Autonomous Robots (2023) 47:921-946
https://doi.org/10.1007/s10514-023-10104-w

®

Check for
updates

RLSS: real-time, decentralized, cooperative, networkless multi-robot
trajectory planning using linear spatial separations

Baskin Senbaslar' @ - Wolfgang Hoénig? - Nora Ayanian3

Received: 15 January 2022 / Accepted: 1 April 2023 / Published online: 30 May 2023
© The Author(s) 2023

Abstract

Trajectory planning for multiple robots in shared environments is a challenging problem especially when there is limited
communication available or no central entity. In this article, we present Real-time planning using Linear Spatial Separations,
or RLSS: a real-time decentralized trajectory planning algorithm for cooperative multi-robot teams in static environments.
The algorithm requires relatively few robot capabilities, namely sensing the positions of robots and obstacles without higher-
order derivatives and the ability of distinguishing robots from obstacles. There is no communication requirement and the
robots’ dynamic limits are taken into account. RLSS generates and solves convex quadratic optimization problems that are
kinematically feasible and guarantees collision avoidance if the resulting problems are feasible. We demonstrate the algorithm’s
performance in real-time in simulations and on physical robots. We compare RLSS to two state-of-the-art planners and show
empirically that RLSS does avoid deadlocks and collisions in forest-like and maze-like environments, significantly improving
prior work, which result in collisions and deadlocks in such environments.

Keywords Trajectory planning for multiple mobile robots - Decentralized robot systems - Collision avoidance - Multi-robot

systems

1 Introduction

Effective navigation of multiple robots in cluttered envi-
ronments is key to emerging industries such as ware-
house automation (Wurman et al., 2008), autonomous driv-
ing (Furda & Vlacic, 2011), and automated intersection
management (Dresner & Stone, 2008). One of the core
challenges of navigation systems in such domains is trajec-
tory planning. Planning safe trajectories for multiple robots

B Baskin Senbaslar
baskin.senbaslar@usc.edu

Wolfgang Honig
hoenig @tu-berlin.de

Nora Ayanian
nora_ayanian@brown.edu

Department of Computer Science, University of Southern
California, 941 Bloom Walk, Los Angeles, CA 90089, USA

Department of Electrical Engineering and Computer Science,
Technical University of Berlin, Marchstr. 23, 10587 Berlin,
Germany

Department of Computer Science and School of Engineering,
Brown University, 115 Waterman Street, Providence, RI
02912, USA

is especially challenging when there is no central entity
that plans all robots’ trajectories a priori or re-plans mid-
execution if there is a fault. In some cases, such a central
entity is undesirable because of the communication link that
must be maintained between each robot and the central entity.
If the map is not known a priori, building and relaying the
observed map of the environment to the central entity through
the communication channel adds further challenges. In some
cases, it is impractical to have such a central entity because
it cannot react to robot trajectory tracking errors and map
updates fast enough due to communication and computation
delays. In practice, robots must operate safely even if there is
limited communication available. This necessitates the abil-
ity for robots to plan in a decentralized fashion, where each
robot plans a safe trajectory for itself while operating in envi-
ronments with other robots and obstacles.

Decentralized algorithms delegate the computation of
trajectories: each robot plans for itself and reacts to the
environment by itself. In this paper, we introduce RLSS,
a real-time decentralized trajectory planning algorithm for
multiple robots in a shared environment that requires no
communication between robots and requires relatively few
sensing capabilities: each robot senses the relative positions

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10104-w&domain=pdf
http://orcid.org/0000-0001-6424-0503

922

Autonomous Robots (2023) 47:921-946

Fig.1 RLSS runs in real-time in dense environments. Each robot plans
a trajectory by itself using only the position information of other robots
and obstacles

of other robots and obstacles along with their geometric
shapes in the environment, and is able to distinguish robots
from obstacles. RLSS requires relatively few robot capabili-
ties than most state-of-the-art decentralized planners used for
multi-robot navigation, which typically require communica-
tion (Luis etal., 2020; Tordesillas & How, 2021; Wang et al.,
2021), higher order derivative estimates (Park & Kim, 2021;
Wang et al., 2021), or predicted trajectories of objects (Park
& Kim, 2021). However, the ability to distinguish robots
from obstacles is not required by some state-of-the-art algo-
rithms (Zhou et al., 2017), which require modelling obstacles
as robots. RLSS is cooperative in the sense that we assume
each robot stays within its current cell of a tessellation of the
space until the next planning iteration. We assume obstacles
are static, which is required to guarantee collision avoidance.

RLSS explicitly accounts for the dynamic limits of the
robots and enforces safety with hard constraints, reporting
when they cannot be enforced, thus guaranteeing collision
avoidance when it succeeds. The planning algorithm can be
guided with desired trajectories, thus it can be used in con-
junction with centralized planners. If no centralized planner
or plan is available, RLSS can be used on its own, without
any central guidance, by setting the desired trajectories to
line segments directly connecting robots’ start positions to
their goal positions.

There are 4 stages in RLSS.

1. Select a goal position to plan toward on the desired tra-
jectory;

2. Plan a discrete path toward the selected goal position;

3. Formulate and solve a kinematically feasible convex opti-
mization problem to compute a safe smooth trajectory
guided by the discrete plan;

4. Check if the trajectory obeys the dynamic limits of the
robot, and temporally rescale the trajectory if not.

RLSS works in the receding horizon fashion: it plans a long
trajectory, executes it for a short duration, and replans at
the next iteration. It utilizes separating hyperplanes, i.e., lin-

@ Springer

ear spatial separations, between robot shapes, obstacles, and
sweep geometries (the subsets of space swept by robots while
traversing straight line segments) to enforce safety during
trajectory optimization.

We demonstrate, through simulation and experiments on
physical robots, that RLSS works in dense environments in
real-time (Fig. 1). We compare our approach to two state-of-
the-art receding horizon decentralized multi-robot trajectory
planning algorithms in 3D. In the first, introduced by Zhou
et al. (2017), robots plan for actions using a model predic-
tive control-style optimization formulation while enforcing
that each robot stays inside its buffered Voronoi cell at every
iteration. We refer to this method as BVC. The original BVC
formulation works only for discrete single-integrator dynam-
ics and environments without obstacles. We extend the BVC
formulation to discrete time-invariant linear systems with
position outputs and environments with obstacles, and call
the extended version eBVC (short for extended BVC). RLSS
and eBVC have similar properties: they require no communi-
cation between robots, and require position sensing of other
objects in the environment. However, unlike RLSS, eBVC
does not require that robots are able to distinguish robots
from obstacles, as it treats each obstacle as a robot. In the
second, introduced by Park and Kim (2021), robots plan
for trajectories by utilizing relative safe navigation corridors,
which they execute for a short duration, and replan. We refer
to this method as RSFC. RSFC requires no communication
between robots, and utilizes positions as well as velocities
of the objects in the environment, thus requires more sens-
ing capabilities than RLSS. We demonstrate empirically that
RLSS results in no deadlocks or collisions in our experiments
in forest-like and maze-like environments, while eBVC is
prone to deadlocks and RSFC results in collisions in such
environments. However, RLSS results in slightly longer nav-
igation durations compared to both eBVC and RSFC.

The contribution of this work can be summarized as fol-
lows:

e A carefully designed, numerically stable, and effective
real-time decentralized planning algorithm for multiple
robots in shared environments with static obstacles with
relatively few requirements: no communication between
robots, position-only sensing of robots and obstacles, and
ability to distinguish robots from obstacles.

e An extension (eBVC) of a baseline planner (BVC) to
environments with obstacles and a richer set of dynamics
than only single-integrators.

e The first comparison of more than two state-of-the-art
communication-free decentralized multi-robot trajectory
planning algorithms, namely, RSFC, eBVC, and RLSS,
in complicated forest-like and maze-like environments,
some of which containing more than 2000 obstacles.

Autonomous Robots (2023) 47:921-946

923

2 Related work

The pipeline of RLSS contains three stages (discrete plan-
ning, safe navigation corridor construction, and trajectory
optimization) that are employed by several existing single-
robot trajectory planning algorithms. Richter et al. (2013)
present a single-robot trajectory planning method for aggres-
sive quadrotor flight which utilizes RRT* (Karaman &
Frazzoli, 2010) to find a kinematically feasible discrete path
and formulates an unconstrained quadratic program over
polynomial splines guided by the discrete path. Collisions are
checked after optimization, and additional decision points are
added and optimization is re-run if there is collision. Chen et
al. (2016) present a method that utilizes OcTree representa-
tion (Hornung et al., 2013) of the environment during discrete
search. They find a discrete path using unoccupied grid cells
of the OcTree. Then, they maximally inflate unoccupied grid
cells to create a safe navigation corridor that they use as con-
straints in the subsequent polynomial spline optimization.
Liu et al. (2017) uses Jump Point Search (JPS) (Harabor &
Grastien, 2011) as the discrete planner, and construct safe
navigation corridors that are used as constraints in the opti-
mization stage. Our planning system uses these three stages
(discrete planning, safe navigation corridor construction, and
corridor-constrained optimization) and extends it to multi-
robot scenarios in a decentralized way. We handle robot-robot
safety by cooperatively computing a linear partitioning of the
environment, and enforcing that each robot stays within its
own cell of the partition.

We categorize multi-robot trajectory planning algorithms
first on where computation is done, since the location of
computation changes the properties of the algorithms. There
are two main strategies to solve the multi-robot trajectory
planning problem: centralized and decentralized. Centralized
algorithms compute trajectories for all robots on a central
entity with global information; these trajectories are com-
municated back to the robots for them to execute. In the
decentralized strategy, each robot runs an algorithm on-
board to compute its own trajectory; these algorithms may
utilize direct communication between robots. Centralized
algorithms often provide strong theoretical guarantees on
completeness or global optimality because (i) they have the
complete knowledge about the environment beforehand, (ii)
they generally run on powerful centralized computers, and
(iii) there are generally less restrictive time limits on their exe-
cution. Decentralized algorithms generally forgo such strong
theoretical guarantees in favor of fast computation because
(i) they are often used when complete information of the
environment is not known beforehand, and (ii) they have to
work in real-time on-board.

2.1 Centralized algorithms

We further categorize centralized algorithms into those that
do not consider robot dynamics during planning and those
that do.

Centralized without dynamics: If planning can be
abstracted to agents moving along edges in a graph syn-
chronously, we refer to the multi-agent path finding (MAPF)
problem. Some variants of the MAPF problem are NP-Hard
to solve optimally (Yu & LaValle, 2013). For NP-Hard vari-
ants, there are many optimal (Sharon et al., 2015; Lam et al.,
2019), bounded suboptimal (Barer et al., 2014), and subop-
timal (Solovey et al., 2013; Ma et al., 2019) algorithms that
perform well in some environments. Trajectories generated
by planning algorithms that do not model robot dynamics
may not be followed perfectly by real robots, resulting in
divergence from the plan.

Centralized with dynamics: These algorithms deliver
smooth control or output trajectories that are executable by
real robots. Trajectories are usually generated by formulating
the problem under an optimization framework, and commu-
nicated to the robots for them to execute. Tang and Kumar
(2016) propose an approach that combines a discrete motion
planning algorithm with trajectory optimization that works
only in obstacle-free environments. Another approach com-
bines a MAPF solver with trajectory optimization to plan
trajectories for hundreds of quadrotors in environments with
obstacles, while ensuring that the resulting trajectories are
executable by the robots (Honig et al., 2018). Park et al.
(2020) combine a MAPF solver with trajectory optimization
and provide executability and feasibility guarantees. Desai
and Michael (2020) propose an approach utilizing position-
invariant geometric trees to find kinodynamically feasible
trajectories.

Centralized algorithms can provide theoretical complete-
ness and global optimality guarantees under the assumptions
of perfect prior knowledge and execution of trajectories.
However, centralized replanning is required when the envi-
ronment is discovered during operation or the robots deviate
from the planned trajectories. This necessitates continuous
communication between the central computer and the indi-
vidual robots. In some cases, solving the initial problem from
scratch may be required. If the communication between the
robots and the central computer cannot be maintained, or
solving the initial problem from scratch cannot be done in
real-time, the robots may collide with each other or obstacles.

2.2 Decentralized algorithms
When the requirements of the centralized strategies cannot be
satisfied, decentralization of the trajectory planning among

robots is required. In decentralized planning, robots assess
the state of the environment and plan for themselves using

@ Springer

924

Autonomous Robots (2023) 47:921-946

their on-board capabilities. We categorize decentralized algo-
rithms into reactive and long horizon algorithms.

Decentralized reactive: In reactive algorithms, each robot
computes the next action to execute based on the state of the
environment without considering the actions that might fol-
low it. One such approach is Optimal Reciprocal Collision
Avoidance (ORCA) (Alonso-Mora et al., 2013). In ORCA,
each robot chooses a velocity vector that is as close as possi-
ble to a desired velocity vector such that collisions between
each pair of robots are provably avoided. It requires robots
to (i) be cooperatively executing the same algorithm, (ii)
obey single integrator dynamics, and (iii) either sense other
robots’ velocities or receive them through communication.
While ORCA handles dynamic changes in the environment
and is completely distributed, it fails to avoid deadlocks in
environments with obstacles (Senbaslar et al., 2019). Safety
barrier certificates guarantee collision avoidance by com-
puting a safe control action that is as close as possible to
a desired control action (Wang et al., 2017). Similarly to
ORCA, the robots using safety barrier certificates may get
stuck in deadlocks. Most learning-based approaches fall into
the body of reactive strategies as well. Here, neural networks
are trained to compute the next action to execute, given a
robot’s immediate neighborhood and goal.! For instance,
PRIMAL (Sartoretti et al., 2019) is a computationally effi-
cient suboptimal online MAPF solver, but it only works on
grids, and does not consider robot dynamics. GLAS (Riviere
et al., 2020), which considers robot dynamics, can guarantee
safety for some robot dynamics by combining the network
output with a safety term. It performs better than ORCA in
terms of deadlocks, nevertheless results in deadlocks in dense
environments. Another approach employs graph neural net-
works (GNNSs) that allow communication between robots to
avoid collisions (Li et al., 2020), but results in deadlocks
in dense environments similar to GLAS. Batra et al. (2021)
propose a method that outputs direct motor commands for a
quadrotor using the positions and velocities of objects in the
its immediate neighborhood, but results in collisions between
robots.

Decentralized long horizon: In long horizon algorithms,
robots generate a sequence of actions or long trajectories
instead of computing a single action to execute. These
approaches employ receding horizon planning: they plan
long trajectories, execute them for a short duration, and
replan. Zhou et al. (2017) present a model predictive control
(MPC) based approach in which robots plan for a sequence of
actions while enforcing each robot to stay within its buffered

! Note that some learning-based approaches train neural networks to
mimic the behavior of a global long horizon planner. Because of this,
even if they output a single action, they abstractly consider a longer
horizon evolution of the system. We place these approaches to the reac-
tive algorithms category because they output a single action at each
iteration.

@ Springer

Voronoi cell. It requires no inter-robot communication and
depends on sensing of other robots’ positions only. Another
MPC-based approach approximates robots’ controller behav-
iors under given desired states as a linear system (Luis et
al., 2020). A smooth Bézier curve for each robot is com-
puted by solving an optimization problem, in which samples
of desired states are drawn from the curve and fed into the
model of the system. The approach requires communication
of future states for collision avoidance. Another MPC-based
approach generates plans using motion primitives to com-
pute time-optimal trajectories, then trains a neural network
to approximate the behavior of the planner, which is used dur-
ing operation for fast planning (Wang et al., 2021). It requires
sensing or communicating the full states of robots. Tordesil-
las and How (2021) present a method for dynamic obstacle
avoidance, handling asynchronous planning between agents
in a principled way. However, the approach requires instant
communication of planned trajectories between robots to
ensure safety. Park and Kim (2021) plan a piecewise Bézier
curve by formulating an optimization problem. It utilizes rel-
ative safe flight corridors (RSFCs) for collision avoidance
and requires no communication between robots, but requires
position and velocity sensing. In Peterson et al. (2021)’s
approach, robot tasks are defined as time window tempo-
ral logic specifications. Robots plan trajectories to achieve
their tasks while avoiding each other. The method provably
avoids deadlocks, but requires communication of planned
trajectories between robots.

RLSS falls into this body of algorithms. It requires sens-
ing only the positions of other robots and obstacles, and
does not require any communication between robots. The
work of Zhou et al. (2017) (BVC) is the only other approach
with these properties. Different from their approach, RLSS
uses discrete planning to avoid local minima, plans piecewise
Bézier trajectories instead of MPC-style input planning, and
does not constrain the full trajectory to be inside a constrain-
ing polytope. These result in better deadlock and collision
avoidance as we show in the evaluation section.

In terms of inter-robot collision avoidance, RLSS belongs
to a family of algorithms that ensure multi-robot collision
avoidance without inter-robot communication by using the
fact that each robot in the team runs the same algorithm. In
these algorithms, robots share the responsibility of collision
avoidance by computing feasible action sets that would not
result in collisions with others when others compute their
own feasible action sets using the same algorithm. Examples
include BVC (Zhou et al., 2017), which partitions position
space between robots and makes sure that each robot stays
within its own cell in the partition, ORCA (Alonso-Mora et
al., 2013), which computes feasible velocity sets for robots
such that there can be no collisions between robots as long
as each robot chooses a velocity command from their corre-

Autonomous Robots (2023) 47:921-946

925

sponding sets, and SBC (Wang et al., 2017), which does the
same with accelerations.

BVC and RLSS also belong to a family of decentral-
ized multi-robot trajectory planning algorithms that utilize
mutually computable separating hyperplanes for inter-robot
safety as defined by Senbaglar and Sukhatme (2022). These
algorithms do not require any inter-robot communication and
utilize only position/geometry sensing between robots. The
inter-robot safety is enforced by making sure that each pair
of robots can compute the same separating hyperplane and
enforce themselves to be in the different sides of this hyper-
plane at every planning iteration. Separating hyperplanes
that can be mutually computed by robots using only posi-
tion/geometry sensing and no communication are defined as
mutually computable. BVC uses Voronoi hyperplanes and
RLSS uses support vector machine hyperplanes, both of
which are mutually computable.

RLSS is an extension to our previous conference paper
(Senbaglar et al., 2019). We extend it conceptually by

e supporting robots with any convex geometry instead of
only spherical robots; and

e decreasing the failure rate of the algorithm from 3% in
complex environments to 0.01% by providing impor-
tant modifications to the algorithm. These modifications
include (i) changing the discrete planning to best-effort
A* search, thus allowing robots to plan towards their
goals even when goals are not currently reachable; (ii)
increasing the numerical stability of the algorithm by run-
ning discrete planning at each iteration instead of using
the trajectory of the previous iteration when it is collision
free to define the homotopy class, and adding a preferred
distance cost term to the optimization problem in order to
create a safety zone between objects when possible; and
(iii) ensuring the kinematic feasibility of the optimization
problem generated at the trajectory optimization stage.

We extend our previous work empirically by

e applying our algorithm to a heterogeneous team of dif-
ferential drive robots in 2D;

e applying our algorithm to quadrotors in 3D; and

e comparing the performance of our algorithm to stronger
baselines.

A preliminary version of RLSS previously appeared in a
workshop (Senbaglar et al., 2021). In the workshop version,
the RLSS optimization stage fails about 3% of the time, and
switches to a soft optimization formulation when that hap-
pens. In the current version, the optimization rarely (close to
1 in every 10000 iterations in our experiments) fails thanks
to the newly added preferred distance cost term, changed
goal selection stage, and changed discrete planning stage that

ensures kinematic feasibility of the optimization problem.
Hence, there is no longer a different soft optimization formu-
lation. In the workshop version, we compare RLSS against
Luis et al. (2020)’s work, which is based on distributed
MPC, which requires communication of planned trajectories
between robots. Herein, we compare our approach to two
planners that do not require communication between robots
as this provides a more comparable baseline.

3 Problem statement

We first define the multi-robot trajectory planning problem,
then, we indicate the specific case of the problem we solve.

Consider a team of N robots for which trajectories must
be computed at time # = 0. The team can be heterogeneous,
i.e., each robot might be of a different type or shape. Let R;
be the collision shape function of robot i such that R;(p) is
the collision shape of robot i located at position p € R?, d €
{2, 3}, i.e., the subset of space occupied by robot i when
placed at position p. We define R;(p) = {p+x | x €
Rio} where R; o C R4 is the the space occupied by robot i
when placed at the origin. Note that we do not model robot
orientation. If a robot can rotate, the collision shape should
contain the union of spaces occupied by the robot for each
possible orientation at a given position; which is minimally
a hypersphere if all orientations are possible.

We assume the robots are differentially flat (Murray
et al.,, 1995), i.e., the robots’ states and inputs can be
expressed in terms of output trajectories and a finite num-
ber of derivatives thereof. Differential flatness is common
for many kinds of mobile robots, including differential drive
robots (Campion et al., 1996), car-like robots (Murray &
Sastry, 1993), omnidirectional robots (Jiang & Song, 2013),
and quadrotors (Mellinger & Kumar, 2011). When robots are
differentially-flat, their dynamics can be accounted for by (i)
imposing C€ continuity on the trajectories for the required ¢
(i.e. continuity up to ¢’ degree of derivative), and (ii) impos-
ing constraints on the maximum k" derivative magnitude
of trajectories for any required k. For example, quadrotor
states and inputs can be expressed in terms of the output
trajectory, and its first (velocity), second (acceleration) and
third (jerk) derivatives (Mellinger & Kumar, 2011). Hence, to
account for quadrotor dynamics, continuity up to jerk should
be enforced by setting ¢ = 3, and velocity, acceleration, and
jerk of the output trajectory should be limited appropriately
by setting upper bounds for k = 1, 2, and 3.

Let O(r) = {Q C R} be the set of obstacles in the
environment at time ¢. The union Q(f) = Ugco () @ denotes
the occupied space at time 7. Let WW; € R? be the workspace
that robot i should stay inside of.

Let d;(t) : [0, T;] — R4 be the desired trajectory of
duration 7; that robot i should follow as closely as possible.

@ Springer

926

Autonomous Robots (2023) 47:921-946

Define d; () = d;(T;) Yt > T;. We do not require that this
trajectory is collision-free or even dynamically feasible to
track by the robot. If no such desired trajectory is known, it
can be initialized, for example, with a straight line to a goal
location.

The intent is that each robot i tracks a Euclidean trajec-
tory f;(r) : [0, T] — R? such that f;(¢) is collision-free,
executable according to the robot’s dynamics, is as close as
possible to the desired trajectory d;(¢), and ends at d; (7;).
Here, T is the navigation duration of the team. We generi-
cally define the multi-robot trajectory planning problem as
the problem of finding trajectories fy, . . ., fy and navigation
duration T that optimizes the following formulation:

dt s.t. (1)

N T
min fi (1)—d; (¢
. W;/O 16— ()1

f;(r) € CCi Vie(l,...,N} (2
£;(T) = di(T) viell,..., N} 3)
d°f;(0) _ d°p) , _

e = e Vive € {0, ..., ¢} “4)

Ri(F:()) N Q1) = 9
Ri(F:(1) N R (£;(1) =1

vivi e [0,T] (5)
Vj#iVre[0,T] (6)

Ri(fi (1)) e W; ViVt € [0, T] @)
d*t; (1) X .
max || = Vivk e {1,.... K} (8)

where c; is the order of derivative up to which the trajectory
of the i’ robot must be continuous, p? is the initial position
of robot i (derivatives of which are the initial higher order
state components, e.g., velocity, acceleration, etc.), yik is the
maximum k" derivative magnitude that the i*” robot can
execute, and K; is the maximum derivative degree that robot
i has a derivative magnitude limit on.

The cost (1) of the optimization problem is a metric
for the total deviation from the desired trajectories; it is
the sum of position distances between the planned and the
desired trajectories. (2) enforces that the trajectory of each
robot is continuous up to the required degree of derivatives.
(3) enforces that planned trajectories end at the endpoints
of desired trajectories. (4) enforces that the planned tra-
jectories have the same initial position and higher order
derivatives as the initial states of the robots. (5) and (6)
enforce robot-obstacle and robot-robot collision avoidance,
respectively. (7) enforces that each robot stays within its
defined workspace. Lastly, (8) enforces that the dynamic lim-
its of the robot are obeyed.

Note that only constraint (6) stems from multiple robots.
However, this seemingly simple constraint couples robots’
trajectories both spatially and temporally, making the prob-
lem much harder. As discussed in Sect.2.1, solving the
multi-agent path finding problem optimally is NP-Hard even
for the discrete case while the discrete single-agent path find-

@ Springer

ing problem can be solved optimally with classical search
methods in polynomial time. This curse of dimensionality
affects continuous motion planning as well, where even geo-
metric variants are known to be PSPACE-Hard (Hopcroft et
al., 1984).

A centralized planner can be used to solve the generic
multi-robot trajectory planning problem in one-shot provided
that: the current and future obstacle positions are known a
priori, computed trajectories can be sent to robots over a com-
munication link, and robots can track these trajectories well
enough that they do not violate the spatio-temporal safety
of the computed trajectories. In the present work, we aim to
approximately solve this problem in the case where obsta-
cles are static, but not necessarily known a priori by a central
entity, and there is no communication channel between robots
or between robots and a central entity. Each robot plans its
own trajectory in real-time. They plan at a high frequency to
compensate for trajectory tracking errors.

4 Preliminaries

We now introduce essential mathematical concepts used
herein.

4.1 Parametric curves and splines

Trajectories are curvesf : [0, T] — R that are parametrized
by time, with duration 7. Mathematically, we choose to use
splines, i.e. piecewise polynomials, where each piece is a
Bézier curve defined by a set of control points and a duration.

A Bézier curve f : [0, T] — R9 of degree h is defined by
h + 1 control points Py, ..., Pj € R as follows:

h i (h—i)
w-Se) (-4
i=0

Any Bézier curve f satisfies f(0) = Pgand f(7') = Pj,. Other
points guide the curve from Py to P;,. Since any Bézier curve
f is a polynomial of degree £, it is smooth, meaning f € C*°.

We choose Bézier curves as pieces because of their convex
hull property: the curves themselves lie inside the convex hull
of their control points, i.e., f(t) € Convex Hull{Py, ..., Py}
vVt € [0, T] (Farouki, 2012). Using the convex hull property,
we can constrain a curve to be inside a convex region by
constraining its control points to be inside the same convex
region. Tordesillas and How (2020) discuss the conservative-
ness of the convex hulls of control points of Bézier curves and
show that the convex hulls are considerably less conserva-
tive than those of B-Splines (Piegl & Tiller, 1995), which are
another type of curve with the convex hull property. Yet, they
also show that convex hulls of the control points of the Bézier

Autonomous Robots (2023) 47:921-946

927

curves can be considerably more conservative compared to
the smallest possible convex sets containing the curves.

4.2 Linear spatial separations: half-spaces, convex
polytopes, and support vector machines

A hyperplane H in R can be defined by a normal vector
Hn € R? and an offset H, as H = {x € R | HIX—}—H(I =
0}. A half-space H in R? is a subset of RY that is bounded
by a hyperplane such that H = {x € R? | Hyx +H, < 0}
A convex polytope is an intersection of a finite number of
half-spaces.

Our approach relies heavily on computing safe convex
polytopes and constraining spline pieces to be inside these
polytopes. Specifically, we compute hard-margin support
vector machine (SVM) (Cortes & Vapnik, 1995) hyperplanes
between spaces swept by robots along line segments and the
obstacles/robots in the environment, and use these hyper-
planes to create safe convex polytopes for robots to navigate
in.

5 Assumptions

Here, we list our additional assumptions about the problem
formulation defined in Sect. 3 and the capabilities of robots.

We assume that obstacles in the environment are static, i.e.,
O(t) = O Vr € [0, 00], and convex.? Many existing, effi-
cient, and widely-used mapping tools, including occupancy
grids (Homm et al., 2010) and octomaps (Hornung et al.,
2013), internally store obstacles as convex shapes; such maps
can be updated in real-time using visual or RGBD sensors,
and use unions of convex axis-aligned boxes to approximate
the obstacles in the environment.

Similarly, we assume that the shapes of the robots are
convex.

We assume that the workspace W; C RY is a convex
polytope. It can be set to a bounding box that defines a room
that a ground robot must not leave, a half-space that contains
vectors with positive z coordinates so that a quadrotor does
not hit the ground or simply be set to R?. A non-convex
workspace Wi can be modeled by a convex workspace W;
such that Wi C W, and a static set of convex obstacles 1)
that block portions of the convex workspace so that W, =
Wi\ (U QeO Q)

To provide a guarantee of collision avoidance, we assume
that robots can perfectly sense the relative positions of obsta-

2 For the purposes of our algorithm, concave obstacles can be described
or approximated by a union of finite number of convex shapes provided
that the union contains the original obstacle. Using our algorithm with
approximations of concave obstacles results in trajectories that avoid
the approximations.

cles and robots as well as their shapes in the environment.
The approach we propose does not require sensing of higher
order state components (e.g., velocity, acceleration, etc.) or
planned/estimated trajectories of objects, as the former is
generally a noisy signal which cannot be expected to be
sensed perfectly and the latter would require either commu-
nication or a potentially noisy trajectory estimation.

RLSS treats robots and obstacles differently. It enforces
that each robot stays within a spatial cell that is disjoint from
the cells of other robots until the next planning iteration to
ensure robot-robot collision avoidance. To compute the spa-
tial cell for each robot, RLSS uses positions and shapes of
nearby robots, but not obstacles, in the environment. There-
fore, robots must be able to distinguish other robots from
obstacles. However, we do not require individual identifica-
tion of robots.

We assume that the team is cooperative in that each robot
runs the same algorithm using the same replanning period.

Lastly, we assume that planning is synchronized between
robots, meaning that each robot plans at the same time instant.
The synchronization assumption is needed for ensuring
robot-robot collision avoidance when planning succeeds.’

6 Approach

Under the given assumptions, we solve the generic multi-
robot trajectory planning problem approximately using
decentralized receding horizon planning. Each robot plans
a trajectory, executes it for a short period of time, and repeats
this cycle until it reaches its goal. We call each plan-execute
cycle an iteration.

We refer to the planning robot as the ego robot, and hence-
forth drop indices for the ego robot from our notation as the
same algorithm is executed by each robot. Workspace WV is
the convex polytope in which the ego robot must remain.
R is the collision shape function of the ego robot such that
R(p) C R? is the space occupied by the ego robot when it is
placed at position p. The ego robot is given a desired trajec-
tory d(r) : [0, T] — R that it should follow. The dynamic
limits of the robot are modeled using required derivative
degree ¢ up to which the trajectory must be continuous,
and maximum derivative magnitudes y* for required degrees
kell,...,K}.

At every iteration, the ego robot computes a piecewise
trajectory f(¢), which is dynamically feasible and safe up
to the safety duration s, that it executes for the replanning

3 In physical deployments, asynchronous planning can cause collisions
between robots when they are in close proximity to each other. To handle
collisions stemming from asynchronous planning, robot shapes can be
artificially inflated according to the maximum possible planning lag
between robots (an empirical value) at the expense of conservativeness.

@ Springer

928

Autonomous Robots (2023) 47:921-946

period §¢ < s, and fully re-plans, i.e., runs the full planning
pipeline, for the next iteration. The only parameter that is
shared by all robots is the replanning period 5t.

Without loss of generality, we assume that navigation
begins at + = 0, and at the start of planning iteration u,
the current timestamp is 7 = u8t.

RLSS fits into the planning part of the classical robotics
pipeline using perception, planning, and control. The inputs
from perception for the ego robot are:

o S: Shapesofotherrobots.4 SjeSwherejefl,...,i—
1,i +1,..., N}is the collision shape of robot j sensed
by the ego robot such that S; C R4,

e (O: The set of obstacles in the environment, where each
obstacle Q € @ is a subset of RY,

e p: Current position of the ego robot, from which deriva-
tives up to required degree of continuity can be com-
puted.’

We define O = Ugeo @ as the space occupied by the
obstacles, and S = UsesS’ as the space occupied by the
robot shapes. Robots sense the set of obstacles and the set
of robot shapes and use those sets in practice. We use spaces
occupied by obstacles and robots for brevity in notation.

There are 4 main stages of RLSS: (1) goal selection, (2)
discrete planning, (3) trajectory optimization, and (4) tempo-
ral rescaling. The planning pipeline is summarized in Fig. 2.
At each planning iteration, the ego robot executes the four
stages to plan the next trajectory. In the goal selection stage,
a goal position and the corresponding timestamp of the goal
position on the desired trajectory d(z) is selected. In the
discrete planning stage, a discrete path from robot’s cur-
rent position toward the selected goal position is computed
and durations are assigned to each segment. In the trajec-
tory optimization stage, discrete segments are smoothed to
a piecewise trajectory. In the temporal rescaling stage, the
dynamic limits of the robot are checked and duration rescal-
ing is applied if necessary.

Next, we describe each stage in detail. Each stage has
access to the workspace W, the collision shape function R,
the desired trajectory d(¢) and its duration 7', the maximum
derivative magnitudes y*, and the derivative degree ¢ up to
which the trajectory must be continuous. We call these task
inputs. They describe the robot shape, robot dynamics, and

4 Practically, if the ego robot cannot sense a particular robot j because
it is not within the sensing range of the ego robot, robot j can be omitted
by the ego robot. As long as the sensing range of the ego robot is more
than the maximum distance that can be travelled by the ego robot and
robot j in duration 8¢, omitting robot j does not affect the behavior of
the algorithm.

> In reality, all required derivatives of the position would be estimated
using a state estimation method. We use this definition of p for notational
convenience.

@ Springer

S, 0, p (inputs from sensing)

lgoal & timestamp

Discrete Planning

lsegments & durations
Trajectory Optimization
/_\

] r

potentially dynamically
infeasible trajectory :

Temporal Rescaling

Fig.2 RLSS planning pipeline. Based on the sensed robots S, sensed
obstacles O, and current position p, the ego robot computes the trajec-
tory f(¢) that is dynamically feasible and safe up to time s

the task at hand; these are not parameters that can be tuned
freely and they do not change during navigation.

6.1 Goal selection

At the goal selection stage (Algorithm 1), we find a goal
position g on the desired trajectory d(¢) and a timestamp
by which it should be reached. These are required in the
subsequent discrete planning stage, which is a goal-oriented
search algorithm.

Goal selection has two parameters: the desired planning
horizon 7 and safety distance D. It uses the robot collision
shape function R, desired trajectory d(¢) and its duration 7,
and workspace W from the task inputs. The inputs of goal
selection are the shapes of other robots &, obstacles in the
environment O, current position p, and the current timestamp
T.

At the goal selection stage, the algorithm finds the times-
tamp T’ that is closest to T+t (i.e., the timestamp that
is one planning horizon away from the current timestamp)

N R W N e

Autonomous Robots (2023) 47:921-946

929

Algorithm 1 GOAL-SELECTION

Input : S : Set of robot shapes

Input 1 O : Set of obstacles

Input : p : Current position

Input : T : Current timestamp

TaskInput : R : Collision shape function

TaskInput :d(7), T : Desired trajectory and its duration
TaskInput : W : Workspace

Parameter : t : Desired planning horizon

Parameter : D : Safety distance

Return : Goal and timestamp by which it should be reached

T’ <« Solve (9) with linear search
if (9) is infeasible then
‘ return (p, f")
else
g <~ d(T)
return (g, 7’)
end

when the robot, if placed on the desired trajectory at 7", is at
least safety distance D away from all objects in the environ-
ment. We use the safety distance D as a heuristic to choose
goal positions that have free volume around them in order
not to command robots into tight goal positions. Note that
goal selection only chooses a single point on the desired tra-
jectory that satisfies the safety distance; the actual trajectory
the robot follows will be planned by the rest of the algorithm.
Formally, the problem we solve in the goal selection stage is
given as follows:

T = argmtin|t — (T 4 1) s.t.

t€[0,T] ©)

min-dist(R(d(?)), OUS U W) > D

where 0V is the boundary of workspace WV, and min-dist
returns the minimum distance between two sets.

We solve (9) using linear search on timestamps starting
from T + t with small increments and decrements.

Figure 3, demonstrates the goal selection procedure for a
particular instance.

If there is no safe point on the desired trajectory, i.e. if the
robot is closer than D to objects when it is placed on any point
on the desired trajectory, we return the current position and
timestamp. This allows us to plan a safe stopping trajectory.

Note that while the selected goal position has free volume
around it, it may not be reachable by the ego robot. For exam-
ple, the goal position may be encircled by obstacles or other
robots. Therefore, we use a best-effort search method during
discrete planning (as described in Sect. 6.2) that plans a path
towards the goal position.

The goal and the timestamp are used in the subsequent
discrete planning stage as suggestions.

(c) Blue Goal Selection

(d) Selected Goals

Fig.3 Goal Selection. a Blue and red squares are robots, while obsta-
cles are black boxes. The desired trajectories d,.q (1) and dpyye(f) of
each robot are given as dotted lines. Safety distance D is set to O for
clarity. b The desired trajectory of the red robot is not collision-free at
timestamp T + 7. It selects its goal timestamp 7' (and hence its goal
position) by solving (9), which is the closest timestamp to T + when
the robot, when placed on the desired trajectory, would be collision free.
¢ Since the desired trajectory of blue robot is collision free at timestamp
T + 7, it selects its goal timestamp T’ = T + 7 after solving (9). d
Selected goal positions are shown

6.2 Discrete planning

Discrete planning (Algorithm 2) performs two main tasks: (i)
it finds a collision-free discrete path from the current position
p towards the goal position g, and (ii) it assigns durations to
each segment of the discrete path. The discrete path found at
the discrete planning stage represents the homotopy class of
the final trajectory. Trajectories in the same homotopy class
can be smoothly deformed into one another without inter-
secting obstacles (Bhattacharya et al., 2010). The subsequent
trajectory optimization stage computes a smooth trajectory
within the homotopy class. The trajectory optimization stage
utilizes the discrete path to (i) generate obstacle avoidance
constraints and (ii) guide the computed trajectory by adding
distance cost terms between the discrete path and the com-
puted trajectory. It uses the durations assigned by the discrete
planning stage as the piece durations of the piecewise trajec-
tory it computes.

Finding a discrete path from the start position p to the
goal position g is done with best-effort A* search (Line 2,
Algorithm 2), which we define as follows. If there are valid
paths from p to g, we find the least-cost path among such
paths. If no such path exists, we choose the least-cost path
to the position that has the lowest heuristic value (i.e., the
position that is heuristically closest to g). This modification
of A* search is done due to the fact that the goal position may

@ Springer

1

L N I S

£

® 3

o

oy

930

Autonomous Robots (2023) 47:921-946

Algorithm 2 DISCRETE-PLANNING

Input : g : Goal position

Input : T’ : The timestamp that goal position should be (or
should have been) reached at

Input : S : Set of robot shapes

Input 1 O : Set of obstacles

Input : p : Current position

Input : T : Current timestamp

TaskInput : R : Collision shape function

TaskInput :)V : Workspace

TaskInput : ! : Maximum velocity the robot can execute

Parameter : o : Step size of search grid

Parameter : s : Duration up to which computed trajectory must be
safe. s > &t must hold.

Return : Discrete path and duration assignments to segments

F < W\(OUS)

actions < BEST-EFFORT-A*(p, g, R, F, o)

{e1,...,er} < EXTRACT-SEGMENTS (actions)

Prepend e; to {ey, ..., er} sothatey = ej.

total Length < Zf:l lle; —ei—1ll,

fDuration < max (T’ -7, 7mml}€f”grh>

T < s
fori =2 — Ldo

o Nlei—ei-i|l
Ti <~ fDuratlon totalLength
end
return {eg, ..., e .}, {T1,..., T}

not always be reachable, since the goal selection stage does
not enforce reachability.

The ego robot plans its path in a search grid where the
grid has hypercubic cells (i.e. square in 2D, cube in 3D) with
edge size o, which we call the step size of the search. The grid
shifts in the environment with the robot in the sense that the
robot’s current position always coincides with a grid center.
Let F = W\(@ US) be the free space within the workspace
(Line 1, Algorithm 2). We do not map free space F to the
grid. Instead, we check if the robot shape swept along any
segment on the grid is contained in JF or not, to decide if a
movement is valid. This allows us to (i) model obstacles and
robot shapes independently from the grid’s step size o, and
(i1) shift the grid with no additional computation since we do
not store occupancy information within the grid.

The states during the search have two components: posi-
tion & and direction A. Robots are allowed to move perpen-
dicular or diagonal to the grid. This translates to 8 directions
in 2-dimension, 26 directions in 3-dimension. Goal states
are states that have position g and any direction. We model
directions using vectors A of d components where each com-
ponent is in {—1, 0, 1}. When the robot moves 1 step along
direction A, its position changes by o A. The initial state of
the search is the ego robot’s current position p and direction
0.

There are 3 actions in the search formulation: ROTATE,
FORWARD, and REACHGOAL, summarized in Table 1.
ROTATE action has a cost of 1. The cost of the FORWARD

@ Springer

action is the distance travelled divided by the step size (i.e.
cells travelled), which is equal to the size ||A||, of the direc-
tion vector. REACHGOAL has the cost of one rotation plus
cells travelled from m to goal position g: 1 + @. One
rotation cost is there because it is almost surely required to
do one rotation before going to goal from a cell. ROTATE
actions in all directions are always valid whenever the cur-
rent state is valid. FORWARD and REACHGOAL actions are
valid whenever the robot shape R swept along the movement
is contained in free space F.

For any state (i, A), we use the Euclidean distance from
position & to the goal position g divided by step size o (i.e.
cells travelled when = is connected to g with a straight line)
as the admissible heuristic.

Lemma 1 In the action sequence of the resulting plan

1. Each ROTATE action must be followed by at least one
FORWARD action,

2. The first action cannot be a FORWARD action,

3. And no action can appear after REACHGOAL action.

Proof Sketch 1. After each ROTATE action, a FORWARD
action must be executed in a least-cost plan because (i) a
ROTATE action cannot be the last action since goal states
accept any direction and removing any ROTATE action from
the end would result in a valid lower cost plan, (ii) the
REACHGOAL action cannot appear after ROTATE action
because REACHGOAL internally assumes robot rotation
and removing the ROTATE action would result in a valid
lower cost plan, and iii) there cannot be consecutive ROTATE
actions in a least-cost path as each rotation has the cost of 1
and removing consecutive rotations and replacing them with
a single rotation would result in a valid lower cost plan.

2. The first action cannot be a FORWARD action since
initial direction is set to 0 and FORWARD action is available
only when A # 0.

3. No action after a REACHGOAL action can appear
in a least cost plan because REACHGOAL connects to the
goal position, which is a goal state regardless of the direc-
tion. Removing any action after REACHGOAL action would
result in a valid lower cost plan. O

By Lemma 1, the action sequence can be described by the
following regular expression in POSIX-Extended Regular
Expression Syntax:

((ROTATE)(FORWARD)")*(REACHGOAL)- !}

We collapse consecutive FORWARD actions in the result-
ing plan and extract discrete segments (Line 3, Algo-
rithm 2). Each (ROTATE)(FORWARD)* sequence and
REACHGOAL becomes a separate discrete segment. Let
{er,...,er} be the endpoints of discrete segments. We

Autonomous Robots (2023) 47:921-946

931

Table 1 Discrete search actions and their costs

Action Description

Cost

ROTATE Change current direction to a new direction

1

FORWARD Move forward from the current position r along current direction A by the step size . It is only available when A # 0]|A]|,

REACHGOAL Connect the current position 7 to the goal position g where step size of the grid is o

|+ I\n;gl\z

(a) Goal Positions (b) Red Discrete Planning

| [[
e =c HEN

(d) Discrete Paths

(c) Blue Discrete Planning

Fig. 4 Discrete Planning. a Goal positions of two robots computed at
the goal selection stage are given. b Red robot plans a discrete path
from its current position to its goal position on a search grid that is
aligned on its current position. ¢ Blue robot plans a discrete path from
its current position to its goals position on a search grid that is aligned on
its current position. Computed discrete paths are prepended with robot
start positions to have 0-length first segments. d The resulting discrete
paths are given

prepend the first endpoint to the endpoint sequence in order to
have a O-length first segment for reasons that we will explain
in Sect. 6.3 (Line 4, Algorithm 2). The resulting L segments
are described by L+ 1 endpoints {ep, . .., e, } where ey = ey.
Example discrete paths for two robots are shown in Fig. 4.
Next, we assign durations to each segment. The total
duration of the segments is computed using the ego robot’s
maximum velocity y !, the timestamp 7" that the goal posi-
tion should be reached by, and the current timestamp 7. We
use 7' — T as the desired duration of the plan. However,
if 7" — T is negative (i.e. T' < T, meaning that the goal
position should been reached in the past), or 7" — T is small
such that the robot cannot traverse the discrete segments even
with its maximum velocity y !, we adjust the desired dura-
tion to a feasible one, specifically the total length of segments
divided by the maximum velocity (Line 6, Algorithm 2). We
distribute the feasible duration to the segments except for the
first one, proportional to their lengths (Loop at line 8, Algo-
rithm 2). We set the duration of the first segment, which has

zero length, to the safety duration s (Line 7, Algorithm 2);
the reason for this will be explained in Sect. 6.3.

The outputs of discrete planning are segments described
by endpoints {eg, . . ., e, } withassigned durations {77, ..., T}
that are used in the trajectory optimization stage.

6.3 Trajectory optimization

In the trajectory optimization stage (Algorithm 3), we for-
mulate a convex quadratic optimization problem (QP) to
compute a piecewise trajectory f(#) by smoothing discrete
segments. The computed trajectory is collision-free and con-
tinuous up to the desired degree of derivative. However, it
may be dynamically infeasible (i.e., derivative magnitudes
may exceed the maximum allowed derivative magnitudes
¥%); this is resolved during the subsequent temporal rescaling
stage.

The decision variables of the optimization problem are
the control points of an L-piece spline where each piece is a
Bézier curve. The duration of each piece is assigned during
discrete planning. Let T = ZiL=1 T; denote the total duration
of the planned trajectory. The degree of the Bézier curves is
tuned with the parameter i. LetP; ; € R be the j'* control
point of the it piece where i € {1,...,L},j €{0,...,h}.
Let P ={P;;|iefl,...,L},j €{0,..., h}} be the set
of all control points.

6.3.1 Constraints

There are 4 types of constraints on the trajectory; all are linear
in the decision variables P.

1) Workspace constraints: We shift each bounding hyper-
plane of workspace WV (there are a finite number of such
hyperplanes as W is a convex polytope) to account for the
robot’s collision shape R, such that when the robot’s posi-
tion is on the safe side of the shifted hyperplane, the entire
robot is on the safe side of the original hyperplane (Line 2,
Algorithm 3).

@ Springer

932

Autonomous Robots (2023) 47:921-946

Algorithm 3 TRAJECTORY-OPTIMIZATION

Input : {ep, ..., er} : Endpoints of discrete segments
Input :{T1, ..., Tp} : Durations of discrete segments
Input : S : Set of robot shapes

Input 1 O : Set of obstacles

Input : p : Current position

TaskInput : R : Collision shape function

TaskInput : W : Workspace

TaskInput : ¢ : Degree of derivative up to which resulting trajectory
must be continuous

Parameter :/ : Degree of Bézier curves

Parameter : o : Obstacle check distance

Parameter : 7 : Robot check distance

Parameter : p : Preferred distance to objects

Parameter : o : Preferred distance cost weight

Parameter : 6 : Endpoint cost weights

Parameter : A : Integrated derivative cost weights

Return : Potentially dynamically infeasible trajectory

QP is a quadratic program with variables P
Tyy < BUFFER-WORKSPACE(W, R)
addWorkspaceConstraints(Q P, Yyy)

Y < @Viefl,...,L}

\ Y1 < Y U{BUFFERED-SVM(S;, R(p), R)}
end
fori=1— Ldo

(i1) it allows for a richer set of collision shapes than basic
Voronoi cells, which is valid only for hyperspherical objects,
and (iii) SVM cells are always convex unlike generalized
Voronoi cells.

We buffer the ego robot’s SVM cell to account for its colli-
sion shape R, and constrain the first piece of the trajectory to
stay inside the buffered SVM cell (BSVM) (loop at Line 5,
Algorithm 3). Only the first piece of the trajectory is con-
strained to remain in the buffered SVM cell, since the entire
planning pipeline is run after &z, which is smaller than the
duration s of the first piece. At that time, planning begins at
anew location, generating a new first piece that must remain
in the new buffered SVM cell.

Buffering is achieved by changing the offset of the hyper-
plane. R(x) is the shape of the robot when placed at x, defined
as R(x) = {x}®Ro, where Ry is the shape of the robot when
placed the origin and & is the Minkowski sum operator. Given
a hyperplane with normal H,, and offset H,, we find H, that
ensures R(x) is on the negative side of the hyperplane with
normal Hy, and offset H, whenever x is on the negative side
of the hyperplane with normal H, and offset H,/, and vice

1
2
3
4
5 for VS; € S min-dist(S;, R(p)) <7 do
6
7
8
9

;i < region swept by R from e;_1 to e;
10 for VO € O min-dist(Q, ¢;) < o do

versa, by setting H, = H, + maxyer, Hn - y. The follow-
ing shows that whenever R(x) is on the negative side of the

E e‘ndTi < Yi U{BUFFERED-SVM(Q, &i, R)} hyperplane (Hy, H,), X is on the negative side of the hyper-
3 end plane (Hpy, H,/). The converse can be shown by following

14 addCollAvoidanceConstraints(Q P, Y, .. the steps backwards.
15 addContinuityConstraints(Q P, ¢, p, T1, . .
16 addEnergyCostTerm(QP, A, Ty, ..., TL)
17 addDeviationCostTerm(Q P, 0, ey, ..., er)
18 T| < SHIFT-HYPERPLANES(T},)

19 addPreferredDistanceCostTerm(Q P, Y1, «)

., Y1)
., Tr)
Vye RX) Hn-y+Hqs <0

— max Hp-y+H, <0
YER(x)

-

f(t) < SOLVE-QP(QP)
return f(z)

Let Yy be the set of shifted hyperplanes of VV. We con-
strain each control point of the trajectory to be on the valid
sides of the shifted hyperplanes (Line 3, Algorithm 3). Since
Bézier curves are contained in the convex hulls of their con-
trol points, constraining control points to be in a convex set
automatically constrains the Bézier curves to stay within the
same convex set.

2) Robot-robot collision avoidance constraints: For robot-
robot collision avoidance, recall that each robot replans with
the same period &7 and planning is synchronized between
robots.

At each iteration, the ego robot computes its SVM cell
within the SVM tessellation of robots using hard-margin
SVMs. SVM tessellation is similar to Voronoi tesselation,
the only difference is that pairwise SVM hyperplanes are
computed between collision shapes instead of Voronoi hyper-
planes. We choose SVM tessellation because (i) hard-margin
SVM is convex, hence pairs of robots can compute the same
exact hyperplane under the assumption of perfect sensing,

@ Springer

= max_ Hp-y+H, =<0
ye{x}®Ro

= max Hp - (y+x) +Hs <0
yeRo

= Hn-X+Hs+ max Hy-y <0
YeRo

Since the duration of the first piece was set to the safety
duration s > 4t in discrete planning, the robot stays within
its buffered SVM cell for at least 6¢. Moreover, since plan-
ning is synchronized across all robots, the pairwise SVM
hyperplanes they compute will match, thus the buffered SVM
cells of robots are disjoint. This ensures robot-robot collision
avoidance until the next planning iteration.

Computed SVMs and BSVMs are shown in Fig. 5b for a
two robot case.

To ensure that the number of constraints of the optimiza-
tion problem does not grow indefinitely, SVM hyperplanes
are only computed against those robots that are at most 7
away from the ego robot. This does not result in unsafe
trajectories so long as 7 is more than the total maximum
distance that can be traversed by two robots while follow-
ing the first pieces of their trajectories, for which an upper
bound is max,-’je{le}(yilsi + yjlsj), where s; and s; are

Autonomous Robots (2023) 47:921-946

933

HE
Feo = HEN
(a) Discrete Paths
straints

(b) Robot-robot Collision Avoidance Con-

®-- EEEEE
EEEEE
EEEEE

(c) Active Set of Robot-obstacle Colli-
sion Avoidance Constraints for the Second
Piece of the Blue Robot

A

(d) Active Set of Robot-obstacle Colli-
sion Avoidance Constraints for the Second Avoidance Constraints for the Third Piece

Piece of the Red Robot of the Red Robot

Fig.5 Trajectory Optimization. a Discrete segments of two robots com-
puted at the discrete planning stage. b Robot-robot collision avoidance
constraints are computed using BSVMs. The green hyperplane is the
SVM hyperplane between two robots. Each robot shifts the SVM hyper-
plane to account for its geometry, and constrains the first piece of the
trajectory with the resulting BSVM. c—e Active set of robot-obstacle
collision avoidance constraints for three different pieces (one belong-
ing to the blue robot, two belonging to the red robot). In each figure,
the region swept by the robot while traversing the segment is shown in

the durations of the first pieces of the trajectories of robots i
and j respectively.

3) Robot-obstacle collision avoidance constraints: Buffered
SVM hyperplanes are used for robot-obstacle collision avoid-
anceas well. Let ;; C R? be the region swept by the ego robot
while traversing the i’ segment from e; _1 to e;. We compute
the SVM hyperplane between ¢; and each object in O, buffer
it as explained before to account for robot’s collision shape,
and constrain the i’" piece by the resulting buffered SVM
(Loop at line 8, Algorithm 3). This ensures that trajectory
pieces do not cause collisions with obstacles.

The use of SVMs for collision avoidance against obsta-
cles is a choice of convenience, as we already use them for
robot-robot collision avoidance. For robot-obstacle collision
avoidance, one can use any separating hyperplane between
¢; and objects in O, while in the case of robot-robot collision

(e) Active Set of Robot-obstacle Collision

(f) Computed Trajectories

robot’s color. SVM hyperplanes between the swept region and the obsta-
cles are given as light-colored lines. SVM hyperplanes are buffered to
account for the robot’s collision shape and shown as dark-colored lines
(BSVMs). The shift operations are shown as arrows. Obstacles and con-
straints generated from them are colored using the same colors. For each
piece, the feasible region that is induced by the robot-obstacle collision
avoidance constraints is colored in gray. f Trajectories computed by the
trajectory optimization stage are given

avoidance, pairs of robots must compute matching hyper-
planes using the same algorithm.

Elements of the active set of SVM and BSVM hyperplanes
for robot-obstacle collision avoidance are shown in an exam-
ple scenario in Fig. Sc—e for three different pieces.

Similar to robot-robot collision avoidance, to ensure that
the number of constraints of the optimization problem does
not grow indefinitely, we only compute SVM hyperplanes
between ¢; and obstacles that are not more than o away from
&i-

Let Y; be the set of buffered SVM hyperplanes that
constrain the ;" piece Vi € {1,..., L}. Y1 contains both
robot-robot and robot-obstacle collision avoidance hyper-
planes while Y; Vj € {2, ..., L} contain only robot-obstacle
collision avoidance hyperplanes. This is because the first
piece is the only piece that we constrain with robot-robot

@ Springer

934

Autonomous Robots (2023) 47:921-946

collision avoidance hyperplanes because it is the only piece
that will be executed until the next planning iteration.

4) Continuity constraints: We add two types of continu-
ity constraints: (i) continuity constraints between planning
iterations, and (ii) continuity constraints between trajectory
pieces (Line 15, Algorithm 3).

To enforce continuity between planning iterations, we add
constraints that enforce

d£(0)
dtJ

d'p .
:WV‘]G{O,,C}

where c is the task input denoting the continuity degree up
to which the resulting trajectory must be continuous and p is
the current position.

To enforce continuity between trajectory pieces, we add
constraints that enforce

d/f;(T)) d'fi1(0)
de/— dii
Vie{l,....L—1}Vjelo,... c}

where f; (¢) is the i’ piece of the trajectory.

Remark 1 discusses that the SVM problems generated dur-
ing trajectory optimization are feasible, i.e., the trajectory
optimization stage will always succeed constructing the QP.

Remark 1 All SVM problems generated for robot-robot and
robot-obstacle collision avoidance from the discrete path out-
putted by the discrete planning stage are feasible.

Reasoning. The discrete planning stage outputs a discrete
path such that a robot with collision shape R following the
path does not collide with any obstacles in O or any other
robots in S. It also ensures that p = e since the search starts
from the robot’s current position p. Hence, R(p) does not
intersect with any §; € S. Since each robot is assumed to
be convex, there exists at least one hyperplane that separates
R(p) from S; for each j by the separating hyperplane the-
orem. SVM is an optimal separating hyperplane according
to a cost function. Therefore, SVM problems between R (p)
and S; € S for robot-robot collision avoidance are feasible.

Since the robot moving along the discrete segments is col-
lision free, &; is collision free for all i. Also, since itis a sweep
of a convex shape along a line segment, ¢; is convex as shown
inLemma 2 in Appendix A. Similar to the previous argument,
since ¢; is collision-free and convex and all obstacles in the
environment are convex, each SVM problem between ¢; and
Q € O for robot-obstacle collision avoidance is feasible by
the separating hyperplane theorem.

Workspace, robot-robot collision avoidance, robot-obstacle
collision avoidance, and position continuity constraints are
kinematic constraints. Higher-order continuity constraints
are dynamic constraints. Remark 2 discusses the ensured

@ Springer

feasibility of the kinematic constraints. The feasibility of the
dynamic constraints cannot be ensured for arbitrary degrees
of continuity.

Remark 2 Kinematic constraints of the optimization problem
generated from a discrete path output from the discrete plan-
ning stage are feasible for the same path when the degree of
Bézier curves h > 1.

Reasoning. Any Bézier curve with degree & > 1 can repre-
sent a discrete segment by setting half of the points to the
start of the segment and other half to the end of the segment.
Hence, we will only show that a discrete path output from
discrete planning stage by itself satisfies the kinematic con-
straints generated. Remember that discrete path output from
the discrete planning stage has the property p = eg = e.

Eachrobot-robot SVM problem is feasible (see Remark 1).
Let Hy be the normal and H, be the offset of any of the
robot-robot SVMs. It is shifted by setting the offset to H, =
Ha +maxyer,, Hn -y. The point p satisfies Hp-p+Hy <0
because R(p) is on the negative side of the SVM. The robot-
robot BSVM hyperplanes are used to constrain the first piece
of the trajectory, and setting the first piece as a O-length seg-
ment with p = ey = e satisfies the robot-robot collision
avoidance constraints.

Eachrobot-obstacle SVM problem is feasible (see Remark 1).

Let H, be the normal and H,, be the offset of any of the robot-
obstacle SVMs that is between ¢; and an obstacle. It is shifted
by setting the offsetto H,» = H,+maxyeRr,, Hn-y. All points
on the line segment p; () = e;_1 +t(e; —e;j_1),t € [0, 1]
frome;_1 to e; satisfy the BSVM constraint because R.(p; (1))
is on the negative side of the SVM hyperplane V¢ € [0, 1].
Since each SVM hyperplane between ¢; and obstacles is only
used to constrain the i” piece, constraints generated by it are
feasible for the segment from e;_; to e;.

The feasibility of the workspace constraints are trivial
since the robot moving along discrete segments is contained
in the workspace, and we shift bounding hyperplanes of the
workspace in the same way as SVM hyperplanes. Hence, the
discrete path satisfies the workspace constraints.

Initial point position continuity of the robot is satisfied by
the given discrete segments since p = . Position continuity
between segments are trivially satisfied by the given discrete
segments, since the discrete path is position continuous by
its definition. O

6.3.2 Cost function

The cost function of the optimization problem has 3 terms:
(i) energy usage, (ii) deviation from the discrete path, and
(iii) preferred distance to objects.

We use the sum of integrated squared derivative magni-
tudes as a metric for energy usage (Line 16, Algortihm 3),
similar to the works of Richter et al. (2013) and Honig et al.

Autonomous Robots (2023) 47:921-946

935

(2018). Parameters A = {A;} are the weights for integrated
squared derivative magnitudes, where A ; is the weight for h
degree of derivative. The energy term Jepergy (P) is given as

d’ f(t)
dti

Tenergy(P) =Y & /

AjEL 2

We use squared Euclidean distances between trajectory
piece endpoints and discrete segment endpoints as a metric
for deviation from the discrete path (Line 17, Algorithm 3).
Remember that each Bézier curve piece i ends at its last
control point P; ;. Parameters = {6;} € RZL are the weights
for each segment endpoint. The deviation term Jge, (P) is
given as

> oi|Pis—el;.

ie{l,...,.L}

jdev (7)) =

The last term of the cost function models the preferred
distance to objects. We use this term to discourage robots
from getting closer to other objects in the environment; this
increases the numerical stability of the algorithm by driving
robots away from tight states.

We shift each hyperplane in Y (i.e., buffered SVM hyper-
planes constraining the first piece) by the preferred distance
to objects, p, to create the preferred hyperplanes Y (Line 18,
Algorithm 3). Since each robot replans with the period §¢, we
add a cost term that drives the robot closer to the preferred
hyperplanes at the replanning period (Line 19, Algorithm 3).
We take the sum of squared distances between f(5¢) and
hyperplanes in Yi:

Tores P =0 Y [0 + |
HGT]

where H,, is the normal and H,, is the offset of hyperplane
H, and « is the weight of 7. term. Notice that this term is
defined over the control points of first piece since 6t < s =
T1, supporting the utilization of Y only.

The overall trajectory optimization problem is:

II%H Tenergy(P) + Jaev(P) + Tprep (P) s.t.

HoP;ij+H, <0 Vie{l,...,L}
Vjelo,..., h)
YH € Y; Uy
d/f0) d/p)
== N 0,...,
dtJ dt’ j el c}
dIf; (T; d/f;11(0
,(',) z+1()V el L—1)
dt’ dtJ
Vjef0,...,c}.

Notice that we formulate continuity and the safety of
the trajectory using hard constraints. This ensures that the
resulting trajectory is kinematically safe and continuous up
to degree c if the optimization succeeds for all robots and
planning is synchronized.

6.4 Temporal rescaling

At the temporal rescaling stage, we check whether the
dynamic limits of the robot are violated. If the resulting tra-
jectory is valid, i.e. derivative magnitudes of the trajectory
are less than or equal to the maximum derivative magnitudes
vy Vk € {1,..., K}, the trajectory is returned as the output
of RLSS. If not, temporal rescaling is applied to the trajec-
tory similar to Honig et al. (2018) and Park et al. (2020) by
increasing the durations of the pieces so that the trajectory is
valid. We scale the durations of pieces by multiplying them
with a constant parameter greater than 1 until the dynamic
limits are obeyed.

We choose to enforce dynamic feasibility outside of the
trajectory optimization problem as a post processing step
because (i) the output of the trajectory optimization stage is
often dynamically feasible, hence rescaling is rarely needed,
and (ii) adding piece durations as variables to the opti-
mization problem would make it a non quadratic program,
potentially decreasing performance.

7 Evaluation

Here, using synchronized simulations, we first evaluate our
algorithm’s performance when different parameters are used
in Sect.7.1. Second, we conduct an ablation study to show the
effects of two important steps, namely the prepend operation
of the discrete planning stage and the preferred distance cost
term of the trajectory optimization stage, to the performance
of the algorithmin Sect. 7.2. Third, we compare our algorithm
to two state-of-the-art baseline planners in Sect. 7.3. Finally,
we show our algorithm’s applicability to real robots by using
it on quadrotors and differential drive robots in Sect.7.4.

We conduct our simulations on a laptop computer with
Intel 17-8565U @ 1.80G Hz running Ubuntu 20.04. We
implement our algorithm for a single core because of imple-
mentation simplicity and fairness to the baseline planners,
which are not parallelized. The memory usage of each sim-
ulation is 30M B on average for our algorithm.

In synchronized simulations, we compute trajectories for
each robot using the same snapshot of the environment, move
robots perfectly according to computed trajectories for the re-
planning period, and replan. The effects of planning iterations
taking longer than the re-planning period are not modeled in
the synchronized simulations. We show that all algorithms
(RLSS and the baselines) can work in 1Hz — 10Hz on

@ Springer

936

Autonomous Robots (2023) 47:921-946

the hardware we use, and assert that more powerful com-
puters can be used to shorten planning times. In addition,
parallelization of the A* search on GPUs is possible. For
example, Zhou and Zeng (2015) show the possibility of 6-7
x speedup in A* search for pathfinding problems on GPUs.
Moreover, parallelization of quadratic program solving is
possible through (i) running multiple competing solvers in
multiple cores and returning the answer from the first one that
solves the problem, or (ii) parallelizing individual solvers.
For instance, IBM ILOG CPLEX Optimizer® and Gurobi
Optimizer’ support running multiple competing solvers con-
currently. IBM ILOG CPLEX Optimizer supports a parallel
barrier optimizer,® which parallelizes a barrier algorithm for
solving QPs. Gondzio and Grothey (2009) propose a par-
allel interior point method solver that exploits nested block
structure of problems. Performance improvements of these
approaches are problem dependent, and we do not investigate
how much the performance of our trajectory optimization
stage could be improved with such methods.

In all experiments, 32 robots are placed in a circle forma-
tion of radius 20m in 3D, and the task is to swap all robots to
the antipodal points on the circle. The workspace W is set to

an axis aligned bounding box from [—25m —25m Om]T to

[25m 25m Sm]T. Robot collision shapes are modeled as axis
aligned cubes with 0.2m edge lengths. The desired planning
horizon 7 is set to 5s. The safety distance D of goal selection
is set to 0.2m. Robots have velocity limit yl = 3.67%, and
accelaration limit y2 = 4.885%, which are chosen arbitrarily.
The safety duration s is set to 0.11s and re-planning period
8t is set to 0.1s. We set integrated derivative cost weights
A1 = 2.0 for velocity and A, = 2.8 for acceleration. We
set endpoint cost weights to 67 = 0, 6, = 150, 63 = 240,
0; = 300 Vi > 4. Setting 6; = 0 allows the optimiza-
tion to stretch the first O-length segment freely, and setting
other s incrementally increases the importance of tail seg-
ments. We set the preferred distance to objects to p = 0.6m
and the preferred distance cost weight « = 0.3. We use the
OcTree data structure from the octomap library (Hornung
et al., 2013) to represent the environment. Each leaf-level
occupied axis aligned box of the OcTree is used as a sep-
arate obstacle in all algorithms. OcTree allows fast axis
aligned box queries which return obstacles that intersects
with a given axis aligned box, an operation we use exten-
sively in our implementation. For example, we use axis
aligned box queries in discrete planning as broadphase col-
lision checkers to find the obstacles that are close to the

6 https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizers-
concurrent-optimizer-in-parallel.

7 https://www.gurobi.com/documentation/9.5/refman/
concurrent_environments.html.

8 https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizers-using-
parallel-barrier-optimizer.

@ Springer

volume swept by the ego robot while traversing a given
segment, and check collisions between the robot travers-
ing the segment and only the obstacles returned from the
query. Also, to generate robot-obstacle collision avoidance
constraints, we execute axis aligned box queries around the
segments to retrieve nearby obstacles. We generate BSVM
constraints only against nearby obstacles that are no more
than 0 away from the robot traversing the segment. Other pop-
ular approaches for environment representations include (i)
Euclidean signed distance fields (ESDFs) (Oleynikova et al.,
2017), which support fast distance queries to nearest obsta-
cles, (ii) 3D circular buffers (Usenko et al., 2017), which aim
to limit memory usage of maps and supports fast occupancy
checks, and (iii) Gaussian mixture models (O’Meadhra et
al., 2019), which continuously represent occupancy instead
of discretizing the environment as the former approaches do.
None of these representations are as suitable as OcTrees for
RLSS since they do not allow fast querying of obstacles in
the vicinity of segments. We use the IBM ILOG CPLEX
Optimizer” to solve our optimization problems. In all experi-
ments, robots that are closer than 0.25m to their goal positions
are considered as goal reaching robots. If a robot that has not
reached its goal does not change its position more than lcm
in the last 1s of the simulation, it is considered as a dead-
locked robot. At any point of the simulation, if each robot is
either at the goal or deadlocked, we conclude the simulation.

7.1 Effects of selected parameters

We evaluate the performance of our algorithm when 4 impor-
tant parameters are changed: step size o of the search grid,
degree h of Bézier curves, obstacle check distance o0, and
robot check distance 7. Step size o of the search grid is the
parameter that affects discrete planning performance most
because it determines the amount of movement at each step
during the A* search. The degree h of Bézier curves is
important in trajectory optimization because it determines
the number of decision variables. The obstacle check dis-
tance 0 and robot check distance 7 determine the number of
collision avoidance constraints in the optimization problem.

In all of the parameter evaluations, we use a random 3D
forest environment with OcTree resolution 0.5m in which
10% of the environment is occupied. There are 2332 leaf-
level boxes in OcTree, translating to 2332 obstacles in total.
We set the desired trajectory of each robot to the straight line
segment that connects the robot’s start and goal positions.
We set the duration of the segment to the length of the line
segment divided by the maximum velocity of the robot. We
enforce continuity up to velocity, hence set ¢ = 1.

In our experiments, our algorithm does not result in any
collisions or deadlocks.

9 https://www.ibm.com/analytics/cplex-optimizer.

https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizers-concurrent-optimizer-in-parallel
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizers-concurrent-optimizer-in-parallel
https://www.gurobi.com/documentation/9.5/refman/concurrent_environments.html
https://www.gurobi.com/documentation/9.5/refman/concurrent_environments.html
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizers-using-parallel-barrier-optimizer
https://www.ibm.com/docs/en/icos/22.1.0?topic=optimizers-using-parallel-barrier-optimizer
https://www.ibm.com/analytics/cplex-optimizer

Autonomous Robots (2023) 47:921-946

937

We report average computation time per iteration (Fig. 6)
and average navigation duration of robots (Fig. 7). Average
navigation duration is the summed total navigation time for
all robots divided by the number of robots.

7.1.1 Step size o of discrete search

We evaluate our algorithm’s performance when step size o
is changed. We set o to values between 0.25m to 1.5m with
0.25m increments. We set obstacle check distance 0 = 1.0m,
robot check distance 7 = 2.0m, and degree of Bézier curves
h = 12 in all cases, which are determined by premil-
iminary experiments and the results of the experiments in
Sects.7.1.2, 7.1.3, and 7.1.4. The results are summarized in
Figs. 6a and 7a.

As the step size gets smaller, discrete search takes more
time; but the algorithm can still work in about 2Hz even when
o = 0.25m. The average navigation duration of robots are
close to 22.5s in each case, suggesting the robustness of the
algorithm to the changes in this parameter. At o > 0.75,
the time discrete planning takes is less than 6% of the time
trajectory optimization takes.

We also run the algorithm with ¢ = 3m,o = 6m, and
o = 12m, which decreases the flexibility of the discrete
search considerably. In all of those cases, discrete search
results in fluctuations, and some robots get stuck in livelocks,
in which they move between same set of positions without
reaching to their goal positions.

7.1.2 Degree h of Bézier curves

Next, we evaluate our algorithm’s performance when the
degree h of Bézier curves is changed. We set & to values
in {5, ..., 12}. We set step size 0 = 0.77m, obstacle check
distance 0 = 1.0m, and robot check distance 7 = 2.0m,
which are determined by premiliminary experiments and the
results of the experiments in Sects.7.1.1, 7.1.3, and 7.1.4.
The results are summarized in Figs. 6b and 7b.

Even if the degree of the Bézier curves determine the
number of decision variables of the trajectory optimization,
the computation time increase of the trajectory optimization
stage is not more than 10% between degree 5 Bézier curves
and degree 12 Bézier curves. Also, average navigation dura-
tion of robots are close to 22.5m in each case, suggesting the
robustness of the algorithm to the changes in this parameter
as well.

7.1.3 Obstacle check distance o

Next, we evaluate our algorithm’s performance when the
obstacle check distance o is changed. We set o to val-
ues between 0.5m and 3m with 0.5m increments. Since
the replanning period §¢ = 0.ls, and maximum velocity

yl = 3.67%, the maximum amount of distance that can

be traversed by a robot until the next planning iteration is
0.367m. The obstacle check distance must be more than this
value for safety. We set step size 0 = 0.77m, robot check
distance 7 = 2.0m, and degree of Bézier curves h = 12,
which are determined by premiliminary experiments and the
results of the experiments in Sects.7.1.1, 7.1.2, and 7.1.4.
The results are summarized in Figs. 6¢ and 7c.

The obstacle check distance is the most important param-
eter that determines the speed of trajectory optimization, and
hence the planning pipeline. As o increases, the number of
SVM computations and the number of constraints in the
optimization problem increases, which results in increased
computation time. Average navigation durations of the robots
are close to 22.5m in all cases, suggesting the robustness
of the algorithm to this parameter. We explain the reason
of this robustness as follows. All obstacles are considered
during discrete search and o determines the obstacles that
are considered during trajectory optimization. Therefore, the
path suggested by the discrete search is already very good,
and obstacle avoidance behavior of trajectory optimization
is only important when the discrete path is close to obsta-
cles. In those cases, all obstacle check distances capture the
obstacles in the vicinity of the path. Therefore, the quality of
the planned trajectories does not increase as o increases.

7.1.4 Robot check distance ¥

Last, we evaluate our algorithm’s performance when the
robot check distance 7 is changed. We set 7 to values between
1m and 3.5m with 0.5m increments. Robot check distance
must be at least twice the amount of distance that can be
traversed by the robot in one planning iteration, i.e. 0.734m,
because two robots may be travelling towards each other
with their maximum speed in the worst case. We set step size
o = 0.77m, obstacle check distance 0 = 1.0m, and degree
of Bézier curves h = 12, which are determined by premil-
iminary experiments and the results of the experiments in
Sects.7.1.1,7.1.2, and 7.1.3.

The speed of the algorithm is not affected by the robot
check distance considerably, because there are 32 robots in
the environment, and from the perspective of the ego robot,
there are at most 31 constraints generated from other robots.
Since there are more than 2000 obstacles in the environment,
effects of the obstacle check distance are more drastic than
robot check distance. Similar to other cases, average naviga-
tion duration of the robots is not affected by the choice of
7 because constraints generated by the robots far away do
not actually constrain the trajectory of the ego robot since
the ego robot cannot move faster than its maximum speed
and hence the first piece of the trajectory is never affected by
those constraints.

@ Springer

938

Autonomous Robots (2023) 47:921-946

600 K (a) .

400 W

z =z

i E 350

g 500 | 1 g,

B E 300 1

400 | 1 F o950l i

g =

E 300 |- 1 200 - 4

501 i

g 200 P 4o W

< = 100 - b

<§ 100 | | ;5 sl |

‘ 0 T T T

825 05 o0m 1 12 15 5 6 7 8 9 10 11 12

Discrete Search Step Size [m] Bezier Degree

Average Comp. Time [ms]

1,200

z (d)
£ 500l |
1,000 s —
800 g 400 il
f=1
600 é 300 | .
400 2, 200f i
=
200 | 1 £ 10f i
<
0 U T T T T
05 1 15 2 25 3 T 15 2 25 3 35

Obstacle Check Distance [m] Robot Check Distance [m)]

l 1 Discrete Planning == Trajectory Optimization C—JOther l

Fig. 6 Average computation time per stage are given when different parameters are used. Goal selection and temporal rescaling steps are given
as“‘other”since they take a small amount time compared to other two stages. All experiments are done in a 3D random forest environment with 10%

occupancy

40 T 40 T
35

30

Average Nav. Duration |s]
Average Nav. Duration |s]

I I I
8.25 0.5 0.75 1 125 1.5 5 6 7 8 9 10 11 12
Bezier Degree

Discrete Search Step Size [m]

40 = 40 D
= . c | (d |
5 351 g gss
2 301 : 2 30F g
g £
= 251 b =4 g b
- 20 I - 20
H Z
Z 15} g Z 15} R
@ 1%
P10k R P 1of R
& 8
= - - 4 - B
z 90 z 0

0 0

0.5 1 5 2 25 3 1 15 2 25 3 35

Obstacle Check Distance [m)] Robot Check Distance [m]

Fig.7 Average navigation duration of robots from their start positions to their goal positions are given when the selected parameters are changed.
In all cases, average navigation duration is not affected by the changes in the selected parameters in the chosen ranges

Overall, RLSS does not result in collisions or deadlocks
when parameters are not set to extreme values. In addi-
tion, changes in parameters, outside of extreme ranges, do
not result in significant changes in the average navigation
durations. These suggest that RLSS does not need extensive
parameter tuning.

7.2 Ablation study

We investigate the effects of (i) the prepend operation of
the discrete planning stage (Line 4, Algorithm 2) and (ii) the
preferred distance cost term J,.¢ of the trajectory optimiza-
tion stage to the performance of the algorithm. The prepend
operation enables the kinematic feasibility of the generated
optimization problem as shown in Remark 2. The preferred
distance cost term increases the numerical stability of the
algorithm by encouraging robots to create a gap between
themselves and other objects.

We consider four versions our algorithm: RLSS, RLSS
without the prepend operation (RLSS w/o prepend), RLSS
without the preferred distance cost term (RLSS w/o pref.
dist.) and RLSS with neither. We set step size 0 = 0.77m,
obstacle check distance 0 = 1.0m, robot check distance
¥ = 2.0m, degree of Bézier curves h = 12, and ¢ = 1
(continuity up to velocity). Robots navigate in 3D maze like
environments. The desired trajectories are set to straight line
segments connecting robot start positions to goal positions
and the durations of the segments are set to the length of the

@ Springer

line segments divided by the maximum speed of the robots.
During simulation, robots continue using their existing plans
when planning fails. Also, colliding robots continue navigat-
ing and are not removed from the experiment.

We generate ten 3D-maze like environments and list the
average and standard deviation values for our metrics in
Table 2. We report the failure rate of all algorithms in the
form of the ratio of number of failures to the number of plan-
ning iterations (Fail Rate column in Table 2), the number of
robots that are involved in at least one collision during navi-
gation (# Coll. column in Table 2) and the average navigation
duration of all robots (Avg. Nav. Dur. column in Table 2).

The failure rate of RLSS is 0.01% on average. RLSS w/o
pref. dist. fails 0.06% of the time. RLSS w/o prepend fails
12.73% of the time. This is drastically more than RLSS
w/o pref. dist because our prepend operation ensures the
kinematic feasibility of the optimization problem while our
preferred distance cost term tackles numerical instabilities
only. RLSS with neither results in a failure rate of 10.62%.
Interestingly, RLSS with the preferred distance cost term but
without the prepend operation (RLSS w/o prepend) results
in a higher failure rate than RLSS with neither. We do not
investigate the root cause of this since failure rates in both
cases are a lot higher than of RLSS.

The effects of failures are seen in the next two metrics.
RLSS results in no collisions. The number of colliding robots
increase to 0.67 in RLSS w/o pref. dist, 6.78 in RLSS w/o
prepend and 8.67 in RLSS with neither on average. The

Autonomous Robots (2023) 47:921-946

939

Table2 The results of the

ablation study Fail Rate # Coll Avg. Nav. Dur [s]
RLSS 0.89 (1.45) /7904 (297) 0(0) 24.68 (0.93)
RLSS w/o pref. dist 4.78 (9.81) / 8194 (489) 0.67 (1) 25.58 (1.53)
RLSS w/o prepend 1556 (120) / 12,220 (538) 6.78 (3.73) 38.17 (1.68)
RLSS with neither 1569 (101) / 14,778 (412) 8.67 (2.87) 46.16 (1.29)

We compare four different versions of RLSS. We ablate (i) the prepend operation of the discrete planning
stage and (ii) the preferred distance cost term of the trajectory optimization stage. The details of the metrics
are given in Sect.7.2. The reported values are means and standard deviations (given in parentheses) of 10
experiments in random maze-like environments. Both prepend operation and preferred distance cost term are
important for the effectiveness of the algorithm

average navigation duration of robots is lowest in RLSS. It
increases by 3.65% in RLSS w/o pref. dis, 54.66% in RLSS
w/o prepend and 87.03% in RLSS with neither compared to
RLSS.

These results show that the prepend operation is more
important than the preferred distance cost term for the success
of the algorithm. Nevertheless, RLSS needs both to be safe
and effective.

7.3 Comparisons with baseline planners

We compare the performance of our planner to two baseline
planners that do not require communication in 3D experi-
ments. We set step size o = 0.77m, obstacle check distance
0 = 1.0m, robot check distance 7 = 2.0m, and degree of
Bézier curves 7 = 12 in RLSS in all cases.

7.3.1 Extended buffered Voronoi cell (eBVC) planner

The first baseling planner is a MPC-style planner based on
buffered Voronoi cells introduced by Zhou et al. (2017),
which we call BVC. In the BVC approach, each robot com-
putes its Voronoi cell within the Voronoi tesselation of the
environment. This is done by using the position informa-
tion of other robots. Robots buffer their Voronoi cells to
account for their collision shapes and plan their trajectories
within their corresponding buffered Voronoi cells. Similar to
RLSS, BVC does not require any communication between
robots, requires perfect sensing of robot positions in the envi-
ronment, and the resulting trajectories are safe only when
planning is synchronized between robots. They also require
that each robot stays within its buffered Voronoi cell until
the next planning iterations. Unlike RLSS, BVC is based on
buffered Voronoi cells and it cannot work with arbitrary con-
vex objects. Instead, robots are modeled as hyperspheres in
BVC.

The original formulation presented in the BVC article only
allows position state for the robots, which cannot model a
rich set of dynamics, including double, triple, or higher order
integrators. We extend their formulation to all discrete linear

time invariant systems with position output. We define the
systems with three matrices A, B, C. Since the output of the
system is the position of the robot, it cannot depend on the
current input, hence D = 0. This allows us to formulate the
problem for a richer set of dynamics and have constraints on
higher order derivatives than robot velocity.

BVC as published also does not consider obstacles in the
environment. We extend their formulation to static obstacles
by modeling obstacles as robots. Since obstacles are static,
they stay within their buffered Voronoi cells at all times.
Since we model obstacles as robots, extended BVC does not
require the ability of distinguishing robots from obstacles.

Our extended BVC formulation, which we call eBVC, is
as follows:

M

min E Ai‘
ug,..., Uy 4 :
=

Xi+1 = Ax; + Buy;

M—1
- 2
pi —d(T + MAD) H2 + 2(; 6 ;|12 s.1.
=

Viefo,...,M—1}

pi = Cx; Vie{0,..., M}

pieV Vie{0,..., M}

pieW Vie{0,..., M}

Wpin < W < Upax Vie{0,....M —1}
Xmin X Xi X Xpax Vi €{0,..., M}

where T is the current timestamp, d(#) is the desired trajec-
tory for the robot, At is the discretization timestep of the
system, M is the number of steps to plan for, u; is the input
to apply from timestep i to i 4 1, x; is the state at timestep i,
Pp: is the position at timestep i, V is the buffered Voronoi cell
of the robot, u,,;, and u,,,, are the limits for the inputs, X,,i,
and X,,,,, are the limits for the states (which can be used to
bound velocity in a double integrator system, or velocity and
acceleration in a triple integrator system for example), and
W is the workspace of the robot. M At is the planning hori-
zon. A robot plans toward the position d(7 + M Ar), which
is the position of the robot after the planning horizon if it
could follow the desired trajectory perfectly. Xg is the current
state of the robot. The first term of the cost function penalizes
deviation from the goal position for the final and each inter-

@ Springer

940

Autonomous Robots (2023) 47:921-946

mediate position with different weights A;. The second term
of the cost function is the input cost that penalizes input mag-
nitudes with different weights 8;. We apply the first input of
the solution for duration At, and replan at the next timestep.

We use our own implementation of eBVC as explained
above during the comparisons.

7.3.2 Relative safe flight corridor (RSFC) planner

The second planner we compare against is presented by Park
and Kim (2021), in which piecewise Bézier curves are com-
puted, executed for a short duration, and replanning is done
at the next iteration similar to our work. It utilizes the fact
that the difference of two Bézier curves is another Bézier
curve by constraining these relative Bézier curves to be inside
safe regions (relative safe flight corridors, or RSFCs) defined
according to robot collision shapes. We call this algorithm
RSFC for short. RSFC does not require any communication
between robots. It utilizes both positions and velocities of
other objects in the environment, hence requires more sens-
ing information than our algorithm. Velocities are used to
predict the trajectories of other robots as piecewise Bézier
curves. While it can handle dynamic obstacles as well, we
use it in static environments in our comparisons, since RLSS
does not handle dynamic obstacles explicitly.

We use the authors’ implementation of RSFC during our
comparisons.

7.3.3 Experiments and results

We compare RLSS against eBVC and RSFC in 10 differ-
ent experiments differing in required degree of continuity,
desired trajectories, and map of the environment. In all exper-
iments, 32 robots are placed in a circle formation with radius
20m in 3D. The task is to swap the positions of robots to the
antipodal points on the circle. The results of the experiments
are summarized in Table 3.

There are 3 maps we use: empty, forest (Fig. 8a), and maze
(Fig. 8b), listed in the map column of Table 3. In the empty
map, there are no obstacles in the environment. The forest
map is a random forest with 10% occupancy; it has a radius
of 15m and each tree is a cylinder with radius 0.5m. The
maze map is a maze-like environment with choke regions.

We compute the desired trajectories of the robots by run-
ning a single-agent shortest path using the discrete planning
stage of RLSS. We run single-agent shortest path on a prior
map, which is set to either a full map of the environment or
to an empty map; this is listed in the prior map column of
Table 3. When the prior map is empty, single-agent short-
est paths are straight line segments connecting robot start
positions to robot goal positions.

We set two different continuity requirements: velocity and
acceleration, listed in the continuity column of Table 3. When

@ Springer

e

(a) Experiment 4 Desired Tra-
jectories (Side View)

R

(b) Experiment 7 Desired Tra-
jectories (Side View)

“ o “g L 4

‘: 3 " Ss g
** - A3
s,s ® "%:::

e 3

0.0 :: :?:&

(¢) Experiment 4 Executed
Trajectories (RLSS / Top Trajectories
View) View)

(d) Experiment 7 Executed
(RLSS / Top

Fig. 8 Desired trajectories and the used forest map of experiment 4
is given in (a). Same forest map is used in each forest experiment.
Desired trajectories and the used maze map of experiment 7 is given
in (b). Same maze map is used in each maze experiment. ¢ shows the
executed trajectories of robots running RLSS from top in experiment 4.
d shows the executed trajectories of robots running RLSS from top in
experiment 7

velocity continuity is required, the system of eBVC is a
double integrator with position output. When acceleration
continuity is required, the system of eBVC is a triple inte-
grator with position output.

We compare RSFC to RLSS and eBVC only with accelera-
tion continuity requirement because the authors’ implemen-
tation hard codes the acceleration continuity requirement,
while in theory it can work with any degree. Also, we com-
pare RSFC only in the case of an empty prior map in order
not to change RSFC’s source code, while in theory it can be
guided with arbitrary trajectories.

We plan for 5s long trajectories in every 0.1s with all
algorithms. In eBVC, we plan for M = 50 steps with dis-
cretization timestep At = 0.1s. We set state and input upper
and lower bounds in eBVC in order to obey the dynamic lim-
its of the robots. We set distance to goal weights A; = 120,
Ai = 20Vi > 2 in eBVC, putting more importance on the
position of the robot after 1 timestep. We set ; = 1 Vi in
eBVC.

Both eBVC and RSFC require spherical obstacles. We use
the smallest spheres containing each leaf-level box of the
OcTree structure as obstacles in eBVC and RSFC. Similar to
RLSS, we use robot and obstacle check distance to limit the
number of obstacles considered at each iteration. We set both
obstacle and robot check distance 0 = ¥ = 2.0m in eBVC,
andseto = 7 = 5.0m in RSFC, since smaller values in RSFC
result in a high number of collisions and higher values for
the parameters do not improve the success of the algorithms.
Robots are modeled as spheres in eBVC and RSFC as well.
We set robot shapes to spheres with radius 0.173m, which

941

Autonomous Robots (2023) 47:921-946

SO[OBISQO 1M SIUSUIUOIIAUD U SUOISIT[OD UI S)[NSAT DS PUL SI[OBISO)M SJUSUIUOIIAUD UI SYIO[PEIP WOI) SIdns DA g0 Inq oSerdae uo DSY pue DA G uey)
suoreInp uonesIARU JI3UO[UT SINSAI SSTY "AIMNUnU0d Jo 22139p pairmbai oy pue ‘woneindwod £10309(eny parsep Surmp pasn dew Jord ‘uonediaeu Juump pasn dew oy ur Iop1p Juswradxe yoeg

08 €8¢ €0 (44 0 odSd
LOY SLIT 9T’¢ C 0¢ DAEP
98¢ 70°Ce VN 0 0 SSTd UONEId[addY 01
9LT VN VN 0 [43 OAEP
(1187 86'LT WN 0 0 SST Kioorap Kdurg ozZeN 6
¥9¢ 08°'€C 6v'1 €l Ll OAEP
0LT °ese VN 0 0 SSTd UONEIS[AIY 8
SPl anroc L9°0 6 1C JAgGP
091 60T VN 0 0 SSTY ISISUIE SZeIN SZe]N L
10T (4214 wo 9 0 odSd
0L6 8TIC L0 Sl 11 DAL?
e cL'Te VN 0 0 SSTd UONEBIS[AIY 9
981 PS8I ge'l ¥C 8 DAG?
761 79'CT VN 0 0 SSTY Kiroofop Kdwyg 15910, S
€9L yTIe €80 el 8 DAG?
Lyl 90°¢C VN 0 0 SSTd UoneId[addy 4
L8E 7681 €50 L (021 DAG?
(418 I1°ee VN 0 0 SSTYH [SISUE 359104 159104 €
Ly €8°61 VN 0 0 odSd
191 §9°0C VN 0 0 OAG?
(181 cl1ee VN 0 0 SSTYd UONRIS[aY (4
901 0S°8I VN 0 0 OAL?
LOT LETT VN 0 0 SSTH K1100[A fdwyg KAdwy I
[sw] owny, "dwo) "Say [s] ang "AeN 3ay [s] nq worsio) ‘3ay $10qOY 110D # syoo[pea(# w3y Aymunuo) dejy Joug deiy juowrdxyg

pazLrewrwns a1e DJSY pue ‘DA R ‘SSTYH Jo suostredwod ay jo synseray], € ajqel

pringer

As

942

Autonomous Robots (2023) 47:921-946

are the smallest spheres containing the actual robot shapes.
We count collisions only when contained leaf-level OcTree
boxes and contained robot shapes intersect. This gives both
eBVC and RSFC buffer zones for collisions.

We report the number of deadlocking robots (# Dead-
locks column in Table 3), number of robots that are involved
in at least one collision (# Coll. Robots column in Table 3),
collision duration of robots that are involved in collisions
averaged over robots (Avg. Collision Dur. column in Table 3),
average navigation duration of non-deadlocking robots from
their start positions to goal positions (Avg. Nav. Dur. column
in Table 3), and computation time per iteration averaged over
each planning iteration of each robot (Avg. Comp. Time col-
umn in Table 3). We continue the navigation of colliding
robots and do not remove them from the experiment.

Executed trajectories of robots running RLSS are shown
in Fig. 8c for experiment 4, and in Fig. 8d for experiment 7
as examples.

RLSS does not result in any deadlocks or collisions in
all cases. eBVC has a significant number of deadlocks and
RSFC results in collisions in experiments with obstacles.

When there are no obstacles in the environment, e.g.,
in experiments 1 and 2, no algorithm results in deadlocks
or collisions. When velocity continuity is required, e.g., in
experiment 1, the average navigation duration of robots run-
ning eBVC is 18% lower than those that run RLSS. Both
eBVC and RLSS run close to 9 H z on average. When acceler-
ation continuity is required, e.g., in experiment 2, the average
navigation duration of robots running RSFC is 10% lower
than those that run RLSS; and the average navigation dura-
tion for eBVC is 7% lower than that for RLSS. RLSS runs at
about 9H 7 on average, eBVC runs close to 6 H z on average,
and RSFC runs close to 21 Hz on average. When there are
no obstacles in the environment, the discrete search of RLSS
results in unnecessary avoidance movements, which is the
main reason for average navigation duration differences.

When there are obstacles in the environment, performance
of both eBVC and RSFC degrades in terms of the number of
deadlocks and collisions.

In experiment 3, even if the full prior map of the envi-
ronment is given during initial discrete search with only
velocity continuity, 10 out of 32 robots deadlock, and 7 out
of the remaining 22 get involved in at least one collision
when eBVCisused. When acceleration continuity is required
(experiment 4), 8 robots deadlock and 13 other robots get
involved in collisions, resulting in only 11 robot reaching
their goal volumes without collisions in eBVC. RLSS both
works faster than eBVC and results in no deadlocks or colli-
sions in those cases.

‘When the prior map is not known in the forest environment
(experiments 5 and 6), eBVC results in a lot of deadlocks
and collisions. All robots in experiment 5 either deadlock or
collide when eBVC is used. In experiment 6, RSFC does a

@ Springer

lot better than eBVC. RSFC results in no deadlocks while
eBVC results in 11 deadlocks. 15 out of remaining 21 robots
getinvolved in at least one collision when eBVC is used with
an average collision duration of 0.71s. 6 out of 32 robots
running RSFC collide at least once with average collision
duration of 0.42s. RLSS does not result in any deadlocks or
collisions.

When the environment is a complicated maze, the per-
formance of both eBVC and RSFC degrades more. With full
prior map and velocity continuity (experiment 7), 21 out of 32
robots deadlock, 9 out of remaining 11 are involved in colli-
sions, leaving only 2 reaching to their goal volumes without
an incident when eBVC is used. With full prior map and
acceleration continuity (experiment 8), 17 out of 32 robots
deadlock, 13 out of remaining 15 are involved in collisions,
again leaving only 2 that reach their goal volumes without
incident when eBVC is used. RLSS does not result in any
deadlocks or collisions in these scenarios. When the prior
map is empty, i.e. the desired trajectories are straight line
segments, the performance of eBVC degrades even more. All
robots deadlock in the case with velocity continuity (experi-
ment 9), while 30 out of 32 robots deadlock and the rest get
involved in collisions in the case with acceleration continuity
(experiment 10). No robot running RSFC deadlocks but 22
out of 32 get involved in collisions at least once with 0.34s
average collision duration in experiment 10 with accelera-
tion continuity. RLSS does not result in any deadlocks or
collisions in those cases.

Overall, robots running RLSS have higher navigation
durations than those that use eBVC or RSFC in all exper-
iments. While the higher navigation duration is not an
important metric when other algorithms cause deadlocks or
collisions, it is an important metric when they do not (exper-
iments 1 and 2 with no obstacles in particular). eBVC does
not have an integrated discrete planner, which is the rea-
son for its good performance in terms of average navigation
durations. When robots are close to each other, RLSS uses
the free space less effectively since discrete planning has a
step size 0.77m. eBVC does not rely on discrete planning
and hence avoids other robots by executing small direction
changes. RSFC utilizes velocities of other robots on top of
positions, which allows it to estimate the intents of robots
more effectively, resulting in a better usage of the free space,
and hence results in better navigation durations on average.
Since RLSS does not utilize communication and uses only
positions of other robots, it cannot deduce the intents of other
robots. This results in fluctuations of plans between planning
iterations, which increases the average navigation durations
of robots. Fluctuations of plans increase when the environ-
ment is dense as seen in the supplemental video.'? If the
environment becomes overly constraining, e.g. tens of robots

10" https://youtu.be/Irdv2qyzrg.

https://youtu.be/Jrdvf2qyzrg

Autonomous Robots (2023) 47:921-946

943

(a) Heterogeneous team of dif- (b) 6 Crazyflie 2.0s are navi-
ferential drive robots navigat- gating through an environment
ing through an environment without obstacles.

without obstacles. A person

changes the positions of the

robots while RLSS is running.

(c) 6 Crazyflie 2.0s are navi- (d) 6 Crazyflie 2.0s are nav-
gating through an environment igating through an environ-
with obstacles. ment with obstacles. A person
changes the positions of the
robots while RLSS is running.

Fig. 9 Physical robot experiments using Turtlebot2s, Turtlebot3s,
iRobot Create2s, and Crazyflie 2.0s. RLSS works in real-time under
external disturbances

trying to pass through a narrow tube, these fluctuations may
turn into livelocks.

However, when obstacles are introduced in the envi-
ronment, the performance of RLSS is better than other
algorithms. eBVC suffers greatly from deadlocks. RSFC
does not result in deadlocks but results in collisions, even
while using more information than RLSS (velocity and posi-
tion instead of position only).

A note about the statistical significance of the results. In
each experiment, we run each algorithm on single randomly
generated forest-like or maze-like environment. To show that
the results are consistent for environment types, we generate
10 forest-like environments with the same parameters for
experiment 3 and run RLSS and eBVC. RLSS does not result
in deadlocks or collisions in any of the cases. The average
navigation duration of robots averaged over 10 environments
is 19.15s with standard deviation 0.24s for e BVC and 23.59s
with standard deviation 0.25s for RLSS. The ratio between
average navigation durations when eBVC or RLSS is used
is consistent with the reported values given in Table 3 for
experiment 3.

7.4 Physical robots

We implement and run RLSS on physical robots using
iRobot Create2s, Turtlebot2s and Turtlebot 3s in 2D; and
Crazyflie 2.0s in 3D. We use a VICON motion tracking sys-
tem for localization. Robots do not sense, but receive the
position of others using the VICON system. iRobot Create2s,

Turtlebot3s, and Turtlebot2s are equipped with ODROID
XU4 and ODROID Cl1+ single board computers running
ROS Kinetic on the Ubuntu 16.04 operating system. In all
cases the algorithm is run on a centralized base station com-
puter using separate processes for each robot. Therefore,
unlike simulations, planning is not synchronized between
robots on real robot implementations. RLSS does not result
in any deadlocks in collisions in these asynchronized deploy-
ments as well. Commands are sent to 2D robots over a WiFi
network, and to Crazyflie 2.0s directly over their custom
radio.

We conduct external disturbance experiments with 2
iRobot Create2s, 3 Turtlebot3s, and 2 Turtlebot2s (Fig. 9a).
A human changes the positions of some robots by moving
them arbitrarily during execution several times. In all cases,
robots replan in real-time and avoid each other successfully.

We demonstrate the algorithm in 3D using 6 Crazyflie
2.0s. We conduct an experiment without obstacles in which
Crazyflies swap positions with straight lines as desired tra-
jectories (Fig. 9b). In another experiment, we show that
Crazyflies can navigate through an environment with obsta-
cles (9¢c, d). In each case, we externally disturb the Crazyflies
and show that they can replan in real-time.

The recordings for our physical robot experiments are
included in the supplemental video.!!

8 Conclusion

In this article, we present RLSS, a real-time decentralized
long horizon trajectory planning algorithm for the navigation
of multiple robots in shared environments with obstacles that
provides guarantees on collision avoidance if the resulting
problems are feasible. The generated optimization problem to
compute a smooth trajectory is convex and kinematically fea-
sible. It does not require any communication between robots,
requires only position sensing of obstacles and robots in the
environment, and robots to be able to distinguish other robots
from obstacles. With its comparatively minimal sensing
requirements and no reliance on communication, it presents a
new baseline for algorithms that require communication and
sensing/prediction of higher order state components of other
robots. The algorithm considers the dynamic limits of the
robots explicitly and enforces safety using hard constraints.

We show in synchronized simulation that RLSS performs
better than two state-of-the-art planning algorithms (eBVC
and RSFC), one of which requires velocity sensing on top of
position sensing, in environments with obstacles in terms of

I Since we define robots’ goals as single points, i.e. sets of measure
zero, in physical experiments, robots keep missing their goals slightly.
This results in a spinning behavior in 2D since robots continuously fix
their positions by replanning.

@ Springer

944

Autonomous Robots (2023) 47:921-946

number of deadlocks and number of colliding robots. In our
experiments, RLSS does not result in any deadlocks or colli-
sions, while eBVC suffers from deadlocks and RSFC results
in collisions (while RLSS provides theoretical guarantees on
collision avoidance when it succeeds, it does not provide
theoretical guarantees on deadlock avoidance). When there
are no obstacles in the environment, RSFC and eBVC out-
perform RLSS in terms of average navigation duration by
7-20%.

In future work, we would like to extend our planner to
asynchronously planning robots where each robot starts and
finishes planning at different unknown timestamps by utiliz-
ing communication. Also, we would like to incorporate the
noise in the sensing systems within our algorithm in order to
solve the cases with imperfect sensing in a principled way.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10104-
w.

Acknowledgements This work was supported by National Science
Foundation awards I1S-1724399, 1IS-1724392, and CPS-1837779.
B. Senbaglar was supported by a University of Southern California
Annenberg Fellowship. Wolfgang Honig was partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 448549715.

Funding Open access funding provided by SCELC, Statewide Califor-
nia Electronic Library Consortium

Declarations

Conflict ofinterest Baskin Senbaglar, the first author, has moved to Prof.
Gaurav S. Sukhatme’s group in January 2022 after the initial submis-
sion of this paper. Prof. Sukhatme is the editor-in-chief of Autonomous
Robots journal and the advisor of Baskin Senbaglar at the time of
writing. Prof. Sukhatme was not involved in ideation, writing and exper-
iments of this paper in any way. This paper is submitted to Robot
Swarms in the Real World: from Design to Deployment special issue of
Autonomous Robots, which has Dr. Siddharth Mayya as the lead guest
editor.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

Appendix A: Sweep of a convex shape along
a line segment is convex

Lemma2 Let R(x) = {x} ® Ro be the Minkowski sum of
(x} € R? and Ry € R?, and let Ry be a convex set. Let
p(@) = a+ t(b — a) where t € [0, 1] be the line segment
froma € R tob € RY. Then, the swept volume of R along
p(?) is convex.

Proof The swept volume ¢ of R from a to b can be defined
as¢ = U!_R(p(1)) = U_{p(t)} ®Ry. Choose two points
qi,q2 € ¢.3 €[0,113q1 € Roqr =p(t1) +qiand 3 €
[0,113q2 € Roq2 = p(r2) + @2. Letq' = (1 =)q1 +1'q2
be a point on the line segment connecting q; and q, where
' € [0, 1].

q =1 —-1)Pt) +a) +17'P0) +q)
=0 —t)a+nb-—a)+q)
+i'(a+ (b —a) + q)
=(1-)q+17'q
+a+ (11 —1)+nt')(b—a)

(t1(1 —=t")+1¢") € [0, 1] because it is a convex combination
of 11,1 € [0, 1]. Therefore a + (t1(1 —¢') + trt')(b — a) €
p(?). Also, (1 —t)q; + t'@2 € Ry, because it is a convex
combination of qi, 2 € Ro and Ry is convex. Therefore,
q € ¢ since At € [0,1] ¢ € {p(®)} ® Ro. Hence, ¢ is
convex. O

References

Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., Siegwart,
R. (2013). Optimal reciprocal collision avoidance for multiple non-
holonomic robots. In Distributed autonomous robotic systems: The
10th international symposium (pp. 203-216). https://doi.org/10.
1007/978-3-642-32723-0.

Barer, M., Sharon, G., Stern, R., & Felner, A. (2014). Suboptimal
variants of the conflict based search algorithm for the multi-
agent pathfinding problem. Frontiers in Artificial Intelligence
and Applications, 263, 961-962. https://doi.org/10.3233/978-1-
61499-419-0-961

Batra, S., Huang, Z., Petrenko, A., Kumar, T., Molchanov, A.,
Sukhatme, G. S. (2021). Decentralized control of quadrotor
swarms with end-to-end deep reinforcement learning. In 5th Con-
ference on robot learning. CoRL 2021.

Bhattacharya, S., Kumar, V., Likhachev, M. (2010). Search-based path
planning with homotopy class constraints. In Proceedings of the
twenty-fourth AAAI conference on artificial intelligence, pp. 1230—
1237.

Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural
properties and classification of kinematic and dynamic models
of wheeled mobile robots. IEEE Transactions on Robotics and
Automation, 12(1), 47-62. https://doi.org/10.1109/70.481750

Chen, J., Liu, T., Shen, S. (2016). Online generation of collision-free tra-
jectories for quadrotor flight in unknown cluttered environments.
In 2016 IEEE international conference on robotics and automa-

https://doi.org/10.1007/s10514-023-10104-w
https://doi.org/10.1007/s10514-023-10104-w
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-32723-0
https://doi.org/10.1007/978-3-642-32723-0
https://doi.org/10.3233/978-1-61499-419-0-961
https://doi.org/10.3233/978-1-61499-419-0-961
https://doi.org/10.1109/70.481750

Autonomous Robots (2023) 47:921-946

945

tion (ICRA) (pp. 1476—1483). https://doi.org/10.1109/ICRA.2016.
7487283.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018

Desai, A., & Michael, N. (2020). Online planning for quadrotor
teams in 3-d workspaces via reachability analysis on invariant
geometric trees. In IEEE international conference on robotics
and automation (ICRA) (pp. 8769-8775). https://doi.org/10.1109/
ICRA40945.2020.9197195.

Dresner, K., & Stone, P. (2008). A multiagent approach to autonomous
intersection management. Journal of Artificial Intelligence
Research, 31, 591-656. https://doi.org/10.1613/jair.2502.

Farouki, R. T. (2012). The Bernstein polynomial basis: A centennial
retrospective. Computer Aided Geometric Design, 29(6),379—-419.
https://doi.org/10.1016/j.cagd.2012.03.001

Furda, A., & Vlacic, L. (2011). Enabling safe autonomous driving
in real-world city traffic using multiple criteria decision making.
IEEE Intelligent Transportation Systems Magazine, 3(1), 4-17.
https://doi.org/10.1109/MITS.2011.940472

Gondzio, J., & Grothey, A. (2009). Exploiting structure in parallel
implementation of interior point methods for optimization. Com-
putational Management Science, 6(2), 135-160. https://doi.org/
10.1007/s10287-008-0090-3

Harabor, D., & Grastien, A. (2011). Online graph pruning for pathfind-
ing on grid maps. In Proceedings of the AAAI conference on
artificial intelligence, vol. 25, pp. 1114-1119.

Honig, W., Preiss, J. A., Kumar, T. K. S., Sukhatme, G. S., & Ayanian, N.
(2018). Trajectory planning for quadrotor swarms. /IEEE Transac-
tions on Robotics, 34(4), 856-869. https://doi.org/10.1109/TRO.
2018.2853613

Homm, F., Kaempchen, N., Ota, J., Burschka, D. (2010). Efficient occu-
pancy grid computation on the gpu with lidar and radar for road
boundary detection. In IEEE intelligent vehicles symposium (IV)
(pp- 1006-1013). https://doi.org/10.1109/1VS.2010.5548091.

Hopcroft, J., Schwartz, J., & Sharir, M. (1984). On the complexity
of motion planning for multiple independent objects; pspace-
hardness of the“warehouseman’s problem”. The International
Journal of Robotics Research, 3(4), 76-88. https://doi.org/10.
1177/027836498400300405

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Bur-
gard, W. (2013). Octomap: An efficient probabilistic 3d mapping
framework based on octrees. Autonomous Robots, 34(3), 189-206.
https://doi.org/10.1007/s10514-012-9321-0

Jiang, S., & Song, K. (2013). Differential flatness-based motion control
of a steerand-drive omnidirectional mobile robot. In /IEEE inter-
national conference on mechatronics and automation (ICMA) (pp.
1167-1172). https://doi.org/10.1109/ICMA.2013.6618079.

Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algo-
rithms for optimal motion planning. Robotics Science and Systems
VI, 104(2). https://doi.org/10.15607/RSS.2010.V1.034.

Lam, E., Le Bodic, P., Harabor, D.D., Stuckey, P.J. (2019). Branch-and-
cut-and-price for multi-agent pathfinding. In Proceedings of the
twenty-eighth international joint conference on artificial intelli-
gence, IJCAI-19 (pp. 1289-1296). https://doi.org/10.24963/ijcai.
2019/179.

Li, Q., Gama, F., Ribeiro, A., Prorok, A. (2020). Graph neural networks
for decentralized multi-robot path planning. IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS) (pp.
11785-11792). https://doi.org/10.1109/iros45743.2020.9341668.

Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya, S., Taylor, C.
J., & Kumar, V. (2017). Planning dynamically feasible trajectories
for quadrotors using safe flight corridors in 3-D complex environ-
ments. IEEE Robotics and Automation Letters, 2(3), 1688—1695.
https://doi.org/10.1109/LRA.2017.2663526

Luis, C., Vukosavljev, M., & Schoellig, A. (2020). Online trajectory
generation with distributed model predictive control for multirobot

motion planning. IEEE Robotics and Automation Letters, pp. 1-1.
https://doi.org/10.1109/LRA.2020.2964159.

Ma, H., Harabor, D., Stuckey, PJ., Li, J., Koenig, S. (2019). Searching
with consistent prioritization for multi-agent path finding. In Pro-
ceedings of the AAAI conference on artificial intelligence, 33(01),
7643-7650. https://doi.org/10.1609/AAALV33101.33017643.

Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation
and control for quadrotors. In IEEE international conference on
robotics and automation (ICRA) (pp. 2520-2525). https://doi.org/
10.1109/ICRA.2011.5980409.

Murray, R. M., Rathinam, M., Sluis, W. (1995). Differential flatness of
mechanical control systems: A catalog of prototype systems. In
ASME international mechanical engineering congress and expo-
sition.

Murray, R. M., & Sastry, S. S. (1993). Nonholonomic motion planning:
steering using sinusoids. IEEE Transactions on Automatic Control,
38(5), 700-716. https://doi.org/10.1109/9.277235.

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., & Nieto, J. (2017).
Voxblox: Incremental 3D euclidean signed distance fields for on-
board mav planning. In IEEE/RSJ international conference on
intelligent robots and systems (IROS). https://doi.org/10.1109/
IROS.2017.8202315.

O’Meadhra, C., Tabib, W., & Michael, N. (2019). Variable resolu-
tion occupancy mapping using gaussian mixture models. /EEE
Robotics and Automation Letters, 4(2), 2015-2022. https://doi.
org/10.1109/LRA.2018.2889348

Park, J., & Kim, H. J. (2021). Online trajectory planning for multi-
ple quadrotors in dynamic environments using relative safe flight
corridor. IEEE Robotics and Automation Letters, 6(2), 659—666.
https://doi.org/10.1109/LRA.2020.3047786

Park, J., Kim, J., Jang, 1., Kim, H. J. (2020). Efficient multi-agent
trajectory planning with feasibility guarantee using relative Bern-
stein polynomial. In IEEE international conference on robotics
and automation (ICRA) (pp. 434—440). https://doi.org/10.1109/
ICRA40945.2020.9197162.

Peterson, R., Buyukkocak, A. T., Aksaray, D., & Yazicioglu, Y. (2021).
Distributed safe planning for satisfying minimal temporal relax-
ations of twtl specifications. Robotics and Autonomous Systems,
142, 103801. https://doi.org/10.1016/j.robot.2021.103801.

Piegl, L., & Tiller, W. (1995). The NURBS book. Springer. https://doi.
org/10.1007/978-3-642-97385-7.

Richter, C., Bry, A., Roy, N. (2013). Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments. In
International symposium of robotic research (ISRR) (vol. 114, pp.
649-666). https://doi.org/10.1007/978-3-319-28872-7_37.

Riviere, B., Honig, W., Yue, Y., Chung, S.-J. (2020). Glas: Global-
to-local safe autonomy synthesis for multi-robot motion planning
with end-to-end learning. IEEE Robotics and Automation Letters,
pp. 1-1. https://doi.org/10.1109/LRA.2020.2994035.

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. K., Koenig,
S., & Choset, H. (2019). Primal: Pathfinding via reinforcement
and imitation multi-agent learning. /[EEE Robotics and Automa-
tion Letters, 4, 2378-2385. https://doi.org/10.1109/LRA.2019.
2903261

Senbaglar, B., Honig, W., Ayanian, N. (2019). Robust trajectory execu-
tion for multi-robot teams using distributed real-time replanning.
In Distributed Autonomous Robotic Systems (DARS) (pp. 167—
181). https://doi.org/10.1007/978-3-030-05816-6_12.

Senbaglar, B., Honig, W., Ayanian, N. (2021). RLSS: Real-time
multi-robot trajectory replanning using linear spatial separations.
Retrieved from arXiv:2103.07588.

Senbaglar, B., & Sukhatme, G. (2022). Asynchronous real-time decen-
tralized multirobot trajectory planning. In IEEE/RSJ international
conference on intelligent robots and systems (IROS 2022).

@ Springer

https://doi.org/10.1109/ICRA.2016.7487283
https://doi.org/10.1109/ICRA.2016.7487283
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/ICRA40945.2020.9197195
https://doi.org/10.1109/ICRA40945.2020.9197195
https://doi.org/10.1613/jair.2502
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1109/MITS.2011.940472
https://doi.org/10.1007/s10287-008-0090-3
https://doi.org/10.1007/s10287-008-0090-3
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/IVS.2010.5548091
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1177/027836498400300405
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1109/ICMA.2013.6618079
https://doi.org/10.15607/RSS.2010.VI.034
https://doi.org/10.24963/ijcai.2019/179
https://doi.org/10.24963/ijcai.2019/179
https://doi.org/10.1109/iros45743.2020.9341668
https://doi.org/10.1109/LRA.2017.2663526
https://doi.org/10.1109/LRA.2020.2964159
https://doi.org/10.1609/AAAI.V33I01.33017643
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/9.277235
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1109/LRA.2018.2889348
https://doi.org/10.1109/LRA.2020.3047786
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1109/ICRA40945.2020.9197162
https://doi.org/10.1016/j.robot.2021.103801
https://doi.org/10.1007/978-3-642-97385-7
https://doi.org/10.1007/978-3-642-97385-7
https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/10.1109/LRA.2020.2994035
https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1007/978-3-030-05816-6_12
http://arxiv.org/abs/2103.07588

946

Autonomous Robots (2023) 47:921-946

Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-
based search for optimal multi-agent pathfinding. Artificial Intel-
ligence, 219, 40-66. https://doi.org/10.1016/j.artint.2014.11.006

Solovey, K., Salzman, O., & Halperin, D. (2013). Finding a needle in
an exponential haystack: Discrete RRT for exploration of implicit
roadmaps in multi-robot motion planning. In The International
Journal of Robotics Research, 107. https://doi.org/10.1007/978-
3-319-16595-0_34.

Tang, S., & Kumar, V. (2016). Safe and complete trajectory generation
for robot teams with higher-order dynamics. In IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS) (pp.
1894-1901). https://doi.org/10.1109/IROS.2016.7759300.

Tordesillas, J., & How, J. P. (2020). MINVO basis: Finding sim-
plexes with minimum volume enclosing polynomial curves. arXiv
preprint arXiv:2010.10726.

Tordesillas, J., & How, J. P. (2021). MADER: Trajectory planner in
multi-agent and dynamic environments. /[EEE Transactions on
Robotics. https://doi.org/10.1109/TR0O.2021.3080235

Usenko, V., Von Stumberg, L., Pangercic, A., Cremers, D. (2017). Real-
time trajectory replanning for mavs using uniform b-splines and a
3d circular buffer. In IEEE/RSJ international conference on intel-
ligent robots and systems (IROS) (pp. 215-222). https://doi.org/
10.1109/IROS.2017.8202160.

Wang, L., Ames, A.D., Egerstedt, M. (2017). Safety barrier certifi-
cates for collisions-free multirobot systems. IEEE Transactions
on Robotics, 33(3), 661-674. https://doi.org/10.1109/TRO.2017.
2659727.

Wang, X., Xi, L., Chen, Y., Lai, S., Lin, F,, Chen, B.M. (2021). Decen-
tralized mpc-based trajectory generation for multiple quadrotors
in cluttered environments. Guidance, Navigation and Control,
01(02), 2150007. https://doi.org/10.1142/S2737480721500072.

Wurman, P., D’Andrea, R., & Mountz, M. (2008). Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses. Al
Magazine, 29, 9-20.

Yu, J., & LaValle, S. M. (2013). Structure and intractability of opti-
mal multi-robot path planning on graphs. In Proceedings of the
twenty-seventh AAAI conference on artificial intelligence (pp.
1443-1449). https://doi.org/10.1609/aaai.v27i1.8541.

Zhou, D., Wang, Z., Bandyopadhyay, S., & Schwager, M. (2017). Fast,
on-line collision avoidance for dynamic vehicles using buffered
Voronoi cells. IEEE Robotics and Automation Letters, 2(2), 1047—
1054. https://doi.org/10.1109/LRA.2017.2656241

Zhou, Y., & Zeng, J. (2015). Massively parallel A* search on a GPU. In
Proceedings of the AAAI conference on artificial intelligence (vol.
29). https://doi.org/10.1609/aaai.v29i1.9367.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Baskin Senbaslar received his B.S.
degree in Computer Engineering
in 2017 from Middle East Tech-
nical University, Ankara, Turkey.
He received his M.S. degree in
Computer Science in 2019 from
University of Southern Califor-
nia, Los Angeles, USA as a Ful-
bright Grantee. In 2019, he started
his PhD. studies in University of
Southern California as a part of
Automatic Coordination of Teams
(ACT) Lab. In 2022, he moved to
the Robotics and Embedded Sys-

@ Springer

tems Lab (RESL). His research
interests include multi-robot navigation systems, multi-robot trajec-
tory planning, and multi-robot aware control.

Wolfgang Honig is an indepen-
dent junior research group leader
at TU Berlin, Germany heading
the Intelligent Multi-Robot Coor-
dination Lab. Previously, he was
a postdoctoral scholar at the Cal-
ifornia Institute of Technology,
USA. He received the diploma in
Computer Science from TU Dres-
den, Germany in 2012, and the
M.S. and Ph.D. degrees from the
University of Southern California
(USC), USA in 2016 and 2019,
respectively. His research focuses
on enabling large teams of physi-
cal robots to collaboratively solve real-world tasks, using tools from
informed search, optimization, and machine learning. Dr. Honig has
been the recipient of several awards, including Best Paper in Robotics
Track for a paper at ICAPS 2016 and the 2019 Best Dissertation
Award in Computer Science at USC.

Nora Ayanian received the B.S.
degree in Mechanical Engineer-
ing and Mechanics in 2005 from
Drexel University, Philadelphia,
PA, and the M.S. and Ph.D.
degrees in Mechanical Engineer-
ing and Applied Mechanics from
the University of Pennsylvania, in
2008 and 2011, respectively. She
was a Postdoctoral Associate at
the Computer Science and Artifi-
cial Intelligence Laboratory at the
Massachusetts Institute of Tech-
nology from 2011-2013. In 2013,
she joined the Department of Com-
puter Science, University of Southern California, as an Assistant Pro-
fessor, and in 2020, became Associate Professor. Since January 2022,
she is an Associate Professor with the Department of Computer Sci-
ence and the School of Engineering at Brown University. Her research
interests include multi-robot planning, coordination, and control. Dr.
Ayanian is a founder and advisory chair of the the IEEE Technical
Committee on Multi-Robot Systems. She is the recipient of several
awards, including a being named to the MIT TR35, Okawa Founda-
tion Research Award, and the USC Hanna Reisler Mentorship award.

https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1007/978-3-319-16595-0_34
https://doi.org/10.1007/978-3-319-16595-0_34
https://doi.org/10.1109/IROS.2016.7759300
http://arxiv.org/abs/2010.10726
https://doi.org/10.1109/TRO.2021.3080235
https://doi.org/10.1109/IROS.2017.8202160
https://doi.org/10.1109/IROS.2017.8202160
https://doi.org/10.1109/TRO.2017.2659727
https://doi.org/10.1109/TRO.2017.2659727
https://doi.org/10.1142/S2737480721500072
https://doi.org/10.1609/aaai.v27i1.8541
https://doi.org/10.1109/LRA.2017.2656241
https://doi.org/10.1609/aaai.v29i1.9367

	RLSS: real-time, decentralized, cooperative, networkless multi-robot trajectory planning using linear spatial separations
	Abstract
	1 Introduction
	2 Related work
	2.1 Centralized algorithms
	2.2 Decentralized algorithms

	3 Problem statement
	4 Preliminaries
	4.1 Parametric curves and splines
	4.2 Linear spatial separations: half-spaces, convex polytopes, and support vector machines

	5 Assumptions
	6 Approach
	6.1 Goal selection
	6.2 Discrete planning
	6.3 Trajectory optimization
	6.3.1 Constraints
	6.3.2 Cost function

	6.4 Temporal rescaling

	7 Evaluation
	7.1 Effects of selected parameters
	7.1.1 Step size σ of discrete search
	7.1.2 Degree h of Bézier curves
	7.1.3 Obstacle check distance tildeo
	7.1.4 Robot check distance tilder

	7.2 Ablation study
	7.3 Comparisons with baseline planners
	7.3.1 Extended buffered Voronoi cell (eBVC) planner
	7.3.2 Relative safe flight corridor (RSFC) planner
	7.3.3 Experiments and results

	7.4 Physical robots

	8 Conclusion
	Acknowledgements
	Appendix A: Sweep of a convex shape along a line segment is convex
	References

