.,
2008), and explicit ensemble modeling (Mather and Hsieh,
2012) inspired by work in polynomial stochastic hybrid sys-
tems (Klavins, 2010). For a further discussion of the state
of the art and current challenges in mean-field modeling,
see (Elamvazhuthi and Berman, 2019).

In the exhibited linear collective behaviors of an SR sys-
tem, the behavior of N robots is a linear function of the
behavior of 1 robot; this is not true for systems exhibiting
non-linear collective behaviors. It has been established that
above a certain swarmdensityρS (ratio of swarm size to arena
size) (Sugawara and Sano, 1997; Hamann, 2013), interac-
tions between robots can produce a non-linear mapping from
the behaviors of individual robots to the observed collective
behavior. This is because density governs the frequency at
which interactions between robots occur (Cotsaftis, 2009;
Georgé andGleizes, 2005;Hunt, 2020;DeWolf andHolvoet,
2005). The exact ρS at which a given linear model of swarm
behavior breaks down is influenced by many factors, includ-
ing the control algorithm of the robots, the number of robots,
and characteristics of the problem being solved, so in general
it cannot be determined a priori.

Clearly, an interplay exists between (a) the swarm size N ,
(b) the spatial distribution of ρS , and (c) the characteristics
of the problem being modeled (e.g., the number of objects
and their distribution). Thus, we investigate swarms of both
high and low ρS and both large and small N . We are inter-
ested in understanding the limits of ODE modeling from an
engineering, rather than theoretical perspective. The scope
of our investigation and what we will be able to infer about
any results is defined by the following considerations.

First, because we are interested in a practical, empirical
characterization, we employ homogeneous Poisson pro-
cesses in our ODE modeling. As a result, any ODE model
we create cannot directly capture the variability of the robot
distribution beyond the mean. Thus, our chosen ODE mod-
eling technique may not be sufficient if higher moments are
present in collective behavioral distributions; infinitesimal
generators or other modeling approaches could be employed
in that case (Krishnarajah et al., 2005; Mather and Hsieh,
2012; Klavins, 2010) as an extension.

Second, in small swarms (low N , any ρS) fluctuations
from finite size effects can be of order N , resulting in inac-
curate ODE models because the requirements are not met
(e.g, the mean-field approximation is not valid or large
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higher moments are present in behavioral distributions). The
master equation (Kampen, 2007) can be used to calculate
those effects, but such computations are often intractable or
algebraically difficult. Thus, our analytical expressions for
model parameters to approximate these higher moments are
effectively empirical approximations from a theoretical per-
spective; however, sufficiently accurate approximations will
still provide substantial utility.

Third, we must consider sparse swarms (low ρS , any N ).
Recent results on the challenges of moving swarms into
the real world argue that research towards sparse swarms
is critical (Tarapore et al., 2020). In sparse foraging prob-
lems, each robot is responsible for a large area on the order
of 100m2, which could be indoor warehouses (≈ 64m2),
outdoor search and rescue, precision agriculture, or field
monitoring (600000m2 ≈ 150 acres).

Fourth, in CPFPs ρS is rarely uniform, and depends on
the object distributions and arena geometry, often result-
ing in behavioral distributions with non-negligible higher
moments. This difficulty persists even with non-linear ODEs
(Lerman et al., 2001).

Models in the ODE paradigm operate on both the forward
problem, i.e., predicting collective behavior from features
of the control algorithm of each robot (Lerman and Gal-
styan, 2002), and the inverse problem, i.e., incorporating
design constraints into algorithm design in order to produce
a desired collective behavior (Berman et al., 2007; Hsieh
et al., 2008). However, the models have some limitations.
First, they make simplifying assumptions such as homo-
geneous robot spatial distributions and environments (e.g.,
no obstacles, a completely visible arena), and Markov/semi-
Markov scenarios (Berman et al., 2007). Second, to the best
of our knowledge they are generally only evaluated within
the context of a specific problem variant (e.g., a single spatial
object distribution for a foraging task when the mean-field
assumption holds), so their applicability to other problems is
unclear. Nevertheless, many notable applications of various
forms of ODEmodels appear in the literature, demonstrating
their practical utility. These include the stick pulling experi-
ment (Ijspeert et al., 2001), foraging of green/red pucks using
agent memory (Lerman and Galstyan, 2003), the “house
hunting model” (Hsieh et al., 2008; Berman et al., 2007), and
ant-inspired models that collaborate with or without commu-
nication (Sugawara and Sano, 1997).

3 Background

We use the individual robot Finite State Machine (FSM)
shown in Fig. 1, identical to previous work (Lerman et al.,
2001; Lerman and Galstyan, 2002). Each state maps directly
to a single or a set of robot behaviors that together make
up the robot controller for executing a foraging task. It is a

Fig. 1 FSMstate diagram for a single robot. TheAvoiding state is dupli-
cated to uniquely identify the context of collision avoidance: avoidance
whileHoming or avoidance while Searching. Transition rates and nota-
tion are described in Table 1. Note that the inverse of the amount of
time a robot spends in a given state (e.g., τh for Homing) is the rate of
robots leaving the state

Table 1 Summary of ODE model components.

Term Description

αr Robot encounter rate of robots anywhere in the arena

αr ′ˆ Robot encounter rate near the nest

αrˆ Robot encounter rate of robots far away from the nest

αb Robot encounter rate of blocks

τh Mean robot homing time

τav Mean robot time spent avoiding collision, per occurrence

N Swarm size

ρS Swarm density; ratio of N to operating area

Nh(t) Mean # of robots returning to nest with blocks

Ns(t) Mean # of robots searching for blocks

Nh
av(t) Mean # of robots avoiding collision while homing

Ns
av(t) Mean # of robots avoiding collision while searching

B(t )̂ Mean # of blocks in the arena

Bj (t)* Mean # of blocks in area j of the arena

Components with a ˆ are only in previous work, the one with a * is only
in our model

coarse-grained model of robot behavior, which omits con-
troller details such as sensing and actuation and contains the
minimum number of states needed to describe the system
dynamics. Additional states can be added if necessary (Ler-
man and Galstyan, 2002).

Each of the states in Fig. 1 maps directly to an ODE
describing this change, where the transition rates for states
become the ODE terms.We refer the reader to (Lerman et al.,
2001; Kampen, 2007) for a proof of the validity of this trans-
lation. The quantities modeled in Fig. 1 are listed in Table
1.

Our ODE model is inspired by, but distinct from previ-
ous work (Lerman et al., 2001; Lerman and Galstyan, 2002);
for a discussion of crucial differences, see Sect. 4. We pro-
vide a brief summary of the previous model as follows. The
change in the number of robots in the searching state, which
decreases as those robots pickup blocks or encounter other
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robots and switch to collision avoidance, is described by

dNs(t)

dt
= − αbNs(t)

[
B(t) − Nh(t) − Nh

av(t)
]

− αr Ns(t)
[
Ns(t) + N

]

+ 1

τh
Nh(t) + 1

τav

Ns
av(t). (2)

A detailed explanation for the rate at which robots
leave the searching state and switch to collision avoid-
ance, αr Ns(t)[Ns(t) + N ], can be found in (Lerman et al.,
2001). Finally, searching robots encounter other robots at
rate αr , regardless of the state of the other robot. Equation
(2) increases as homing robots deposit blocks in the nest or
as searching robots exit the collision avoidance state.

The change in the number of robots in the homing state,
which increases as robots acquire blocks or leave the collision
avoidance state, and decreases as robots enter the collision
avoidance state or deposit their block in the nest, is modeled
as

dNh(t)

dt
= αbNs(t)

[
B(t) − Nh(t) − Nh

av(t)
]

− αr ′Nh(t)
[
Nh(t) + N

]

− 1

τh
Nh(t) + 1

τav

Nh
av(t). (3)

Eq. (3) assumes that the encounter rate for homing robots is
different than for searching robots, since there will be more
congestion near the nest, and uses a separate parameter αr ′ to
account for this. The change in the number of robots avoiding
collision with other robots is

dNs
av(t)

dt
= αr ′Nh(t)

[
Nh(t) + N

] − 1

τav

Ns
av(t), (4)

and the change in the number of blocks available for robots
to find is

dB(t)

dt
= − 1

τh
Nh(t). (5)

Eq. (5) decreases whenever a searching robot acquires a
block; once deposited in the nest, blocks are not re-distributed
in the arena.

In addition to usingODEs tomodel collective behavior,we
also draw on diffusion theory. In diffusing systems composed
of homogeneous particles undergoing normal diffusion, the
average particle displacement is proportional to the diffusion
time. This linear relationship assumes the particle is mov-
ing in an infinite, structureless medium close to equilibrium.
However, there are important cases in which the relationship
between average particle displacement and time is non-linear,

referred to as anomalous diffusion (Oliveira et al., 2019;
Metzler et al., 2014; Vlahos et al., 2008). For instance, in
biological systems, interactions with other particles could
influence the diffusion for macro-proteins as they move
through biological media (Santamaria-Holek and Vainstein,
2009; Weiss et al., 2003; Nicolau Jr et al., 2007). Anomalous
subdiffusion arises due to crowding in a finite space, mak-
ing the system heterogeneous and disordered (Ghosh et al.,
2016).

4 Assumption analysis

We analyze the assumptions made in previous work vs. those
we made, explicitly stating commonalities and noting differ-
ences to further motivate our model.

4.1 Common assumptions

1. N is sufficiently large so that S can be approximated using
the mean field model.

2. S has reached steady-state; this maps naturally to swarms
with long-running autonomy.

3. The population density ρS is relatively low (motivated by
Tarapore et al. (2020)), so the behavior of N robots can
be approximated by a linear function of the behavior of a
single robot.Hence, the effect of a robot avoiding collision
and encountering another robot during avoidance can be
ignored.

None of these assumptions reduces the utility of forag-
ingODEmodels since they are consistentwith the constraints
of the CPFPs themselves (e.g., the need for some collision
avoidance strategy near a common drop-off point for object
transport). Furthermore, the results presented in Sect. 7 show
that these assumptions, while helpful for derivation, are not
essential for practical applications of the model.

4.2 Assumptions in previous work

Previous work made the following assumptions, which neg-
atively impacted its broader utility:

1. The swarm is uniformly distributed in 2D space, with
blocks scattered randomly. Such Random (RN) block
distributions (Sugawara and Sano, 1997; Castello et al.,
2016; Hecker and Moses, 2015; Lerman et al., 2001)
(Fig. 2b), are appropriate in scenarios such as order ful-
fillment in a warehouse, but not in other scenarios. For
example, when modeling evacuation of civilians from a
disaster zone, the block distribution cannot be inferred a
priori, and a power law (PL) distribution (Fig. 2a), with
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blocks clustered in groups of various sizes, is more appro-
priate (Hecker and Moses, 2015; Harwell et al., 2020).
Modeling the transfer of material from one side of a
building to another location requires a single source (SS)
(Fig. 2c) or a dual source (DS) (Fig. 2d) block distribu-
tion model, as in (Harwell and Gini, 2019; Ferrante et al.,
2015; Pini et al., 2011; Harwell et al., 2020).

2. The number of objects to gather is finite; this conflicts
with the steady-state assumption above.

4.3 Our assumptions

1. Robots use Correlated Random Walk (CRW) (Renshaw
and Henderson, 1981; Harwell et al., 2020), which is
a random walk where the direction of the next step is
biased based on the direction of the previous step. The
bias angle θ is drawn from a probability distribution
f (θ) (Codling et al., 2010). Robotsmove at amean veloc-
ity vs , wandering until they acquire a block, which they
then transport directly to the nest using phototaxis, i.e.,
motion in response to light, at a constant speed vh . Robots
have no memory.

2. Robots do not go to the exact nest center to drop their
carried block. They choose a random point along their
trajectory from where they enter the nest.
This shortens the homing distance and can be computed
as shown later in Sect. 5.1.

3. The number of objects to gather is infinite, i.e., when an
object is collected a new one appears in the environment,
resulting in steady-state foraging dynamics and collective
behaviors.

We close this section with two important notes. First, the
parameters of themodel inEqs. (2), (3), (4), (5) fromprevious
work are free and must be determined post-hoc. Free param-
eters limit the model’s reuse by requiring iterative parameter
refinement via experimentation. Second, the assumptions
made in the previous model and the assumptions we make
are not compatible: infinite vs. finite number of objects,
steady-state vs. not steady-state. This means that meaning-
ful comparisons of the two models are not possible—see the
supplementary material for videos illustrating why these dif-
fering assumptions result in different spatial distributions of
robot behaviors and incompatible comparisons.

5 Generalized ODE foragingmodel

We now present our analytical ODE model. It relaxes
the assumption of spatial uniformity in object distribution
from (Lerman and Galstyan, 2002), and reduces the need

Fig. 2 Example of simulated foraging scenarios in ARGoS. Multiple
robots (blue blobs), blocks to be collected (black squares), the nest
(gray), and the lights robots use for phototaxis and localization (yellow)
(Color figure online)

for experimental tuning, requiring only two free parameters:
Cca(m), Ch(m) (see Table 2). Together, these improvements
greatly increase the usefulness of ODEmodeling in foraging
problems.

LetM = {SS, DS, PL, RN } be the set of scenarios based
on the block distributions shown in Fig. 2. In each m ∈ M ,
let the area where blocks can be distributed be a subset of the
overall area A of the arena. Let j = 1, . . . , J be the sub-areas
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Table 2 Summary of notation

Term Description

S The swarm of N robots

N Total number of robots in the swarm

A The operating arena S is deployed in, with
dimensions Ax × Ay

ρS swarm density, given by the ratio of N to arena size
(A)

(A j , c j , ρ j ) A sub-area j within A where blocks can be
distributed. A j is the area of j , c j is the center of
the sub-area, and ρ j is the mean steady-state block
density. There are J sub-areas within A

x An arbitrary (X,Y) location within A

xn The center of the nest

E[xacq ] The expected location within A at which a robot will
acquire a block

κ The control algorithm that all robots run; in our case
a Correlated Random Walk (CRW) which is a
random walk where the direction of the next step is
biased based on the direction of the previous step

vh Mean robot homing velocity

vs Mean robot searching velocity

θ The bias angle governing each robot’s CRW

F(S) The diffusion constant of swarm S of N CRW robots

Cca(m) A post-hoc characterization constant for the
inter-robot interference for scenario m

Ch(m) A post-hoc characterization constant for environment
heterogeneity (i.e., how dissimilar it is from an
“ideal” scenario of a given type) for a scenario m

Additional terms are in Table 1

within A in which blocks can be distributed, each described
by a tuple (A j , c j , ρ j ) (see Table 2). The areawithin Awhere
blocks can be found is the union of these disjoint subsets:
Ad = ∪A j . The value of ρ j varies across sub-areas in our
model, so that the block encounter rate αb can be captured
accurately even in extreme non-homogeneous block distri-
butions. We are now ready to introduce the equations for our
ODE model:

dNs(t)

dt
= − αb − αr + 1

τh
Nh(t) + 1

τav

Ns
av(t), (6)

dNh(t)

dt
= αb − αr − 1

τh
Nh(t) + 1

τav

Nh
av(t), (7)

dNs
av(t)

dt
= αr − 1

τav

Ns
av(t). (8)

Equations (6), (7), (8) describe our behavioral ODE
model. They replace Eqs. (2), (3), (4) described earlier
in Sect. 3. We simplified them by removing α′

r and replacing
τh, αb, αr with the mathematical derivations shown later in
Sects. 5.1, 5.2, 5.3.

Improving on Eq. (5), Eq. (9) allows the number of blocks
in the arena to increase and decrease:

dB j (t)

dt
= A j

Ad

[
1

τh
Nh(t) − αb

]
j = 1, . . . , J . (9)

We made the following additional assumptions about the
block distribution. First, whenever a block is redistributed
in the arena all j subareas are selected with probability pro-
portional to the fraction of distributable area they contain.
Second, blocks are distributed uniformly within a given j .
Third, every j can hold any number of blocks, allowing two
blocks to occupy the same location (i.e., stacking).

Next we derive analytical models for τh, αb, and αr from
the arena geometry, number of blocks, block distribution, etc.
We do not derive τav , because it depends intrinsically on the
interference avoidance strategy employed by S and therefore
cannot be derived independently from κ without additional
assumptions.

5.1 Derivation of homing time �h

We use the following intuition to build the block acquisi-
tion probability for a robot. Since searching begins from
the nest, the density of Ns(t) must be greater near the nest
because robots doCRWs starting from a common point. Con-
sequently, this non-uniform spatial distribution means that
the mean distance from the nest at which a searching robot
encounters a block is not the same as the mean distance of
a block from the nest. From (Codling et al., 2010), the spa-
tial occupancy distribution from the central point falls off
linearly as a result of a biased random walk with bias distri-
butionUni f orm(−θ, θ). Thus, we would intuitively expect
the following:

1. The fall off is moderated by ρ j = Bj (t)/A j , because the
rate of decay of the mean block acquisition distance as
a function of distance from the nest within a given A j

is slower for low ρ j . Consequently, a j sparsely popu-
lated with blocks will have minimal effect on the overall
swarm block acquisition probability distribution, while a
j densely packed with blocks will create an area of higher
acquisition probability.

2. ρ j would play an exponentially moderating role only
when the block acquisition location x is close to the center
of the nest xn , such as for RN or PL block distributions.
For SS and DS distributions, where the mean distance
from a block to the nest is large, the effect of ρ j on block
acquisition locations should be minimal.

We approximate the occupancy distribution of a single
walker doing a CRW starting from the nest center xn , using
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the results of (Codling et al., 2010) and our intuitions:

pacq j (x) = C
(√‖x − xn‖ − ln (ρ j )

2ρ j

)2 , (10)

where C is a normalization constant to ensure pacq j (x) inte-
grates to 1 over J . Having defined the probability density
function, we now derive the expected acquisition location by
finding the expected values of the marginal density functions
in x by integrating Eq. (10) and summing over all j :

E[xacq ] =
∑

J

∫

x

∫

y
pacq j (x)xdxdy, (11)

and similarly for y. We now write an expression for τ 1h :

τ 1h =
∥
∥E[xacq ] − xn

∥
∥ − dcr

vh
(12)

where vh is the robot phototaxis velocity, specified in the
input configuration, and

∥∥E[xacq ] − xn
∥∥ is the expected dis-

tance an acquired block will be from the center of the nest.
dcr is the distance the homing path is shortened due to the
employed congestion reduction strategy, which is straight-
forward to calculate from the arena geometry.

An example calculation for a square arena, which in this
work corresponds to the RN and PL scenarios, is shown
below. Similar calculations can be done for other arena
shapes. The mean distance to the origin from a randomly
selected point in a region R:={(x, y)0 ≤ y ≤ x ≤ L/2} (a
triangle 1/8 of the nest) is calculated for a square of length
L . The uniform density on this region is then

f (x, y) =
{
8/L2 if (x, y) ∈ R

0 otherwise.
(13)

The mean distance dcr is computed via

dcr = 8

L2

∫ L/2

0

∫ x

0

√
x2 + y2dydx

= L

6
(
√
2 + ln(1 + √

2)).

(14)

Finally, to derive τh , we note that under our assumption of
low to moderate ρS , the homing time increases linearly with
N according to the expected value of time lost due to inter-
robot interference (Lerman and Galstyan, 2002), averaged
across all robots, giving us

τh = τ 1h
[
1 + αrτav

N

]
. (15)

5.2 Derivation of block acquisition rate˛b

Using our mean-field assumption, S can be approximated as
a fluid composed of robot particles, and be considered to obey
many of the same laws; in the long-term limit, the governing
equation for the CRW used in this work is the advection–
diffusion equation (Codling et al., 2010). Given sufficiently
simple robots (i.e., those which are reactive, memory-less),
this approximation gives good results (Codling et al., 2010;
Pang et al., 2019).

Using this intuition, we obtain αb by computing the mean
time it takes a robot “particle” starting at xn to “diffuse”
within the operating area A to the expected acquisition loca-
tion E[xacq ]. Viewing

∥∥E[xacq ] − xn
∥∥ as the Root Mean

Square (RMS) displacement distance and assuming a linear
relationship between displacement and diffusion time, we
obtain

1

αb
=

∥∥E[xacq ] − xn
∥∥2

2F(N )
, (16)

where F(N ) is the diffusion constant for a swarmof N robots,
and αb is the expected time to diffuse from xn to E[xacq ].
We note that while the calculation for αb does not directly
consider the distribution of blocks in the arena and their den-
sities within a given block cluster, it depends on E[xacq ]. We
approximate F(N ) using the results of the RMS diffusion
for CRW (Codling et al., 2010) and the idea of tortuosity,
i.e., the amount of turning in a given space or time, which
states that highly tortuous paths will spreadmore slowly than
straight paths (Codling et al., 2008), giving us

F(N ) = N
Ld f (m)Dxy

Dθ

, (17)

where Ld f (m) is a per-scenario parameter characterizing the
linearity of the diffusion rate. Dxy is defined as follows,
where vs is the robot searching velocity and t is the timestep
size: (both scenario parameters):

Dxy = vs
2

4t

∫ π

−π

(1 ± cos 2θ) f (θ)dθ

︸ ︷︷ ︸
Dθ

. (18)

Under “normal” circumstances with inert particles, Eqs.
(16), (17) give sufficient results because system diffusion
varies linearly with time, which these equations require.
However, many foraging environments are heterogeneous
and have non-uniform distributions of blocks. As a result, the
swarmmay experience non-linear anomalous diffusion (Has-
nain et al., 2018; Woringer et al., 2020) (i.e., crowding and
heterogeneity in some areas of the environment) giving rise
to the need for Ld f (m) to capture these artifacts. In the
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derivations below, we account for this anomalous diffusion
to “restore” linear diffusion in our model.

We define the environment heterogeneity H(m) in refer-
ence to that of an environment with a perfectly uniform block
distribution; that is, in reference to the RN scenario. Thus,
H(RN ) = 0. In general:

H(m) = 1

J

⎧
⎪⎨

⎪⎩

∑

J

∥∥c j − xn
∥∥ if m ∈

{SS, DS}
∑

J
E(c j − E[c j ])(c j − E[c j ])T else.

(19)

For RN and PL scenarios this is calculated as the vari-
ance of the mean inter-cluster distance, as shown in Eq. 19
(bottom). For SS and DS scenarios with |J |≤ 2, the mean
inter-cluster distance is not meaningful, so H(m) is calcu-
lated as the mean cluster distance from xn (Eq. 19), top.

We refine our estimate of environmental heterogeneity by
including the influence of crowding to obtain H∗(m). Let the
set of inter-cluster distances be X = {∥∥ci − c j

∥∥ i ∈ J , j ∈
J }, the minimum inter-cluster distance be X1 = min(X),
and the “second minimum element” be X2 = min(X \ X1),
and so on. We have:

H∗(m) =

⎧
⎪⎪⎨

⎪⎪⎩

H(m) if m ∈ {SS, DS}

2H(m)

1
3

3∑

k=1
Xk

√
A2
x+A2

y

else.
(20)

For RN and PL scenarios, more heterogeneity will result
in exponentially more crowding, as reflected in Eq. (20),
(bottom). H(m) is normalized by a factor of (a) the largest
possible inter-cluster distance (the arena diagonal) and (b) the
mean inter-cluster distance of the three closest clusters. For
SS and DS scenarios (Eq. (20), top), no additional tuning for
crowding was performed, using the intuition that most robots
will spread out in the environment searching, thus resulting
in relatively little crowding around the nest.

Finally, using a hybrid first-principle and post-hoc mod-
eling approach we obtain Ld f (m). Post-hoc terms are shown
in [ ] in Eqs. (21), (22), (23), (24).

Ld f (RN ) = Dθ H
∗(RN )[Ax

0.1 J Dθ ], (21)

Ld f (PL) = Dθ H
∗(PL)[Ax

0.750.7J ], (22)

Ld f (SS) = Dθ H
∗(SS)[Ax

0.1] + [0.1], (23)

Ld f (DS) = Dθ H
∗(DS)[Ax

0.5]. (24)

Note that each block distribution has a slightly differ-
ent linearity constant, placing higher precedence on some
environmental variables over others, to provide a “glue” to
combine the different components of our anomalous sub-
diffusion model. This aspect of our ODEmodel still requires

post-hoc tuning, and is not purely derived from first princi-
ples; however,we again emphasize that the semanticmeaning
of these parameters makes their values more understandable,
and suggests the possibility of future derivation.

5.3 Derivation of robot encounter rate˛r

To derive αr , we use our assumption of low to moderate ρS ,
to model the robot encounter rate as a function of α1

r and
F(N ). We view Fig. 1 as a queueing network, where robots
are either performing collision avoidance maneuvers or not.
The input/output transition rates for a state are summed to
form the arrival and service rates for the collision avoid-
ance queue Qca (λca = α1

r and μca = 1/τav , respectively).
Modeling Qca as a M/M/1 queue, i.e., at most one robot
exits collision avoidance per 	t , which is reasonable if 	t
is small, we can write the following using Little’s Law (Šeda
et al., 2017):

αr = Nav(t)

τav

− α1
r Nav(t). (25)

The second term in Eq. (25) is a corrective factor accounting
for robots that experience interference due to encountering
arena walls, not other robots, which is simply the scaled rate
at which a single robot experiences interference. Nav(t) can-
not be used directly, as αr needs to be computed a priori, but
it can be estimated as a function of α1

r and N 1
av(t), using an

intuitive formulation of swarm diffusion:

ˆNav(t) = N 1
av(t)

F(N )

Dθ

Cca(m), (26)

where α1
r and N 1

av(t) can be computed from κ using the
results of (Codling et al., 2010). We increase the influence of
θ in Eq. (26) by introducing another Dθ in the denominator;
smaller θ will result in more inter-robot interference due to
straight line motion. Cca(m) characterizes the sub- or super-
linearity of Eq. (26) for a scenario m in relation to the RN
scenario.

6 Experimental setup

Scenarios have no obstacles, except for robots that act as
obstacles to each other. The parameters used in the scenarios
are summarized in Table 3.

6.1 Simulation experiments

We use the ARGoS simulator (Pinciroli et al., 2012) with a
dynamical physics model of the marXbot robot in a 3D space
for maximum fidelity. Robots are restricted to motion in the
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Table 3 Summary of
experimental parameters

Parameter Value/Notes

θ π/36

τav Computed from the robot control algorithm κ (details omitted)

Cca(m) Computed post-hoc for each scenario

t 0.2 seconds, i.e., the robot control algorithm runs at 5 Hz

XY plane.1 We use the foraging scenarios from Fig. 2, and
robots run the FSM in Fig. 1. Four sets of experiments are
conducted, characterized by different densities, ρS . Exper-
iments use N = 1 . . . 6, 006 robots in environments with
SS and DS source block distributions, and N = 11 . . . 11837
robots for RN and PL block distributions (see Fig. 2 for block
distributions). Experimental results shown are from 32 runs
of 200000 seconds each.

6.2 Real-robot experiments

We chose a robotic platform similar to the marXbot to mini-
mize the simulation-reality gap: the TurtleBot3 (Amsters and
Slaets, 2020) running ROS. TurtleBots have approximately
the same physical size as the marXbot, and use the onboard
lidar sensor for collision avoidance, which functions nearly
identically to the proximity sensors on the marXbot. We
extended TurtleBot3 with the following, as shown in Fig. 3:

1. An ultrasonic sensor used to detect blocks within a short
distance in front of the robot.

2. Four light sensors used for localization with respect to
a light source and to perform phototaxis. The four light
sensors are mounted at angles π/4, 3π/4, 5π/4, 7π/4.
This configuration always provides the robot with at least
two sensor readings during phototaxis so it can form a
reliable vector to the light source.

3. Two static “arms” that robots can use to “pickup” and
hold onto nearby blocks by pushing them, once they are
close enough to be sensed with the ultrasonic sensor.

Experiments were run in the space shown in Fig. 4. Experi-
mental results are calculated from 4 runs of T = 300 seconds
each, with N = 1 . . . 6. Videos of the experiments are avail-
able.2

1 Our is code open-source at https://github.com/jharwell/fordyca.
2 Supplementary videos for both simulated and real-robot experiments
can be found at https://www-users.cse.umn.edu/~harwe006/showcase/
auro-2022-extra/.

Fig. 3 Extended turtlebot3 robot. Light (mounted to gray squares on
each corner) and ultrasonic (bottomcenter) sensors added. Static “arms”
have been added to enable robots to “hold” onto blocks as they push
them

Fig. 4 The arena used for real robot experiments. Left: empty arena.
Right: the blocks in the arena. The arena is 8m× 4m = 32m2, and mir-
rors the layout of the single source distribution scenario shown in Fig. 2c

Fig. 5 The robots used for the experiments. Left: a robot bringing a
block to the nest, which is in front of the lights. Right: the 6 robots used

7 Simulation experiments

Across the four sets of experiments, core assumptions we
made when deriving our model are relaxed. For all the sce-
narios, predictions for Ns(t) are omitted since it can be
computed from the conservation of robots via Ns(t) =
N −Nav(t)−Nh(t). Results are presented with a non-scaled
X-axis, with one data point per experiment, and a logarithmic
Y-axis for larger N , to improve readability. We use ρS = 0.1
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Fig. 6 Predictions of swarm behavior at large scales with constant pop-
ulation density ρS = 0.1. Single source (SS), dual source (DS), random
(RN), and power law (PL) scenarios

as the upper limit for ρS for our experiments with constant
swarm density; this mirrors the upper limit for real-world
swarms of practical utility, as it corresponds to 1 robot/10m2

which is a high density in the context of feasible real-world
applications.

7.1 Constant�S, large N

Uniform density ρS and large number of robots N are the
“ideal” conditions in which to test our model.

In Fig. 6, we see strong agreement between the predic-
tions of our model and experimental results for all scenarios,
providing compelling evidence that our model is captur-
ing the underlying dynamics of inter-robot interference and
searching accurately. PL scenarios are the least favorable of
all foraging environments, since they are asymmetrical and
do not contain easily exploitable block clusters. Our model
struggles to predict Nh(t), Nav(t) within the 95% confi-
dence interval for PL scenarios, but does track the overall
trend reasonably well, showing that our underlying diffusion
model and assumptions about linearity of αr are generally
accurate even in this difficult case. The divergence between
predictions and experiments for PL scenarios suggests that

Fig. 7 Predictions of swarm behavior at small scales with constant
density ρS = 0.1. Single source (SS), dual source (DS), random (RN),
and power law (PL) scenarios

Eq. (10) is moderately inaccurate; this is further supported
by slight differences between experimental data and predic-
tions for Nh(t) in the RN and SS scenario environments.
In Fig. 6b, when our predictions of Nav(t) are inaccurate in
terms of confidence intervals for some DS scenarios, we find
that the inaccuracy should not be of practical concern as the
predictions only differ from the experimental results by < 1
robot/6000.

7.2 Constant�S, small N

We test the mean-field assumption, and evaluate our model’s
ability to capture finite-size effects when S cannot be rea-
sonably approximated using the mean-field model (with
N ≤ 50).

Figure7 shows strong agreement between experimental
results and the predictions of our model for all tested sce-
narios with small N . Even when the mean-field assumption
is relaxed, our model accurately captures finite-size effects.
The greatest discrepancy between predictions and results is
shown in Fig. 7c for RN scenarios, which have the highest
moments in the behavioral distribution because of the place-
ment of the nest relative to the objects to be gathered. This
results in non-uniform spatial distributions of the swarm. In
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Fig. 8 Predictions of swarm behavior at small scales with variable
population density ρS = 0.01 − 0.1. Single source (SS), dual source
(DS), random (RN), and power law (PL) scenarios. Swarm size N varies
5 . . . 51 for SS and DS scenarios, and 2 . . . 25 for RN and PL scenarios

comparison to Sect. 7.1 stronger agreement between predic-
tions and results with constant ρS is seen when N is small;
as N increases, the size of the higher moments increases as
well, as expected.

7.3 Variable�S, small N

Continuing with our trend of relaxation, we now test our
model’s ability to capture finite-size effectswithρS = 0.01−
0.1, and N ≤ 50. These scenarios are much more adverse to
our ODE modeling.

In Fig. 8 we see that our model generally performs well
even when the low ρS assumption is violated. We see strong
agreement between the model and the experimental data for
all scenarios for ρS = 0.01−0.05 for both Nh(t) and Nav(t).
In Fig. 8d, there is a striking divergence between predictions
and results at ρS = 0.09. It may be a numerical anomaly or
the point at which the ODE solver begins to struggle.

Fig. 9 Predictions of swarm behavior at large scales with variable pop-
ulation density ρS = 0.01− 0.1. Single source (SS), dual source (DS),
random (RN), and power law (PL) scenarios. Swarm size N varies
327 . . . 3276 for SS and DS scenarios, and 655 . . . 6553 for RN and PL
scenarios

7.4 Variable�S, large N

Finally, we now restore the mean-field assumption and test
our model’s ability to capture collective dynamics across
scales on the order of thousands of robots when the spatial
distribution of S is extremely non-uniform.

Figure9 shows that our model generally does not model
swarm behavior at large scales well at high densities. Sub-
stantial divergence between model predictions and results
is observed for Nav(t), Nh(t) for all scenarios beyond
ρS = 0.02, and beyond ρS = 0.01 for RN, PL scenarios.
This maps directly to our intuition: with high robot densi-
ties and a centrally located nest (RN) or multiple irregularly
spacedblock clusters, the distributionof swarmbehaviors has
strong higher moments. For RN and PL scenarios, a strong
correlation is observed between the ρS at which our model’s
predictions for both Nh(t) and Nav(t) break down, which
happens at ≈ ρS = 0.01. overall, the model fails to provide
meaningful predictions due to the highly non-uniform spatial
distributions, as expected.
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Fig. 10 Time series graphs of real robot behaviors. Homing behav-
ior (left) and {entering, exiting, experiencing} types of inter-robot
interference events (right) over time. Both instantaneous and run-
ning cumulative averages are shown for N = 6; other graphs for
N = 1, . . . , 5 omitted

8 Real-robot experiments

We describe some initial efforts to verify the simulation
results from Sect. 7 using real robots.

In Fig. 10, we see that even under the reduced experiment
times the swarm reaches steady-state, validating a crucial
assumption of ourODEmodel. However, in order to cross the
simulation-reality gap, we had to make the following adjust-
ments to the real robot controllers. First, we had to remove
the congestion-reducing behavioral assumption from Sect. 4,
because it was not feasible to implement it without precise
localization, which our simple robots did not have. Imple-
menting this behavior is necessary for predictive modeling
with real robots; however, we emphasize that even with-
out it our model may still provide rough order-of-magnitude
predictions which have utility in guiding design decisions.
Second,wehad to extensively tweakparameters such asmax-
imum robot speed, collision-avoidance proximity threshold,
etc., in order tominimize the human intervention in the exper-
iments. In our initial experiments, robotswould often turn too
quickly upon sensing a block, resulting in the detected block
slipping out of range of the arms. In addition, if robots got
too close, their arms could get caught on each other, resulting
in a deadlock.

9 Discussion

Our ODE-based model is not the first model in the literature
capable of capturing the behavioral dynamics of swarms for
large as well as small N . However, to the best of our knowl-
edge it is the first such model that does so accurately on
multiple block distributions, while also minimizing the use
of post-hoc parameters.

When we consider the swarm behavior with constant ρS

and large N (Fig. 6), we see that our model successfully pre-
dicts behavior at N ≥ 100 (mean-field approximation holds).

Fig. 11 Variance (left) and skew (right) of behavioral distributions. For
{ } as X increases swarm size increases. For { } as X increases
both swarm size and swarm density increase (Color figure online)

However, it struggles at N < 100 for SS, DS, and RN sce-
narios, underscoring the difficulty in creating an ODEmodel
that can capture both mean-field and finite-size behavioral
effects simultaneously. PL scenarios are themost challenging
to model because of the increased spatial non-uniformity of
the ρS distribution. Our model’s predictions are usually out-
side the confidence interval range; however, this corresponds
to accuracy within ≈ 16 robots/11837, which is sufficient in
most cases. Furthermore, while our model will break down at
some ρS > 0.1 that threshold is above any realistic scenario
(densities > 0.1 are infeasible for real-world problems).
For swarms in RN scenarios, large 95% confidence intervals
reflect the greater variability in behavior.

These results highlight the main assumptions our model
relies on. First, swarm behavior is a linear function of the
behavior of a single robot. Second, robot events are dis-
tributed close enough to Eq. (1) to be amenable to ODE
modeling. Clearly, these two assumptions are not valid in
all contexts across scales or scenarios for similar N . Never-
theless, they are valid in many contexts (e.g., Fig. 7, 8, parts
of Fig. 6). Third, the number of objects to be found in the
arena is roughly constant; this is because our ODE model
requires steady state. This maps to real-world scenarios, such
as warehouse transport in which objects are transported from
one side of the warehouse to the other, or arrive according
to a different process, such as delivery trucks. There are also
real-world scenarios, such as search and rescue, for which
this assumption is not valid.

These assumptions limit the applicability of our model in
the following ways. First, it cannot capture behaviors beyond
the mean, because it uses homogeneous Poisson processes;
non-homogeneous processes could have alternatively been
employed to model both steady-state and transient behav-
iors with time-varying λ, as well as higher moments. If
we calculate the higher moments of behavioral distributions
present in a given scenario, as shown in Fig. 11 and com-
pare to our results from Sect. 7, we see that the cases where
our model struggles or fails are precisely where there are
non-negligible higher moments. We further see that experi-
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ments that are more difficult to model also frequently have
negative skew: this matches our intuition, as heavy-tailed
behavioral distributions across time run counter to our steady
state assumption.

Our model could be extended by explicitly modeling
higher moments (Mather and Hsieh, 2012; Klavins, 2010) or
by adding time delays (Mather et al., 2013; Hsieh et al., 2008;
Krishnarajah et al., 2005) to reduce behavioral variability and
enhance model usability. Because we chose to target steady-
state behaviors our model assumes and requires steady-state
to work. Our model’s parameters also assume steady-state.
Specifically, they require that the number of objects to be
found is constant, no matter how many have been picked up
and brought to the nest. Thus, our model cannot be used in
scenarios with a finite number of blocks, such as the ones
studied in (Lerman and Galstyan, 2002).

Second, as a macroscopic model of foraging behavior, the
choice of what to model affects the results. If the foraging
behaviors are Poisson distributed with minimal skew, as in
previous works (Lerman and Galstyan, 2002; Lerman et al.,
2001), then the accuracy of the model is good. However, as
shown in Sect. 7.4, when non-negligible higher moments are
present in behavioral distributions, the predictions reveal the
fundamental limits of the model.

If the macroscopic states of the model instead represent
robot tasks corresponding to specific regions in the arena,
then the model accuracy is not subject to the distribution of
robot events, but depends on the distribution of task execution
times (Berman et al., 2007; Mather et al., 2013; Hsieh et al.,
2008). Clearly, the choice of what states the macroscopic
model represents is arbitrary, but has profound consequences
for what can be modeled, and how accurately.

As a result of our investigation, we can state the follow-
ing about the limits of applying ODE modeling to foraging
scenarios from an engineering standpoint: it is possible to
capture behaviors using ODE models across scales, swarm
densities, and scenarios, and general behavioral curves can
be tracked with reasonably accuracy. Furthermore, doing so
is also practical: our model’s predictions are accurate within
95% confidence for N ≤ 50 in all tested scenarios. It can
be used to provide useful bounds on swarm behaviors in the
tested scenarios—all of which are commonly used to model
real-world problems. Thus, even though our model has no
theoretical guarantees of applicability to arbitrary foraging
scenarios, its demonstrated usefulness onmany common for-
aging scenarios makes it of practical utility in designing SR
systems.

Our model uses diffusion theory to model robots as parti-
cles in a liquid as a convenient abstraction, given that robots
do not actually move as particles would. Diffusion theory
is an ideal tool because the complex mathematical relation-
ships it captures simplify to simple equations. Ourmodel still
relies on two free parameters: Cca(m) and Ld f (m), which

have strong semantic meaning: they are connected to the
levels of interference robots experience and the linearity of
swarm diffusion, respectively, suggesting future mathemati-
cal derivation.

This is an improvement over previous work (Lerman and
Galstyan, 2002). All the parameters in our model (free or cal-
culated analytically), have strong semantic contexts, making
it easier to understand why specific values give good predic-
tions. The number of free parameters has been reduced from
five to two.

When considering the utility of our ODE model beyond
foraging, the specific values for the ODE parameters clearly
depend on the problem configuration (e.g., N , block dis-
tribution). In that sense our model cannot be reused as-is.
However, this does not diminish its utility for foraging tasks.
Among the variants of foragingwe canmention collaborative
transport (Lerman et al., 2001) and reconnaissance (Hsieh
et al., 2008). Consider a reconnaissance task: we could use
diffusion theory to model swarms spreading over an envi-
ronment as they search for a suitable location for a base of
operations, modeling the searching behaviors using ODEs.

Most of the presented results were obtained in simula-
tion, similar to other mathematical approaches to modeling
SR systems (Guerrero-Bonilla et al., 2020; Tarapore et al.,
2017). Our real robot experiments in Sect. 8, while prelim-
inary, strongly suggest that our model is viable with real
robots, opening the door to first-principle predictive mod-
eling that is not only feasible, but that also has real-world
utility.

We have shown that our model is accurate with swarms
of non-trivial size (i.e., up to 46 robots in Fig. 7, up to 51
robots in Fig. 8, up to 6006 and 11837 robots in Fig. 6). In
such swarms, non-deterministic transient behaviorswill arise
even in simulation, e.g., floating point representation errors;
and we can see similar errors in small swarms of real robots,
as visible in Fig. 10.

10 Conclusions and future work

We have investigated the ODE modeling paradigm to bet-
ter understand its limits for CPFPs, and have contributed to
swarm engineering by showing how it can be used in design-
ing multi-robot systems. We developed a hybrid ODEmodel
combining analytic derivation of parameters with post-hoc
parameter fitting, and showed it is accurate in a variety of sce-
narios with widely varying behavioral dynamics that map to
real-world problems. Furthermore, the model is sufficiently
accurate even in scenarios for which the assumptions used to
derive our model do not hold. Initial real-robot experiments
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validate our model, with promising results suggesting that it
is robust enough to be used in the real-world.
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