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Abstract

The current state of electronic component miniaturization coupled with the increasing efficiency in hardware and software
allow the development of smaller and compact robotic systems. The convenience of using these small, simple, yet capable
robots has gathered the research community’s attention towards practical applications of swarm robotics. This paper presents
the design of a novel platform for swarm robotics applications that is low cost, easy to assemble using off-the-shelf components,
and deeply integrated with the most used robotic framework available today: ROS (Robot Operating System). The robotic
platform is entirely open, composed of a 3D printed body and open-source software. We describe its architecture, present its
main features, and evaluate its functionalities executing experiments using a couple of robots. Results demonstrate that the
proposed mobile robot is capable of performing different swarm tasks, given its small size and reduced cost, being suitable
for swarm robotics research and education.

Keywords Swarm robotics - Mobile robot - Autonomous robot

1 Introduction

Robotic swarms are potentially becoming well suited for
a wide range of real-world problems with a high societal
and economic impact. The requirement of distributed and
decentralized processing relying only on local information
brings several practical advantages over other robotic sys-
tems allowing scalability, resiliency, and adaptability. This
aspect further leverages the use of swarm robots in agri-
culture, the mining industry, warehouse management, and
robotics education.
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In spite of the increasing application potential of real-
world robot swarms, several challenges are still open, ranging
from efficient processing and communication to robust loco-
motion and sensing. In addition, one of the main challenges
in employing swarm-based solutions in the real world is the
development of capable yet affordable robotic platforms.

Moreover, despite the existence of off-the-shelf solutions
and some open software and hardware efforts, the cost of
the platforms and the logistics make it difficult for many
researchers or educators to acquire or reproduce most of
them. In order to alleviate such issues, the robotic platform
presented in this work takes advantage of the recent techno-
logical advancements to use mass-produced components that
are smaller, affordable, and long-term available. In addition,
the design and assembly process follow new trends, such as
the Maker Movement and Do It Yourself, which allow others
to reproduce and customize the robot using additive manu-
facturing.

In this sense, we assume the following requirements as an
objective to build a swarm-capable robotic platform:

— Affordability: Robots should be as inexpensive as pos-
sible since most swarm teams may have tens or hundreds
of robots;

— Small and yet capable: Robots should be small and
equipped with some form of sensing capability to allow
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interaction with their environment; Also, they should
have a long-term power autonomy since the swarm may
need to operate long enough for the collective behavior
to emerge;

— Reliability: Robots should be highly fault-tolerant;

— Scalability: They should be able to successfully perform
different tasks even when the number of robots increases.
In this sense, communication capabilities should support
a large number of robots;

— Easily reproducible: Robots must be easily assembled
and must not use hard-to-acquire or extremely hard-to-
assemble components;

— Easily programmable: Robots should be easily pro-
grammable and compatible with modern robotic frame-
works and development pipelines.

Satisfying these conditions in a single design is a difficult
challenge. The design choices concerning one requirement,
such as size, produce additional constraints to others, such
as sensing and powering. Consequently, the design process
should simultaneously take all of these constraints and find
convenient design solutions for multi-purpose applications.

Assuming the above requirements for a capable swarm
robotic device, we present the design of HeRo,' a significant
low-cost robot (18 USD) composed of a 3D printed body
and off-the-shelf components (Fig. 1). The robot is entirely
open-source and carries a diverse set of sensors that makes it
suitable for a wide range of swarm applications and educa-
tion efforts. The platform is deeply integrated with the highly
popular Robot Operating System (ROS) framework for quick
prototyping, allowing remote and local robot control using
standard programming interfaces. In order to facilitate the
development of swarm algorithms, we also provide a simu-
lated robot model with arealistic test environment in Gazebo.
This work is an evolution upon the first, simpler, version of
the HeRo platform presented in Rezeck et al. (2017).

The real-world sensorial and locomotion performance of
the HeRo platform was evaluated in comparison to other pop-
ular commercial robot platforms. Some of the metrics for
comparison are odometry accuracy, range, and quality of IR
sensors (when used as range sensors), power consumption
and autonomy, communication robustness, and scalability
potential. Further, we also evaluated the HeRo performance
in some cooperative tasks such as flocking, transportation,
and mapping. Besides being relatively small in size, results
show that the HeRo platform is significantly capable, making
it cost-effective and suitable for swarm applications.

The remainder of this paper is structured as follows. A
review of the literature of small robot platforms and sys-
tems is presented in Sect.2. The mechanical and electrical
design, as well as the software and communication architec-

! HeRo 2.0: https://verlab.github.io/hero_common.
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Fig.1 Design of the proposed open swarm robotic platform. The body
of the robots was designed for and fabricated using additive manufac-
turing

ture, are presented in Sect.3 and Sect.4, respectively. The
robot’s performance with respect to a set of metrics is evalu-
ated experimentally in Sect.5. In Sect. 6, we present the use
of HeRo in some swarm applications. Finally, Sect. 7 brings
the conclusions and directions for future work.

2 Related work

Swarm robots have some elementary features that differen-
tiate them from other types of platforms, such as simplicity,
the capacity to scale and cooperate, size, and communication
capabilities, among others (Olaronke et al. 2020). Especially,
some critical aspects for a swarm robot are footprint and cost,
as those two aspects will facilitate the scalability of a real-
world swarm system. Modern robotic systems also leverage
the ecosystem and modularity of the Robot Operating Sys-
tem (ROS) (Quigley et al. 2009) to improve the development
environment and allow realistic simulations.

In this sense, a wide range of small and relatively simple
robots have been proposed for swarm applications. Most of
these platforms are open or have open-source parts, while
only some of them are closed source or only available com-
mercially. In this section, we present the most prevalent and
relevant platforms for general swarm experimentation and
highlight the most important pros and cons of each one. We
divide them according to their locomotion mechanisms and
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restrict this comparison to small robots (less than 10 cm),
which are generally more suitable for swarm robotics. Table 1
presents a summary of this comparison.

2.1 Vibration-based platforms

Recently, robots using vibration-based motion mechanisms
have become more common. In general, such mechanism can
be easily coupled to the robot, but requires an extra effort in
the robot’s motion control algorithms. In addition, it requires
a smooth experimentation surface and may have a relatively
slow movement. Moreover, there is no real form of odometry,
making it challenging to move precisely over long distances
or perform for a long time if this information is necessary.

The Kilobot (Rubenstein et al. 2014), developed at Har-
vard University - USA, is one of the most popular swarm
robots. It is an open-source platform with parts costing only
14 USD. Butit s also produced and distributed as a commer-
cial product for 100 USD. The robot has an ATmega328 (8-bit
at 16 MHz) microcontroller and is equipped with an ambi-
ent light sensor on top and an IR sensor on the bottom used
for proximity readings and communication. The robot has an
alternative moving principle based on two vibration motors,
reducing cost and size, but it also limits the robot’s maximum
speed up to 1 cm/s. An overhead controller device is used to
communicate via IR with all robots enabling remote control
and uploading the robot’s firmware over the air. Even with a
relatively high commercial cost and limited sensing, research
groups were able to successfully carry out experiments with
up to 1000 robots (Slavkov et al. 2018), showing that Kilobot
may be an interesting platform for swarm applications.

The Droplet (Klingner et al. 2014; Farrow et al. 2014) is
another vibration-based small robot developed at the Correll
Robotics Lab at the University of Colorado Boulder, USA.
Despite being slightly larger than Kilobot, this robot features
improvements in the mechanism of locomotion and sens-
ing. The robots carry six IR sensors for proximity, bearing,
and robot-to-robot communication. For locomotion, it uses
three vibration motors to allow omnidirectional control of the
robot, which is very convenient given its low speed (1 cm/s).
An Xmegal28a3u (16-bit at 32 Mhz) microcontroller is also
an improvement over Kilobot, allowing control, data pro-
cessing, and general-purpose computation. In addition, the
Droplet can also perform continuous experiment runs due
to a powered floor equipped with alternating positive charge
and ground stripes. Besides powering, this feature is also suit-
able for data transmission, enabling programming an entire
swarm directly via the floor. The commercial cost of this
robot is similar to the Kilobot (100 USD), but it still requires
a powered floor mechanism to power the robots.

2.2 Wheel-based platforms

Although vibration-based locomotion does not require any
complex mechanism to actuate the robot, such approach
proves unsuitable for precise movements over long distances,
mainly due to their nonlinear behavior and excessive slip-
page towards undesired directions. On the other hand, wheel
based systems are more practical to control and efficient
given that the torque generated by the motor acts directly
and roughly linearly on the wheel. Below we list some wheel-
based robotic platforms.

Khepera (Mondada et al. 1994, 1999) is one of the
early small robots developed in the mid-1990s at the LAMI
laboratory at Ecole Polytechnique Fédérale de Lausanne
(EPFL), Switzerland. The original version of Khepera is a
small (5.5 cm) differential wheeled mobile robot that has
been used by researchers of several universities for dif-
ferent applications. Two DC brushed servo motors with
incremental encoders actuate and control the robot’s wheels
to reach up to 100 cm/s. A Motorola 68331 (32-bits at
16 MHz) microcontroller running KOS RTOS serves as
the robot’s main processor, enabling motion control, sens-
ing, and communication. In addition to eight IR sensors used
to estimate distance and ambient light, the robot also allows
extra modules that expand its functionality. Some exam-
ples are gripper-like manipulation, vision, and robot-to-robot
communication modules. Over the years, several versions of
Khepera have been developed, improving unit processing,
locomotion, and sensing but requiring an increase in size.
The latest version, the Khepera IV (Soares et al. 2016), is
still a differential wheeled mobile robot with a diameter of
14 cm. This robot houses twelve IR sensors, five ultrasound
sensors, two microphones, encoders, an inertial measurement
unit (IMU), and a camera. The main processing unitis a Gum-
stix embedded computer running GNU/Linux, and Bluetooth
allows robot-robot communication or communication with a
remote server. Its commercial version retails for 3180 USD.

Alice (Caprari et al. 2003) is another small robot devel-
oped for swarm applications at the Autonomous Systems
Lab at Ecole Polytechnique Fédérale de Lausanne (EPFL),
Switzerland. Alice is a two-wheeled differential drive robot
made of a light plastic chassis with PCB on top. The robot
has a small footprint of 2.2 cm and uses two high-efficiency
swatch motors for locomotion reaching up to 40 cm/s. A low-
power PIC16F877 (8-bits at 4 MHz) microcontroller controls
the robot and executes other applications. Alice has vari-
ous built-in sensory modules such as 4 IR sensors mounted
around the robot for obstacle detection and short-range robot-
to-robot communication. An IR receiving on top allows the
robot to receive external commands, and a radio frequency
(RF) module is used for remote communication. In addition,
the robot supports different expansion modules, such as a
gripper module and a linear camera. The first design of Alice
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used two watch batteries allowing the robot to operate for up
to 10 hours. Further evolution of the platform allows the use
of solar panels.

AMiR (Arvin et al. 2009) is a two-wheeled differen-
tial drive small robot developed at the University Putra,
Malaysia. Itis an open platform, and the components required
to assemble it cost about 85 USD. The robot’s footprint is
7.5 cm, and two micro DC internal gear motors actuated the
robot with a maximum speed of 10 cm/s. An ATmegal68
(8-bits 8 MHz) microcontroller is used as the main processor
to control all functions such as communication, trajectory,
and perception, among others. The robot carries 6 IR sensors
enabling proximity and bearing estimation and also short-
range robot-to-robot communication. The robot uses a 3.7 V
200 mAh lithium battery allowing it to operate up to 2 hours.
In addition to the physical platform, AMiR has been success-
fully simulated in Player/Stage and has been used by several
researchers and robotics educators (Arvin et al. 2011, 2014).

The E-puck (Mondada et al. 2009) is one of the most suc-
cessful small-size commercial robots. Initially designed for
education it has also been used for swarm robotics research.
The E-puck is a two-wheeled differential drive robot, and its
retail cost is about 975 USD. The robot has a small footprint
of 7.0 cm and uses two planetary-geared step motors for actu-
ation, reaching up to 10 cm/s. The latest version of the e-puck
is powered by an STM32F4 (32-bits at 180 MHz) microcon-
troller, and an Espressif ESP32 is used as Wi-Fi/Bluetooth
module. The robot hosts various built-in sensors, including
microphone arrays, proximity sensors, a 640 x 480 pix-
els camera, and an inertial motion unit. The robot can be
programmed through a serial BUS or Bluetooth interface,
and Wi-Fi is used for communication. In addition, it can be
extended with other sensing modules, such as bearing and an
omnidirectional camera module, and even processing mod-
ules using Raspberry Pi. The robot uses a 3.7 V 1200 mAh
lithium battery allowing it to operate up to 3 hours. A grow-
ing user community provides software, documentation, and
discussion groups favoring the platform’s integration with
various simulators and robotics frameworks, such as Gazebo
and ROS. Despite its benefits, the commercial version of the
basic E-puck is quite expensive, making it not affordable for
large swarms.

Jasmine (Kernbach 2011) is another widely used two-
wheeled differential drive small robot. Developed at the Uni-
versity of Stuttgart, Germany, its parts cost about 120 USD.
The Jasmine robot has a small footprint of 3 cm and uses two
micro DC internal gear motors to actuate the wheels, reach-
ing a maximum speed of 30 cm/s. The third version of the
robot is equipped with an ATmegal68 (8-bits at 20 MHz)
microcontroller, and uses 6 IR sensors for proximity and
bearing estimation, light measurements, and communica-
tion with other robots. The robot also has LEDs on top,
allowing status monitoring or debugging. In addition, many

customized boards can extend the robot’s capabilities, includ-
ing improved sensing and connectivity. The current version
of Jasmine uses a 3.7 V 250 mAh lithium battery that has
enough capacity for running time up 2 hours. Moreover, the
robots can autonomously recharge the battery by touching
a pair of metal contacts (power and ground) attached to the
wall for convenience. Thus, the robot detects when its battery
needs to be recharged and moves autonomously to the dock
without human intervention.

GRITSBot (Pickem et al. 2015) is a small robot devel-
oped at Georgia Institute of Technology, USA. GRITSBot
is part of Robotarium, a project to make multi-agent exper-
iments more accessible to the research community, opening
up a showcase testbed to the general public (Pickem et al.
2017; Wilson et al. 2020). The GRITSBot is another wheeled
differential-drive robot composed of three modular layers
that house five functional robot blocks. The motor layer is
responsible for controlling the two stepper motors and odom-
etry estimation. The mainboard houses an Atmega328 (8-bit
at 16 MHz) microcontroller, the wireless communication
module, the battery charging circuit, and the power supply.
A Nordic nRF24L01 microchip serves as a low-power con-
sumption communication module operating at 2.4 GHz. This
module enables robot-to-robot communication, over-the-air
firmware reprogramming, and remote control from a server.
The sensor layer includes six infrared distance sensors, an
accelerometer, and a gyroscope. A 400 mAh LiPo battery
supplies the robot allowing long-time power autonomy up
to five hours. The robots can also move autonomously to a
power source and automatically recharge the battery conve-
niently.

Zooid (Le Goc et al. 2016) is a small robot platform
designed for swarm applications available at an approximate
cost of 50 USD. This robot is an open-source open-hardware
platform created as a joint work between the Shape Lab
at Stanford University (USA) and the Aviz team at Inria
(France). The motors are mounted in a non-collinear fashion,
allowing a small footprint of only 2.6 cm. Even though the
motors do not rotate around the same axis, the robot has a sim-
ilar net force and moment as a robot with colinear motors. An
STM32F4 (32-bit at 48 MHz) microcontroller manages the
overall logic computation and communicates wirelessly with
the main master computer using an nrf24L.01 2.4 GHz radio
chip. In addition, the robot is equipped with touch sensors for
tactile swarm applications and some on-top photodiodes used
for localization. A projector-based tracking system is used for
robot position tracking. This device projects a sequence of
gray-coded patterns onto a flat surface, enabling the robots
to use their photodiodes to decode the gray code into posi-
tion and orientation. Unlike classical camera-based systems,
this projector-based tracking system does not add any latency
from networking for the local feedback control on each robot,
making position control more stable. However, this local-
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ization system costs approximately 700 USD and archives
similar resolution compared to overhead-camera localization
systems.

The mROBerTO (Kim et al. 2016) is a small footprint
(1.6 cm) robot developed atUniversity of Toronto, Canada.
Despite the small footprint, the robot features several built-
in sensors such as distance, ambient light, IMU, and camera,
making it interesting for swarm applications. In addition,
the robot supports extensions such as a module with 8 IR
sensors for obstacle detection. The robot’s mainboard is a
Nordic nRF51422 microchip composed of an ARM Cortex-
MO (32-bits at 16 MHz) with built-in Bluetooth Smart and
ANT+ capability. The nRF51422 board supports over-the-
air programming, saving time when setting up several of
robots simultaneously. Regarding the robot actuation mech-
anism, the first version of mROBerTO did not require wheels
and used the motor shafts directly in contact with the floor
surface to move the robot. Despite being a compact actua-
tion mechanism, allowing the robot to reach speeds of up
to 15 cm/s, it requires a smooth contact surface for proper
robot control. In more recent versions, the authors improved
the actuation mechanism to utilize small stepper motors with
wheels (Eshaghi et al. 2020).

The WsBot (Limeira et al. 2019) is another small foot-
print (3.3 cm) robot developed at Universidade Tecnologica
Federal do Parand, Brazil. This robot has a design simi-
lar to mROBerTO but at an assembly cost of only 17 USD.
In addition to being extremely inexpensive, one may eas-
ily assembly this robot using only off-the-shelf parts. The
WsBot is envisioned for demonstrations of applications in
Industry 4.0, so the robot has a built-in wireless charging
system allowing automatic battery recharges for continuous
operation. Two micro DC motors with small wheels drive
the robot allowing it to reach a speed of up to 3.5 cm/s. An
Espressif ESP8266 (32-bits 160 MHz) microchip, with built-
in Wi-Fi, enables remote control of the robot using a server
executing ROS. The robot does not feature any built-in sen-
sor or extension boards. Instead, a global localization system
based on an overhead camera and fiducial markers is used
for robot close-loop control.

MicroMVP (Yu et al. 2017) is a small robot developed at
MIT, USA. It has an open-source design utilizing 3D print-
ing technology, and it is also extremely simple and easy to
assemble. MicroM VP was designed to use only off-the-shelf
components, and it is composed of an ATmega32U4 (8-bit
at 16 MHz) microcontroller with built-in xBee support and
two geared motors. As WsBot, MicroM VP does not provide
built-in sensors reducing its applicability as a swarm-capable
robot. It also uses an overhead camera and fiducial mark-
ers attached on top of the robot to localize them, serving as
closed-loop control. However, MicroM VP uses more expen-
sive components reaching an assembling cost of 90 USD.

@ Springer

Cellulo (Ozgiir et al. 2017) is one of the world’s first tac-
tile small robot platforms developed at Ecole Polytechnique
Federale de Lausanne (EPFL), Switzerland. It combines
autonomous capabilities with haptic-enabled multi-user tac-
tile interaction allowing research on rehabilitation, gaming,
and human-computer interaction. The robots are designed to
be small, sturdy, low-cost, and simple to operate. The cur-
rent Cellulo robot is equipped with a self-localization system
based on an activity sheet and a downward-facing cam-
era, holonomic motion, six capacitive touch buttons, Blue-
tooth communication, and a low-cost PIC32MZ (32-bit at
200 MHz) microcontroller. The localization system (Hostet-
tler et al. 2016) enables the user to estimate the global pose
of many robots and also is robust against kidnapping and
occlusions (usually due to user manipulation).

Colias is a novel alternative to AMiR developed at
the University of Lincoln, UK for swarm robotic applica-
tions. Colias sensor unit is based on extension boards to
achieve better modularity. In this way, each part has differ-
ent features and functions that can work independently. The
mainboard uses an ATmegal68 (8-bit at § MHz) microcon-
troller to control the motors and power management. This
board houses IR sensors that provide proximity measure-
ments used for obstacle detection. The motion is produced
by two differential-driven wheels reaching a maximum speed
of 35 cm/s. The new Colias IV (Hu et al. 2018) is additionally
powered with a high-level ARM Cortex M4 microcontroller
running at 180 MHz, two digital microphones, one 9-axis
motion sensor, and a tiny VGA camera to enable visual tasks.
A Bluetooth extension module enables Colias IV to com-
municate with a remote host device such as a laptop or a
smartphone, receiving motion commands or sending sensor
data.

Mona (Arvin etal. 2018) is a small open-source robot built
as a customized design of Colias. It has also been designed
as a modular platform, allowing additional modules, such as
wireless communication or a vision board. Mona is mainly
designed to investigate the feasibility of the proposed Per-
petual Robotic Swarm (Arvin et al. 2018). The robot is
specially designed to use an inductive charging approach and
several additional functions such as a radio frequency (RF)
transceiver and battery level monitoring module. This per-
petual charging interface allows for large-scale, long-term
autonomy robotics research. Mona has also been developed
to be compatible with several standard programming environ-
ments, and it has been successfully used for both education
and research at the University of Manchester, UK. The robot
has been produced as a low-cost platform for robotic educa-
tion and swarm research in collaboration with a commercial
partner. It retails at 120 USD per robot, and it remains fully
open-source (hardware and software).
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2.3 Design choices

In Table 1, we can see that some design choices are common
to the majority of platforms, such as the use of wheels for
locomotion and the presence of distance sensors as part of
the robot’s sensor suite. On the other hand, some important
features are present in only a few designs, such as Wi-Fi
communication and ROS compatibility, probably because
these technologies have become more affordable and avail-
able recently. In HeRo, we tried to mix the well-tested and
common solutions with some novel enhancements, making
the robots more capable yet simple and reliable. The next
section summarizes HeRo’s main features, which will be
detailed in the remainder of this paper.

2.4 Proposed platform: HeRo

In this paper, we present the project and implementation of a
novel small robot for swarm robotic applications. The current
proposal is an evolution upon the first, simpler version of the
HeRo platform which was briefly presented in Rezeck et al.
(2017). A summary of the characteristics of all HeRo ver-
sions is described in Table 2. In this improved version, the
mainboard uses an Espressif ESP8266 (32-bits 160 MHz)
microcontroller to perform the motors’ control and acquire
and process sensor data. This microcontroller houses a built-
in Wi-Fi module, allowing the robots to communicate among
themselves robustly and reliably, using TCP/IP protocols.
The locomotion system consists of using two differential-
driven wheels reaching a maximum speed of 25 cm/s. The
board houses a set of sensors such as 8 IR sensors that
provide light and proximity measurements for obstacle detec-
tion, an inertial motion unit for improved odometry and
general use, and two rotary encoders for localization and
motion control. The mainboard is also modular, allowing the
user to attach several other components such as a camera,
motors, displays, and transistors for communication or local-
ization. To facilitate programming, HeRo supports FOTA
(Firmware Over-The-Air) using a Wi-Fi interface. Such tech-
nology allows the users to upload their codes on many robots
remotely. Moreover, HeRo is also a ROS-compatible robot
and communicates using a TCP/IP connection with a remote
computer executing ROS. Since the robot’s autonomy is
an important factor considering the time and number of
experiments, HeRo provides a long-time autonomy using
a powerful Li-Po battery. The main contributions of the
proposed platform compared to its counterparts are its bal-
ance between low cost and capacity, simplicity in terms of
assembly, and seamless integration with ROS allowing easy
programming.

3 Mechanical and electrical design

This section presents the mechanical and electrical design
of our swarm robot. All decisions considered the maximum
use of commercially available components for ease of pro-
duction and assembly and minimum possible price without
sacrificing the processing power and sensing capabilities.
Therefore, in the following, we present the best-suited system
for HeRo after evaluating multiple microcontroller boards,
wireless technologies, sensors, actuators, and model designs
for additive manufacturing.

3.1 Mechanical design

One of the primary steps in developing a mobile robot is
modeling its mechanics. The process defines the kinematic
model of the robot, its actuation mechanism, and also its
structural design.

3.1.1 Kinematic model

After reviewing the literature, we observed that most robots
proposed for swarm robotics are based on the differential-
driven model. In a nutshell, a differential wheeled robot is
a mobile robot whose movement is based on two separately
driven wheels placed on either side of the robot body. The
robot changes its direction by varying the relative speeds of
its wheels, and therefore it does not require an additional
steering motor. We also decided to implement such model
since it is very suitable for designing a small, low-cost robot
that requires good maneuverability and speed using a simple
actuation mechanism.

3.1.2 Actuators and encoders

A convenient and affordable way to actuate the wheels of a
differential robot is the use of geared DC motors. Besides
actuating the robot, these motors enable the use of encoders
for computing odometry, which is important for localization
and closed-loop motion control.

Although it is intuitive to use geared DC motors with
encoders, such components can significantly increase the cost
of the robot. Thinking of a low-cost solution, we decided
to use small continuous servo motors to actuate the robot’s
wheels. Such motor is similar to geared DC motors with an
h-bridge component, allowing motor speed control.

Besides having reasonable precision for speed control,
continuous SGY0 servo motors contain a built-in microchip
that controls the motor speed and direction using only pulse-
width modulation (PWM) signals. In addition, this motor has
a significant torque of 1.8 kgf/cm, which allows us to use a
5 cm diameter wheel to reach a maximum linear speed of
25 cm/s with 0.3 kgf/cm of torque without losing traction.
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Table 2 Characteristics of the different HeRo versions

HeRo v2.0

HeRo v0.1 HeRo v1.0
Board Arduino nano
MCU Atmel Atmega328 8-bit @ 16 MHz

Communication RF nrf24101 2.4 Ghz

ESPressif ESP8266 - ESP12
Tensilica LX106 32-bit @ 80/160 MHz
Wi-Fi 802.11bgn

ESPressif ESP8266 - ESP12
Tensilica LX106 32-bit @ 80/160 MHz
Wi-Fi 802.11bgn

Actuation Servo motors Servo motors Servo motors

Footprint 10 cm 8 cm 7.3 cm

Sensors None 3 x infrared sensors 8 x infrared sensors, encoders and IMU
Battery 3.7 V 1000 mAh Li-Po 3.7 V 1000 mAh Li-Po 3.7 V 1800 mAh Li-Po

Cost* 9 USD 14 USD 18 USD

*parts only

Rubber O-ring

Pinion Gear Encoder
Rotary Encoder

Servo Motor SG90

Fig. 2 Torque transmission mechanism from the motor to wheel and
wheel to the rotary encoder

Instead of directly connecting the wheel to the motor shaft,
we attach the wheel to the robot chassis and use a gear mech-
anism (1:1) to transmit torque from the motor to the wheel
— this further reduces backlash and wheel misalignment that
impact the encoder readings.

Since such motor does not have a built-in encoder, we took
advantage of larger wheels to design a mechanical transmis-
sion system (1:6) between the wheel and a mechanical rotary
encoder. By considering the low cost, availability, and com-
pact form, we selected Kailh rotary encoders. This encoder is
widely used on mouse devices as a step counter for the scroll
button, and the simplest models, like the ones we use, can
count 48 steps per cycle. However, performing the wheel-
encoder transmission (1:288) increases the wheel position
measurement to 1.25° degrees of resolution, which means
that the robot detects a wheel step of 0.54 mm when it is
moving. Figure 2 illustrates the motor-wheel and the wheel-
encoder transmission system. The motor, rotary encoder, and
wheel shaft are fixed to the robot chassis, and the other parts
are moving.
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3.1.3 Structural design

After defining the actuation mechanisms, we proceed with
designing the robot’s chassis. To facilitate assembly and fur-
ther extensions, we design the robot’s chassis to be modular
and 3D-printable so one can easily print it using a conven-
tional 3D printer. Overall, the robot structure comprises four
main parts: the motor and board chassis, cover, and the e-Hat
module.

The motor chassis supports both motors and the wheels
shaft — where the wheels are attached. As the robot has two
actuated wheels, it has only two contact points on the ground.
To better adjust the balance and alignment of the robot, we
created two screwable castor wheels. These castor wheels are
attached to the motor chassis and allow us to fine-tune the
robot’s balance. On top of the motor chassis, we attach the
board chassis that holds the encoders, battery, and the main
processing board.

Considering further extensions, we take advantage of a
modular chassis to coin the concept of e-Hat. Such part is
attached on top of the robot and works as a shield extending
the robot’s sensorial or acting capabilities. For instance, we
developed an e-Hat with an IMU sensor. Other components,
such as a camera, sonar, actuator, or even a UWB transceiver
for indoor localization, can also be used.

Finally, we design a cover part to prevent dust accumu-
lation inside the robot, protecting the main processing board
and gears. In addition to protection, this part also enhances
the robot’s visual aesthetic. Figure 3 shows an expanded view
of the robot’s design, and Table 3 shows some specifications
of the robot. An interactive CAD visualization is available at
A360 platform.?

3.2 Electrical design

In addition to the robot’s mechanical design, we also present
its electrical design. This process defines the electronic com-

2 Robot Design CAD: https://a360.co/3IWHiv0.
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Fig.3 An expanded view of the robot’s components and body parts

Table 3 General specifications of the robot

Specification Value

Size 0.068 x 0.073 x 0.076 (L x W x H) m
Weight 0.156 Kg

Moment of inertia Liy=1)y= 1.27¢~* and I.. = 1.04¢~* Kgm?
Wheels distance 0.0631 m

Wheel diameter 0.0492 m

Linear speed 0.25 m/s

ponents built in the robot, such as processing unit, sensing,
and power management.

3.2.1 Microcontroller

One of the major decisions concerning the robot’s electrical
design is the selection of an appropriate microcontroller. This
component defines the robot’s computational capacity and
the number and variety of components we can use.

After considering many alternatives, we select the Espres-
sif ESP8266 as the main processing unit. This microcon-
troller is remarkably inexpensive given its excellent process-
ing power (32-bit 160 MHz) with 4 MB of memory. Also,
it has a built-in Wi-Fi microchip that provides a fast IEEE
802.11 connection with a full TCP/ IP stack. So, the robots
can communicate among them or with a remote computer
using robust and scalable protocols. Moreover, it is efficient,

easy to program, and widespread in Maker communities,
allowing others to easily develop customized modules for
the robot.

3.2.2 Sensing

A important requirement for a small robot used in swarm
experiments consists of measuring distances to neighboring
robots and obstacles. In HeRo, we chose to use infrared sen-
sors for this due to their size and cost. We arrange eight IR
transmitters and receivers (TCRT5000) around the circum-
ference of the robot with 45° increments. We selected such
sensor because it is cost-effective and has a reasonable reso-
lution and range.

Although it is not common using this sensor for long dis-
tances (> 10 cm), and even the manufacturer defines the
sensor’s maximum range> to only 2 cm, we found a strategy
to increase its range without a considerable decrease in accu-
racy. By properly operating how the emitter LED activates,
we use a technique known as Pulsed Over-Current Driving
LED (Lin and Chen 2011) to increase the detection range to
up to 20 cm. In short, when voltage is applied to the poles of
the IR emitter LED, for a short time, the resistance is low (low
conductor temperature), which allows a high current flow (up
to 3 A fort < 25us), causing the LED to emit IR light with
high intensity. If we keep the LED activated, this resistance
tends to increase and stabilize, reducing the intensity of the
light (60 mA max). In our setup, we generate pulses with a
duration of 100 microseconds at 0.2% duty cycle. Thus, as
the overcurrent pulse duration is short enough and the blank-
ing duration for cooling off long enough, even the cheapest
and most commonplace IR LEDs can be driven with extreme
currents. This technique may reduce the IR LED life span,
but probably the LED should work for more than a year.

To control the IR LED activation, we use a MOSFET
component. Due to the limited number of ADC pins on
the microcontroller — it only has one pin with 10-bits of
resolution — we have to include an 8-channel analog mul-
tiplexer enabling the microcontroller to read all the eight IR
phototransistor. This setup allows us to precisely measure
distances, avoiding environment light interference since we
can measure it by using only the IR receivers.

As mentioned earlier, the robot has two pairs of rotary
encoders coupled to the wheels by a drive mechanism. An
encoder is a sensor that generates digital signals in response
to the motion, providing information about position, velocity,
and direction. As the typical mouse wheel internally works
as a precise encoder, we took advantage of this inexpensive
component (less than USD 0.10) and used it as a robotic
sensor. It comprises a conductive disc and three contacts that
generate two square waves in quadrature when the encoder

3 TCRT5000: www.vishay.com/docs/83760/tcrt5000.pdf .
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(b) Display e-Hat.

Fig.4 Example of multiple e-Hat versions for the HeRo platform

shaft rotates, enabling counting 48 pulses per shaft revolution
and also identifying the turn direction.

In addition to the encoders, the robot also houses two
WS2812b RGBA LED indicators used for status monitor-
ing or debugging. These addressable LEDs have an IC built
right into the LED, allowing communication via a one-wire
interface (it uses one digital pin to control multiple LEDs in
series). We can also control the brightness, and the color of
each LED individually, which allows us to produce unique
and complex effects for status in a simple way.

3.2.3 E-hat

Besides the built-in features, the robot functionality can be
extended using e-Hats. This robot module works as a shield,
allowing users to create/customize specific modules for their
applications. This module is coupled to a 4-pin bus on top of
the robot configured to use 12C or UART protocols. In addi-
tion to communication, the bus also provides 5V (800 mA)
to power the module. In this paper, we developed two e-Hats
for demonstration and experimentation (see Fig. 4). The first
one consists of an e-Hat IMU composed of an MPU6050 sen-
sor with gyroscope and accelerometer that can be fused into
the velocity and position estimation to account for odometry
errors, such as the slip produced by the wheels. The second
one is an e-Hat display that can be used either as a user inter-
face or as part of a location system based on camera and
fiducial markers.

3.2.4 Power supply

Since the robot’s autonomy is an important factor considering
the time and number of experiments, HeRo uses a 3.7 V
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Table 4 Parts cost per robot unit

Parts Quantity Cost (USD)
Servo motors SG-90 2 2.06
Mouse encoder 48 PPR 2 0.10
ESP8266 Nodemcu 1 2.50
Rubber O Ring 38 mm 2 0.10
IR TCRT5000 8 0.68
LED RGB WS2812b 2 0.51
IMU MPU6050 1 0.85
LI-PO battery 3.7 V 1800 mAh 1 5.85
PCB board and components 1 4.30
3D printer parts (PLA) and fastening 1 1.50
Total 18.72 USD

1800 mAh Li-Po battery. The battery voltage is regulated
by a MT3608 DC-DC step-up module, managing the board
power supply to 5 V. These components enable the robot
to perform up to 3 hours of experiments, considering the
continuous use of all components. The motors are directly
powered by a step-up power module avoiding any voltage
drop impacting the robot’s speed. In addition to this module,
we also use a TP4056 module to recharge the battery using
a USB cable.

3.2.5 Assembly

Because most of the robot’s parts are off-the-shelf compo-
nents, we decided to simplify the mounting and wrap them
right on a PCB board. To increase reproducibility, we care-
fully design this PCB board so that even novice users can
assemble it. As an alternative, the user can also assemble
it in several specific PCB manufacturers, which nowadays
attend at a highly affordable cost. Figure 5 shows the pro-
posed front and back views PCB board’s design. A complete
tutorial for the robot assembly can be found on the project’s
website.*

3.3 Part costs

After defining the mechanical and electrical components of
the robot and its assembly process, we can estimate its cost.
Table 4 gives a summary of the cost of the components used
in HeRo. All part prices assume retail buying from standard
part distributors on the Internet. We expect this cost would
be greatly reduced if parts are acquired in bulk directly from
manufacturers.

Finally, after carrying out the robot assemblies, we arrived
at the result shown in the Fig. 6.

4 Tutorial: https://verlab.github.io/hero_common.
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Fig.6 Top, bottom, front, and left views of the HeRo swarm platform

4 Software and communication architecture

In addition to the physical robot, we also describe a computa-
tional framework to facilitate its use in swarm applications.
In this section, we present a software and communication
architecture that enables the programming of multiple robots.
Moreover, we also present a simulated environment, useful
in the early stages of application development.

4.1 Software architecture

A typical robot swarm dilemma is how to program multi-
ple robots quickly, easily, and efficiently. A practice that
has become very common in the experimentation stage is
to use a master—slave architecture in which robots (slaves)
remotely communicate with a computer (master) running
the user application. This strategy is highly efficient as it
does not require the user to burn the firmware every time
he needs to change his application. Despite being conve-
nient, remotely executing the application on a computer does
not always capture effects that impact the application at the
deployment level, e.g., local communication issues, low pro-
cessing capacity, and other errors. Thus, strategies that use
FOTA (Firmware Over-The-Air) technology enable users

Micro USB port

Wi-Fi Antenna

ESP8266

NodeMCU V3 Board

Step-Up Module

to remotely load their applications on the robot and run it
directly on it.

In this work, we propose a flexible architecture to use
any of the programming practices mentioned above. Our
architecture is composed of a firmware compatible with ROS
(Robot Operating System) and FOTA. In the following, we
detail the software architecture.

4.1.1 Firmware

The firmware is one of the fundamental parts of the robot
since it computes the control of the motors and access to the
sensor’s data. For HeRo, we chose to implement the firmware
using the Arduino IDE. Such platform is easy to use and
widespread in makers’ communities, making the firmware
easier to follow and modify. It also provides many libraries
enabling us to control the microcontroller ports and handle
actuators, sensors, and TCP sockets.

The firmware is built on top of the rosserial framework
allowing the robots to be compatible with the ROS mid-
dleware. Rosserial comprises different tools, including a
protocol for wrapping standard ROS serialized messages
and multiplexing multiple topics and services over network
sockets. Such framework abstracts several communication
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Client Mode

AP Mode

(a) Remote configuration mode.

AP Mode

Client Mode

Client Mode

Client Mode

(b) ROS communication mode.

Fig.7 Robot firmware modes: a remote configuration and b ROS com-
munication mode. The first one helps the user configure the robots to
connect to a server running ROS without requiring reprogramming the
robot. After properly setting up the robot, it connects automatically with
the ROS server allowing the user to send and receive commands through
ROS topics and services

concepts, allowing a compact and efficient implementation.
In practice, the user only needs to configure a few communi-
cation parameters so that the robots can connect using TCP/IP
networking with a remote computer running ROS. To facili-
tate this configuration process avoiding keep reprogramming
the firmware), we implemented a remote configuration mode
for the robot using a web interface (Fig. 7a). To open this
interface, the users must first turn on the robot in configu-
ration mode. This mode creates an access point where the
user connects using a computer or a smartphone. By using
a browser, the user can access the robot webpage and set up
its name, access point credentials where the ROS server is
running, ROSMaster IP address, and port. Once the robot is
properly configured, it automatically connects to the ROS
server, and then the user access the robot’s features through
topics and services (Fig. 7b). This entire process can be done
in less than a minute, and the configuration remains saved
even if the robot is turned off.

In addition to providing a master—slave communication
architecture, the firmware is also composed of some basic
modules that compute the robot’s kinematic control, odom-
etry, and sensor data. Next, we describe all these modules
present in the firmware.

Sensors In its basic form (without the e-Hat), the robot has
eight infrared transceivers and two quadrature mechanical
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rotary encoders as sensors. The eight infrared sensors are
mounted around the robot to provide a complete field of
view of the environment. These are connected to a 10-bits
ADC port on the microcontroller through an 8-channel ana-
log multiplexer allowing the estimation of the distance to an
obstacle as well as the ambient light once we can control the
infrared emitter. Obstacle detection and distance estimation
use fundamental principles of electromagnetic radiation and
its reflection. Mathematically, the reflected signal intensity
measured with a sensor is modeled by Benet et al. (2002):

o

sd,y) = 72 s + B, ey

where s(d, y) is the output value of the sensor, d is the dis-
tance to the object, and y is the angle of incidence with the
surface; the model variable « includes several parameters
such as the reflectivity coefficient, output power of the emit-
ted IR light and the sensitivity of the sensor and it is estimated
empirically; B is the offset value of the amplifier and ambient
light effect and it is measured regularly after performing the
Eq. 1.

Asmentioned, HeRo has two quadrature encoders attached

to each wheel. A quadrature encoder, also known as an incre-
mental rotary encoder, is commonly used to measure the
speed and direction of a rotating shaft. The encoders’ chan-
nels are connected to the microcontroller’s interrupt pins.
Each pulse calls an interrupt routine in the microcontroller,
increasing an independent counter variable to estimate how
far each wheel has turned. To estimate the velocity of the
wheel, we measure the frequency of the pulses. The output
of the encoders is used as an input to a controller for closed-
loop motion control and for localization.
Motion Control We previously defined the robot as a
two-wheel differential-drive mobile robot composed of two
servo motors, each with a quadrature encoder. Due to non-
holonomic constraints, the robot cannot move along its wheel
axis concerning its body reference, but it can change its direc-
tion by varying the relative instantaneous speed of its wheels
and hence does not require an additional steering motor. One
of the most suitable ways of controlling this robot’s motion in
2D space consists of controlling its linear and angular speed.
By assuming classical kinematics modeling for a differential-
drive mobile robot (Siegwart et al. 2011), one can determine
the velocity of the robot in its own reference frame or in the
inertial frame, as shown in Fig. 8. Formally, the instantaneous
velocity, expressed with respect to the robot body frame and
the inertial frame, is given by:

Ux(t)
VR =1 o [, )
w(t)
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Despite one may control the robot’s velocity in any refer-
ence frame, in this case, we find controlling it regarding the
robot frame more convenient as it can simplify the control
problem and make it easier to achieve the desired motion.
From now on, we will describe how we control the instan-
taneous velocity of the robot in its own frame. That is, we
want to control the linear speed v, () along the X g-axis and
its angular speed w () around the Z g-axis for vER ().

By assuming such velocities as inputs, we must map them
into wheel velocities so that we can control the robot. The
problem of mapping the relationship between robot veloc-
ity and wheel speed is called inverse kinematics. That is,
given the linear speed v, (#) and angular speed w(t), we can
compute the desired left speed v;(¢) and right speed v, (),
to produce the specific motion of the robot (see Fig. 9). The
equation below describes the inverse kinematic model con-
cerning the robot reference frame:

v, () —lw(t)
[”’“)} el @
Ur(t) & 2

where v;(¢) and v, (¢) are the tangential speeds of the left and
right wheels; v, () and w (¢) are the linear and angular speeds
of the robot in its own reference frame; and [ is the distance
between the left and right wheels.

After computing the desired tangential speed on each
wheel, we need to control the motors so that they maintain

Fig.9 Robot local reference frame

these speeds. The proportional integral derivative (PID) con-
troller is the most common control algorithm used for this
application. It can correct the present error through propor-
tional action, eliminate steady state offsets through integral
action, and better estimate future trends through a derivative
action. The mathematical model of a PID is defined by

_ ! de(t)
u(t) = Kpe(t) + K; €(f)dl+Kd7, 5
0

where u(t) is the control signal to each motor, that is, PWM
signals; dt is the control loop interval time; e(?) is the error
regarding the desired and current tangential speeds of each
wheel; and K, K; and K4, all non-negative, denote the coef-
ficients for the proportional, integral, and derivative terms,
respectively.

To estimate the error e(?), we subtract the desired tangen-
tial speed from the current tangential speed estimated by the
encoders. That is, we count how far each wheel has turned
and compute the rate for a loop interval. Formally, the current
tangential speed for both wheels is computed by

A
B (1) = d—j’ ©6)
RO ™
dt

where As; and As, are the distance each wheel has traveled
for a time interval dr, respectively.

Moreover, we use a simple Kalman filter to reduce the
noise of the reading and improve the quality of both estimated
speeds. Formally, we compute the following process for each
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Fig. 10 Diagram illustrating the velocity control of a differential robot

wheel measurement:

g

K=——, (®)
o, +opy

V=0 +K@—-10"), )

o, =1—-K)o, + [0 — g, (10)

where o, is the estimation uncertainty adjusted by the filter;
om 1s the measurement uncertainty, that is, how much we
expect the estimated speed can vary; K is called Kalman
gain; v is the current measured speeds, i.e., v;(¢) and v, (¢);
v is the filtered speed; ¢ is the process variance, that is, how
fast the measurement moves; and finally, the superscript (7)
indicates previous values of a variable.

Finally, we summarize the robot velocity control as a block
diagram, depicted in Fig. 10.
Localization Odometry is the most used method for deter-
mining the position of a mobile robot concerning an inertial
reference frame (see Fig. 8). In most practical applications,
odometry provides easily accessible real-time positioning
information in-between periodic absolute position measure-
ments. Several different types of sensors are commonly used
for odometry. This work addresses odometry by placing
encoders on each wheel and counting how far each wheel has
turned. Using these two measurements, we can estimate how
far the robot has moved forward and its heading. The distance
traveled by the robot is the average of how much each wheel
has turned and is presented in Eq.11. On the other hand,
the heading of the robot is estimated (assuming insignificant
wheel slip) from the difference of these displacements over
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the distance between the wheels and is presented in Eq. 12.

A A
AL = r(s,2—+s1)’ (11)

As, — A
AO = V(Srl—sl)7 (12)

where As, and As; represent how much each encoder has
turned in the loop time interval; r is the wheel radius; and [
represents the distance between the wheels of the robot, as
shown in Fig. 9.

Once we have computed how far the robot has traveled
and turned, we can integrate this information to estimate its
current pose regarding the inertial reference frame. Consid-
ering the pose of the robot at time 7 in a plane is given by the
state vector

x(1)
X@®) = |y©®) ], (13)
0(t)

the pose of the robot after a loop time interval d¢ is given by

AL (sin(0(t) + AB) — sin(A)
AL (cos(0(1) + AB) — cos(A) |,
Af

X +dt) =X(@) +

(14)

where A6 is the variation of the robot orientation in Z;-axis
in a time interval, that is, A6 = 6(t + dt) — 0(¢t).

Note that if the robot moves in a straight line, the change
in angle A# is zero, and the odometry model (14) becomes
undefined since % is undefined. In this case, a different
model should be used to compute the odometry, such as using
the change in distance AL. Thus, in order to approach this
special case, we test this condition, and if it occurs, the fol-

lowing model is computed for the odometry,

AL cos(6(t))
X(t +dt) =X({)+ | ALsin(0(1)) | . (15)
0(t)

4.2 Communication architecture

In order to provide communication between a workstation
and the robots, we implement HeRo as a ROS-compatible
robot by connecting them using TCP/IP.

The Robot Operating System (Quigley et al. 2009) is
an open-source, meta-operating system for robotic applica-
tions. It provides similar services expected from a typical
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Fig.11 Anoverview of the communication process. The robot’s micro-
controller acts as a bridge to the sensors and actuators and then rosserial
acts as another bridge from the microcontroller to ROS. ROS 2 users

operating system, including hardware abstraction, low-level
device control, implementation of commonly-used func-
tionality, message-passing between processes, and package
management. It also provides tools and libraries for obtain-
ing, building, writing, and running code across multiple
platforms.

The communication is conducted by a publish/subscribe
model, where topics made up of predefined message struc-
tures can be communicated between multiple nodes (pro-
cesses) in the network. These topics, for example, odometry,
can be accessed by any node in the network, allowing for easy
scalability of publishers and subscribers. In this way, robots
can readily communicate with other robots in the network in
a well-defined way.

However, most swarm robots, including HeRo, are unable
to process a full-fledged native ROS instance given the
restricted CPU resources. To integrate these functionalities to
less powerful microcontrollers without a complete instance
of ROS, we implemented the communication module over
the rosserial protocol, which has been proved as a reliable and
scalable communication method for swarm systems (West
et al. 2018). Rosserial® is a protocol for wrapping standard
ROS serialized messages and multiplexing multiple topics
and services over a network socket. In short, the rosserial
nodes convert data from normal structured XMLRPC pro-
tocol handled by TCP natively in ROS to serialize data out
to the microcontroller. This node also deserializes data from
the microcontroller back into the correct message structures
to be sent around the conventional ROS network.

While the robot is compatible with ROS 1 using the rosse-
rial framework, it has not yet been possible to make it fully
compatible with ROS 2. One challenge is that the rosserial
framework has not been ported to ROS 2, and microROS®
(rosserial alternative in ROS 2) does not have support for the

3 Rosserial: http://wiki.ros.org/rosserial.

® microROS: https://micro.ros.org.

can optionally instantiate a ROS 1 bridge interface and interact with
the robots. The system infrastructure is organized in Docker containers,
which promotes its installation and use

microcontroller used by the robot (ESP8266). As an alterna-
tive for ROS 2 users to be able to interface with the robot,
we provide a containerized environment using the Docker
platform.” This way, ROS 2 users can use packages such
as ROSBridge that allow ROS 2 to interface with the ROS 1
package. Figure 11 shows an overview of the communication
architecture.

In theory, the network’s bandwidth limits the number of
connected robots: as more robots are added, more connec-
tions are made, taking up capacity. However, we did not
observe any overhead communicating with multiple robots,
even using a consumer-grade wireless network router. A typ-
ical network addresses 254 devices, but network techniques
(e.g., subnets) allow increasing this limit as much as we need.
A complete study showing the reliability and scalability of
using this protocol for swarm robots is present in West et al.
(2018).

4.3 Simulation and visualization

The execution of simulations plays an essential role in
robotics research as a tool for quick and efficient testing
of new concepts, strategies, and algorithms. Moreover, good
visualization tools are very important during the experiments
to better track and observe the robot execution. In this sense,
we also developed a simulation model of HeRo that can be
used together with Gazebo and RViz.

4.3.1 Gazebo simulator

In order to make simulations with our robots in ROS, we
decide to use Gazebo since it is fully integrated with ROS.
Gazebo (Koenig and Howard 2004) is a multi-robot simulator
for complex indoor and outdoor environments. It is suitable

for simulating a population of robots, sensors, and objects

7 Docker: https://www.docker.com.
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Fig. 12 Multiple instances of HeRo being simulated in the Gazebo
simulator

in a three-dimensional world. ROS and Gazebo use the 3D
model of a robot or its parts, whether to simulate or visualize
them, through the XML files, called Unified Robot Descrip-
tion Format (URDF). This file describes all the structures of
the robot, such as its parts, joints, dimensions, and texture,
among others.

After describing the robot using the URDF file, creating
a simulated model using the built-in plugins provided by the
Gazebo is straightforward. However, this approach is inef-
ficient when simulating multiple robots and requires a high
computational cost. To reduce consumption and increase the
number of simulated robots, we designed a compact plugin
that implements all the robot’s functionalities. In this way, we
optimized the maximum processing performed by each sim-
ulated robot without overloading Gazebo’s physics engine.
Figure 12 shows multiples instances of HeRo being simu-
lated in the Gazebo simulator.

4.3.2 Robot visualization tool

In addition to the simulation, it is also essential to have a
robot visualization tool that shows the state of sensors and
actuators during the experiment. In ROS, we can visualize
the robot’s state using the RViz visualization tool. This tool
provides 3D visualization of the robot by loading the URDF
file and can project sensors data obtained by the ROS topics
such as odometry, laser, and IMU using plugins. Note that
RViz is not a simulator but only a visualization tool. In this
way, the robot visualized in this tool can be real or simulated
depending only on who publishes the information. Figure 13
shows an example of viewing a real robot in Rviz. In the
image, we can see the 3D model of the robot overlaying
a colored axis that indicates the robot’s pose relative to an
initial frame (colored axis in the background of the scene).
The sequence of small axes indicated the temporal pose of
the robot computed by the odometry. Colored spheres around
the robot can move closer or further away from the robot and
indicate the readings of the distance sensors. On the right,
we can follow the linear velocity of each robot’s wheel.
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Fig. 13 RViz showing a single HeRo robot. RViz is a 3D visualization
tool for ROS allowing control and observe the current state of the robot

4.4 Programming

The communication architecture defined for our robot allows
it to be programmed in two different ways: using the ROS
framework or the OTA firmware technology.

In the first mode, we can program and run applications on
a server, which communicates and controls each robot in a
decentralized way. In other words, each algorithm is executed
in a process on the server, and this process has access via Wi-
Fi with its respective robot. This mode is very convenient and
scalable in the early stages of testing with multiple robots.
Furthermore, using the ROS framework for implementation,
we have a series of tools and may use different programming
languages.

On the other hand, processing algorithms remotely is not
always suitable for robot swarm applications. In this case,
the algorithm must run directly on the robot, maintaining the
convenience of programming the robots simultaneously. In
this programming mode, we use the OTA technology to burn
the firmware in several robots using Wi-Fi. This process uses
the Arduino IDE to implement and compile the application
and then uses the command line to transmit the binary code
for robots. Despite being convenient, this mode is limited in
terms of the availability of high-level tools. In addition, it
requires using a programming language compatible with the
microcontroller, in this case, C/C++.

5 Performance evaluation

This section presents a series of experiments that evaluate our
robot’s performance as a capable swarm robot. Initially, we
analyzed motion control and evaluate the robot’s odometry
in comparison to the E-puck, a popular commercial swarm
robot. We also evaluate and discuss the performance and
scalability of communication when using ROS and make an
analysis of the robot’s energy consumption when demanding
different types of applications.
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5.1 Motion control analysis

In this experiment, we evaluated the robot velocity control,
which consists of ensuring that the robot reaches a desired
velocity concerning its own reference frame by controlling
the wheel speeds. As previously detailed, the wheel speed
control uses a PID controller. The feedback information con-
sists of the current wheel speed, estimated by the encoder’s
readings and filtered by the Kalman filter. The parameters
used by both methods were all obtained empirically and
defined as: K, = 1200, K; = 2300, and K; = 0.1 for
the PID parameters, and 0.02 m/s of sensor noise (measure-
ment uncertainty) and 0.2 as process variance for the Kalman
filter.

One way to evaluate the controller’s performance is to
check its response time and residual ripple. Thus, we observe
the controller’s behavior when starting with the robot halted,
and then we set a desired linear and angular speeds to v, =
0.0 m/s and w = 3.17 rad/s so that the robot turn in place for
4.5 seconds and then stop. Figure 14 shows the performance
of the robot.

As expected, we observe a similar response time for the
left and right wheels, reaching the desired tangential speed
(v; = —0.1 m/s and v, = 0.1 m/s) after approximately 1.5 s.
Although we can make the system more responsive, we opted
for a more conservative controller with no overshoot to avoid
sudden movements make it difficult to control the robot. After
both wheels reach the desired speeds, we measure a mean
absolute error of 0.00033 £ 0.0023 m/s for the left wheel
and 0.00010 £ 0.0014 m/s, which is remarkable considering
the low-cost components used within the robot. Moreover,
by controlling the speed for each wheel, the robot reached
the desired linear and angular speeds with a mean absolute
of 0.00022 4 0.0010 m/s for the linear speed and 0.00358 £+
0.0530 rad/s for angular speed.

5.2 Localization

In this experiment, we evaluate the odometry of our robot
and compare the results with the one obtained by the E-
puck (Mondada et al. 2009). To better analyze the capabilities
of these robots, we implement the same odometry model and
use the same experimental setup.

This comparison is interesting because E-puck uses rela-
tively expensive stepper motors against the inexpensive servo
motor used in our robot. The E-puck computed its odometry
by counting steps commanded to each motor, reaching a max-
imum resolution of 1024 steps per wheel revolution, which
is more than the provided by our encoders (288 steps per
revolution). However, there is no feedback when the wheel
steps, so it probably produces more false-positives counts.
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Fig. 14 Analysis of the robot speed control showing the accuracy in
reaching the desired linear v, and angular w speeds concerning the
robot reference frame. To reach such motion, the robot computes the
desired speeds on each wheel, v;, and v,, and then uses a PID controller
to control the motors. The current wheel speeds are computed from the
encoder’s readings, v; and v, and filtered, v; and 9,, to reduce noise

To measure the pose estimation accuracy for both robots,
we use the OptiTrack tracking system® as a ground truth refer-
ence. The trajectory performed by both robots is a rectangular
shape (1.3x1.1m), delimited by four points. We control each
robot to move to the four points consecutively until it com-
pletes three loops. Both robots traveled equal distances while
maintaining the same velocity to keep the comparison as reli-
able as possible.

Besides comparing the odometry produced by both robots,
we extended another HeRo with an IMU e-Hat. Combining
these two sensors improved our robot’s orientation estimate
and, consequently, improved the robot’s odometry. This IMU
is composed of a gyroscope and an accelerometer, and it
has a built-in MPU (motion processing unit) that combines
both sensors, generating an orientation estimation. In this
case, the orientation estimation provided by the IMU and the
odometry drift (no zero mean noise), but the IMU orientation
estimations drifts are smaller. In this way, we replaced the
orientation of the odometry with the one provided by the
IMU. Figure 15 shows the trajectories performed by (a) an
E-puck, (b) a HeRo without e-hat, and (c) a HeRo using

8 OptiTrack: http://optitrack.com/.
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Fig. 15 Trajectory performed by: a E-puck, b HeRo and ¢ HeRo using e-Hat with inertial sensors

e-hat with a gyroscope and accelerometer. A video of this
experiment is available on Youtube.’

As observed, the HeRo’s odometry is comparable to the
E-puck’s. Given that E-puck is one of the most robust and
well-used robots for swarm experimentation, we believe that
our robot also proves to be an attractive solution. Moreover,
the components used by HeRo are highly affordable when
compared to E-puck. Furthermore, using the module with
inertial sensors improved the robot’s orientation, making the
localization more robust, allowing its use in other applica-
tions.

5.3 Distance sensor

This experiment assesses the performance of the IR sen-
sor concerning the distance estimation to a white obstacle.
Before evaluating the performance of the distance sensor, we
need to characterize the sensor (convert the analog signal to
distance).

To convert the infrared sensor readings to distance, we first
take the sensor readings using a 10-bits ADC input for various
object distances, ranging from 0 to 40 cm, in one-centimeter
intervals. To remove light interferences, we first read the IR
sensor without activating the IR emitter and then turn the
emitter on and take another reading. The difference between
these two readings returns a more robust measurement of the
effective light intensity reflected by the obstacle.

Figure 16a shows these measurements assuming log-scale
for y-axis. As observed, it seems possible to detect objects
within the range of 30 cm, but to better estimate the distance,
we decided to limit such a range to 20 cm. After collecting
these measurements, we perform the distance sensor cal-
ibration solving the Eq.1. Figure 16b shows the distance
estimates for the object after the calibration process.

9 Odometry Comparison: https://youtu.be/9s6Fg20uOpc.
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Fig. 16 Analysis of the infrared distance sensor. a Shows the readings
obtained from a single IR sensor as a function of the distance to the
white target; and b shows the estimated distance after calibrating the
sensor for a maximum range of 20 cm

5.4 Communication

Communication mechanisms is swarm robots must be scal-
able to accommodate a large number of robots. This experi-
ment evaluates the communication scalability regarding the
bandwidth (the maximum amount of data that can travel
through a channel) when using ROS to program the robots.
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We estimate the number of robots supported in the network
by computing the total bandwidth used by one robot and the
maximum bandwidth supported in the network.

Table 5 shows the measured bandwidth of each topic
(communication channel) between the robot and a server
executing ROS. We assume that these topics publish or sub-
scribe to messages at specific frequencies, set as the default
rate of HeRo processing. We captured these measurements
using the rostopic tool which provides the packet size of a
single message considering: an overhead of 20 Bytes for the
TCP packet (for the Wi-Fi data connection) and 8 Bytes for
rosserial serialization; and the message data size, depending
on each type of topic. In addition to packet size, the ros-
topic tool also provides the actual bandwidth for each topic,
allowing us to compute the total bandwidth used by one robot
(44 KBps).

Assuming the Wi-Fi module used in our robot can handle
at least 1 MBps,'? we are only using 4.2% of the maximal
capacity. Moreover, the robot connects to a consumer-grade
wireless network route in infrastructure mode that pro-
vides a maximum bandwidth of 150 Mbps (or 18 MBps).
Considering that one HeRo uses only 44 KBps to communi-
cate, theoretically, we estimate that almost 420 robots are
supported in this network. Despite typical Dynamic Host
Configuration Protocol (DHCP) can not address all these
IPs, one may use other ways to avoid this limitation, such
as subnetwork or using multiple routers.

5.5 Power consumption

Another critical concern is the robot’s power autonomy,
which defines its operating time. This experiment analyzes
the power consumption of the components, establishing the
power autonomy of our robot. To better understand the con-
sumption of the robot, we measure the current (mA) used
by the robot in three typical situations: (i) when sensors and
communication are active, (ii) with the indicator LEDs turned
on, and (iii) with the motors active. Table 6 shows the con-
sumption (in mA) of the robot for these combinations.

For the first case, we observe the effect of the frequency
of publication in the robot’s power consumption. Thus, we
measured the current for three different frequency rates (5,
20, and 40 Hz) and noticed that these rates have a minimal
impact on consumption. For the second case, we kept the
communication frequency at 20 Hz, and turned on the two
indicator LEDs, and changed its white light intensity from
half to full. We noticed that the light intensity used by the
LEDs significantly impacts the consumption (almost 50 mA).
In the last case, we kept the communication frequency rate
and turned on the two motors. To observe the impact of the

10 Datasheet: ~ www.espressif.com/sites/default/files/documentation/
Oa-esp8266ex_datasheet_en.pdf.
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Fig. 17 An occupancy map produced by the robot using only eight
IR sensors and odometry. At the top, it is the RViz visualization tool
showing the map computed by the robot. The sequence of axes (x-
red, y-green) shows the trajectory computed by the odometry. At the
bottom is a top-view image showing the environment and the ground
truth trajectory performed by the robot

robot’s velocity on the power consumption, we measured the
current for two different velocities. As expected, the motors
are the most power-consumer components in the robot, and
their velocity proportionally affects the power consumption.

In order to analyze the power consumption in a general
way, we assumed a typical use for these three combina-
tions, in which we retained the sensors and communication at
20 Hz; indicator LEDs with half intensity; and motors reach-
ing a speed of 10 cm/s. Thus, we observed the consumption
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Table 5 Maximum amount of

Frequency (Hz)

Packets size (KB) Bandwidth (KBps)

data that can travel through a ROS topics

ROS tgpic. Tbese topics are J/imu 30

operating at different

frequencies, set as the default Naser 20

rate of HeRo processing /odom 30
/encoder 30
/led 2
/emd_vel 20
1tf 30
Total

0.320 8.60
0.130 3.20
0.730 18.55
0.100 3.15
0.016 0.321
0.048 0.967
0.068 8.542
43.33

reaching 550 mA with a slight deviation of 25 mA. Suppling
the robot with a 3.7 V 1800 mAh Li-Po battery, we esti-
mate the minimum and maximum autonomy of 3 h and 9 h,
respectively.

6 Applications

In addition to evaluating the robot’s performance, we also
demonstrate its capability executing a set of different appli-
cations.

6.1 Mapping

This experiment shows the capacity of a single real robot to
perform a mapping task. We configured the robot to com-
municate with a remote computer running ROS. Then we
used the Gmapping'! package, a laser-based SLAM (Simul-
taneous Localization and Mapping) algorithm provided as a
standard ROS package for mapping an environment. We set
up an environment composed of white cardboards forming a
scene similar to a hall contained in an area of 1.20 x 1.20 m.
Figure 17 shows the occupancy map produced by the robot.
The sequence of axes (x-red, y-green, z-blue coming out of
the figure) projected onto the map represents the temporal
pose of the robot computed from the robot’s odometry. At
the bottom it is a top-view image showing the environment
setup and the ground truth trajectory performed by the robot.
A video showing the execution of this experiment is available
on Youtube.'?

Overall, the mapping task is challenging and requires
sophisticated sensors such as LiDAR and more accurate
localization methods. However, we obtain interesting results
using only a small robot with eight IR sensors and wheel
odometry. Even though the excellence of the mapping is in
the SLAM algorithm, we corroborate the robot’s capability

1T GMapping: http://wiki.ros.org/gmapping.
12 Mapping Performance: https://youtu.be/_RWCCI8BIIs.
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to perform this task satisfactorily, which makes it interesting
for cooperative mapping tasks.

6.2 Decentralized coverage

This experiment shows five robots performing a covering
task in a small bounded environment (0.8 x 1.20 m). Unlike
the previous experiment, which requires more computa-
tional processing, this one implemented the coverage method
directly in the robot’s firmware without requiring it to com-
municate with a server running ROS. The coverage method
consists of randomly navigating the robots through the envi-
ronment and avoiding obstacles and collisions with other
robots using only local sensing. Figure 18 shows a sequence
of images captured by an overhead camera. Each of the five
robots is programmed to emit a different color, making them
easier to see and identify. The lines in the images represent
the path performed by each robot. A video of this experiment
is available on Youtube.'?

In this experiment, the coverage area is relatively small,
given the number of robots. We set a small area to verify
that the robots could perform maneuverability and deal with
possible interference between the IR sensors. As a result, we
verified that the robots were navigating through the environ-
ment, avoiding collisions for long periods, which shows that
the operation of multiple robots in a small area is feasible.

6.3 Flocking behavior

Another experiment demonstrates the robot’s capacity to
perform a flocking behavior. We used five robots initially ran-
domly distributed in an environment in this experiment. The
flocking algorithm implemented in this experiment is decen-
tralized and only requires the relative position and velocity
among the neighbors’ robots (see (Rezeck et al. 2021) for
more details). Since we do not yet have a set of sensors
onboard the robot that estimates such information, we set
a remote server executing ROS to emulate such a sensor. In

13 Decentralized Coverage: https://youtu.be/KmQXBcXKBtE.
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Table 6 Power consumption of

HeRo considering a voltage of Mode Min Typical (mA) Max

3TV TYP‘“‘! power Sensing & Communication at 5 Hz 152 161+9 180

consumption is the average of ) o .

30 samples Sensing & Communication at 20 Hz 153 175£16 205
Sensing & Communication at 40 Hz 170 18349 205
Sensing & Communication' & LEDs (50%)> 187 205414 245
Sensing & Communication' & LEDs (100%) 225 24742 292
Sensing & Communication' & Motors (10cm/s)? 455 512430 584
Sensing & Communication' & Motors (25 cm/s) 613 660425 717
Typical usej23 396 550+47 628

! Typical frequency rate used for sensing and communication
2 Common brightness used in the LEDs indicators (White color)
3 Common velocity performed by the robot during the experiments

(d) t=20s.

(e) t =80 s.

(f) t =120 s.

Fig. 18 Snapshots of an experiment showing five HeRo robots performing decentralized coverage

short, we use an overhead camera and the Apriltag tracker
algorithm (Wang and Olson 2016; Malyuta 2018) to locate
the robots in the scene and then compute their relative posi-
tions and velocity to provide to the algorithm. Figure 19
shows a sequence of images captured by the overhead cam-
era. The figure shows the initial configuration of the robots.
After a runtime, the robots manage themself to aggregate
and navigate the environment as a group. A video of this
experiment is available on Youtube.'*

In this experiment, we verified the robot’s motion control
response when reproduced with other robots. Indeed different
robot requires specific calibration parameters for PID. Con-
cerning the flocking task, it is required cohesive and aligned
navigation between agents. If the robot’s motion control is
not properly adjusted, this may result in incorrect group nav-

14 Flocking Behavior: https:/youtu.be/u7iioSKtHUS.

igation. As an outcome, we verified that the robots are well
calibrated and capable of performing the flocking task, result-
ing in aligned and cohesive navigation between the robots.

6.4 Cooperative transportation

Finally, we conducted experiments evaluating the robot’s per-
formance in a cooperative transportation task. In this task, the
swarm must coordinate to push an object toward its goal loca-
tion, taking advantage of multiple robots’ forces applied to
the object. The strategy implemented in these experiments
is described in Rezeck et al. (2021) and does not require
prior knowledge of the shape and location of the object, only
its target. So, the robots can navigate through the environ-
ment, form groups, and when they detect the object, they can
move around it looking for contact positions that allow the
object to be pushed towards its objective. Despite being a
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Fig. 19 Snapshots of an experiment showing five HeRo robots performing flocking behavior

decentralized strategy and not requiring global information
on the swarm or the object, robots must estimate their neigh-
bors’ relative position and velocity and distinguish between
object and obstacles detection. As in the previous task, we
used the overhead camera location system to emulate such
sensors. Figure 20 shows a sequence of snapshots taken by
the overhead camera. In the sequence, the robots group and
coordinate to transport the object to its goal. A video of this
experiment is available on Youtube .5 As expected, we ver-
ified that the robot could properly control its motion while
interacting with objects. Moreover, it also has enough trac-
tion to start pushing it, which allows the robots to perform
cooperative transport tasks.

7 Conclusion

This work presented HeRo, a novel open-source swarm
robotic platform that is cost-effective, capable, and scal-
able, developed using off-the-shelf components and additive
manufacturing. This robot was specially designed for swarm
applications, given its small size, sensing, and networking
capabilities. The proposed robot has WiFi communication,
over-the-air firmware upgrades and is fully compatible with
ROS, facilitating the development of newer functionalities.

15 Cooperative Transport: https://youtu.be/hAS7TFKYKKWQ.
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We also presented a simulation environment for the HeRo
platform using Gazebo, a popular simulation engine for
continuous testing and quick prototyping. Experiments eval-
uating the sensor accuracy, odometry, autonomy, swarm
communication, and control show a performance in par
or superior to other commercial or more expensive plat-
forms. Mapping, decentralized coverage, flocking behavior
and transportation tasks performed with a group of HeRo
robots validate the robot’s capacities for real-world swarm
applications and educational use.

7.1 Limitations

Despite the robot’s remarkable performance, there are still
some issues that impact its use and maintenance. Below we
list and discuss some of these points.

— Reproduction/Assembly: although the robot has a sim-
ple mechanical design, the use of additive manufacturing
technologies such as conventional 3D printers does
not always allow a proper fit of the parts. Then, it
requires manual adjustments or finishing during assem-
bly, demanding time and effort. This process is essen-
tial for the robot’s transmission mechanisms, impacting
wheel movement and encoder readings if left unattended.

— Robot calibration: the robot is designed to use afford-
able parts and components that have been available for
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Fig.20 Snapshots of an experiment showing five real HeRo robots transporting an object toward its goal location

several years. As expected, low-cost components also
impact robot performance, requiring the user to calibrate
the IR sensors and motors occasionally. As each compo-
nent has different characteristics, the calibration process
is required for each of the eight IR sensors and the two
Servo motors.

— Wireless recharge: another point is the lack of conve-
nience in charging the battery of each robot by plugging
in a cable. Recently, wireless charging modules have
become commonplace, but they still come at a high cost
compared to the robot’s cost. Although the idea of hav-
ing an automatic recharge system is interesting, due to
the cost and size, we decided to wait and deal with the
manual recharge of the robots.

— Mechanical wear: finally, another point impacted by the
use of low-cost components is their durability. Although
the rotary encoder is an interesting solution, some low-
cost models has a short lifespan for our application,
requiring replacement after months of use. In addition to
the encoder, we also have to check the gear mechanism
since we use ABS/PLA material that wears out with use
and storage.

7.2 Future work

We are continuously working on improving HeRo capabili-
ties. In a near future, we intend to develop newer expansions
to the platform in the form of e-Hats, improve the internal
filters for localization and improve the assembly process of
the platform. We will also validate newer forms of localiza-
tion using UWB or other indirect wireless methods. A full

migration to ROS2 will also be performed to maintain the
software stack of the robot up to date with current robotics
advancements.
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