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Abstract
Designing and deploying autonomous swarms capable of performing collective tasks in real-world is extremely challenging.
One drawback of getting out of the lab is that realistic tasks involve long distances with limited numbers of robots, leading to
sparse and intermittent connectivity. As an example, search and rescue requires robots to coordinate in their search, and relay
the information of found targets. The search’s effectiveness is greatly reduced if robotsmust stay close tomaintain connectivity.
This paper proposes a decentralized search system that only requires sporadic connectivity and allows information diffusion
through the swarm whenever possible. Our robots share and update a distributed belief map, to coordinate the search. Once
a target is detected, the robots form a communication relay between a base station and the target’s position. We show the
applicability of our system both in simulation and with real-world experiments with a small swarm of drones.

Keywords Swarm robotics · Drone · Sparse connection · Search-and-rescue · Real-world deployment · Rendezvous point

1 Introduction

Drones or unmanned aerial vehicules (UAVs) have been
experiencing steady growth for the past few years in terms
of their popularity, availability, and potential. This enables
a wide range of applications in several fields going from
surveillance to search and rescue missions (Apvrille et al.,
2014). The emergence of swarms systems, made of mul-
tiple UAVs collaborating towards a common goal, further
improves the efficiency of those solutions. Swarm robotics
has been defined byBrambilla et al. (2013), as an approach to
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collective robotics inspired by the self-organized behaviors
of social animals, where a large group of simple robots aims
to accomplish a complex task through simple rules and local
interactions.

Using teams of robots, instead of a single one, brings
robustness, scalability, survivability, and it increases the
speed of execution (Hentati and Fourati, 2020). Despite
those practical benefits, many unresolved challenges prevent
swarm robotics from being used in commercial products.
In particular, swarms of UAVs are confronted with multi-
ple challenges such as: in-flight coordination, swarm layout
reconfiguration, handling losses of swarms elements, and
data relaying optimization among others (Wubben et al.,
2020). Tarapore et al. (2020) outline one of those challenges
and formalizes the notion of sparse swarms in which it can
be prohibitively expensive for the robots to maintain close
proximity. For example, during swarm-based search and res-
cue (SAR) operations, preserving close proximity among the
robots would certainly restrain the area that can be covered.
Therefore, a robust ad-hoc communication system, resilient
to disconnections between the swarm agents, is essential to
deploy such systems in realistic scenarios.

In this article, we attempt to bridge the gap between the-
oretical approaches and practical applications by proposing
a SAR algorithm based on ad-hoc networks accepting spo-
radic connectivity. This algorithm leverages a search pattern
accepting sparsely connected swarms by scheduling a ren-
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dezvous point for periodic meetings and target discovery
report. It then allows the swarm to adopt a relay tree forma-
tion connecting the meeting point (or base) to all the detected
targets. Thus, the connectivity between the ground operators
and the robots is restored only when targets are found. The
search method is based on belief space exploration in order
to incorporate crucial priors from the authorities, such as the
last known locations of the targets.

This paper argues that ad-hoc networks accepting spo-
radic connectivity are the key to real-world deployments of
swarms of UAVs in large areas. Such networks should han-
dle adaptive topology and routingwhile assuring reliable data
exchange within the swarm. Existing works exploit either a
rendezvous point or a relay chain formation to improve the
communication links, but, to the best of our knowledge, none
combine these for SAR applications. For instance, Nicker-
son (2004), Hourani et al. (2013), and Belkadi et al. (2016)
leverage a rendezvous point for exploration and SAR, but
they do not use communication relays. Other works present
relay chain architectures for communication enhancement
(Li, 2019; Varadharajan et al., 2020), without considering
the search pattern. This article aims to bridge these two prin-
cipleswith thementioned algorithm. To summarize, themain
contributions presented in this paper are:

• A search pattern based on rendezvous point, using ad-
hoc networks with adaptive topology and routing, and
accepting sparsely connected swarms;

• An algorithm to create an adaptive relay tree struc-
ture design to maintain the communication between the
ground operators and the discovered targets;

• An implementationof a searchmethodbasedondynamic,
distributed belief maps;

• An experimental robotic system for real-world deploy-
ment of swarms of drones;

• Simulation and real-world deployments of the proposed
system.

We validate our approach through tests in simulation and
real-world experiments. In simulation, we test our dynamic
belief map search algorithm on different area sizes and
number of drones. We also performed real-world field tests
with three drones to confirm our findings. Figure 1 shows
the real-world experiments setup with three DJI M300
quad-copters.

The rest of the paper is organized as follows: in Sect. 2 we
present related works outlining similarities and differences
with our approach. In Sect. 3 we describe our algorithm and
its components. Sections 4 and 5 present our simulations and
experiments setup and results. Finally, Sect. 7 draws con-
cluding remarks while presenting possible future works.

Fig. 1 The real-world experiments setup with three DJI M300 quad-
copters

2 Related work

As mentioned by Hentati and Fourati (2020), a reliable
communication structure is essential to share information
among group of neighbors in swarm applications. Sharing
the information becomes essential in applications, such as
SAR, where a group of robots is trying to find a target in a
large area. As indicated by Alotaibi et al. (2019), finding the
target could be faster using more robots, however, the lack
of reliable communication could separate a group of robots
or make the whole mission fail, especially in centralized
applications. For instance, Alotaibi et al. (2019) proposed a
layered search and rescue (LSAR) centralized “partitioning”
algorithm, that needs reliable communication with a cloud
server. Although their simulation results indicate that a bet-
ter success rate could be achieved by increasing the number
of robots, it is inherently limited by the central communi-
cation bottleneck to the server. Recent work (Ruetten et al.,
2020) introduced an optimized self-organized mesh network
to cover large areas, but do not consider disconnections.

To solve these communication issues in a team of robots
during explorationmissions,Hourani et al. (2013) considered
a periodic rendezvous strategy in order to overlap the com-
munication ranges of the robots. It also presented an approach
to mitigate the negative impact of these meetings on the time
efficiency of the overall mission. Our approach is similar,
but we drop the connectivity maintenance requirement dur-
ing the searching phase. Another benefit of our technique is
that the drones continue to search for the targets while going
to the periodic meetings. Andries and Charpillet (2013) and
Andries and Charpillet (2015) also used a meeting point, but
the robots only meet at the rendezvous when the exploration
is completed. Adopting a different approach, Belkadi et al.
(2016) plans the exploration in order to converge to a prede-
fined spatial configuration around the rendezvous point.

Belief maps have been studied for a long time as a tool
for multi-robot exploration (Kobayashi et al., 2002, 2003).
Similar to ourwork,Khan et al. (2014) updates the beliefmap
with local observations andmerges data frommultipleUAVs.
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Our distributed belief map implementation is an adaptation
of the work proposed by Vielfaure et al. (2021), in which the
authors stored the shared belief map in a distributed database
called virtual stigmergy (Pinciroli et al., 2016).

During the rescue phase of SAR missions, it is crucial
to maintain the connection between the base station and
the UAVs following the target. To this end, we propose to
maintain a relay chain from the rendezvous position to the
targets once these latter are found.Using a heuristic optimiza-
tion method, Kim et al. (2020) increased the communication
performance metric and determined the optimal positions
for the communication relay robots. To keep the connec-
tion between a heterogeneous group of robots (on-ground
and flying robots), Varadharajan et al. (2020) introduced
a fully decentralized algorithm to create and keep a chain
of robots from the ground station to the target. Li (2019)
and Zhang et al. (2021) also used drones as relays and vir-
tual potentials to create a stable link between a group of
robots (or a survey drone) and a base station. Instead of
using virtual potentials, Yamaguchi et al. (2017) measured
the communication quality and expanded the drone relays
when needed. While the above-mentioned works focused on
the formation of relay chains during the search phase, this
could make the search process very slow, which would be
critical for SAR operations. Therefore, we propose to cre-
ate the communication relay chains only in the rescue phase.
Our communication relay approach is similar to the approach
proposed by Majcherczyk et al. (2018); Çeltek et al. (2018),
in which the creation and expansion of tree/chain topologies
between drones and target(s) have been evaluated. We use a
tree topology for the relay connection when rescuing more
than one target.

Sperati et al. (2011) use robots to explore an unknown
environment, find two distant target locations, and navigate
between them. Their approach could technically be used in
our context, but it has some important differences: it does not
allow branching like in our method, and it does not exploit
the fact that GPS localization is available for our robots.
Similarly, Nouyan and Dorigo (2006) show two distributed
mechanisms that use visually connected robot structures to
form a path between two objects. Unlike our approach, they
rely on visual connection between robots and do not explic-
itly present a branching strategy for multiple targets.

Some existing works use planing based methods to find
an exploration path maximizing the information gain. For
instance, Zhou et al. (2021) presents a hierarchical frame-
work design for fast UAVs exploration of unknown environ-
ments. The system is a frontier based approach that leverage
a frontier information system (FIS) that is incrementally
maintained to provide the exploration planning with essen-
tial information. To detect frontiers and plan efficiently the
exploration, the approach uses sensory data from the envi-
ronment. These data aren’t used in our algorithm. To limit

the exploration space and incrementally explore bigger space
as in the FUEL algorithm, we used a search_speed parame-
ter that allow the UAV to sample new positions in a limited
range around the current position.

Stirling et al. (2010) proposed an energy efficient strat-
egy to coordinate a swarm of UAVs for indoor exploration.
Due to the attenuated signals in that environment, the use of
GPS is impossible. To overcome the challenge of localization
andpositioningwithout global information, local sensing and
low-bandwidth communication is used to create a sensor and
communication network. In fact, robots are assumed here to
be able to switch from active to passive surveillance and
attach to the ceiling. That passive state reduces the energy
consumption of the system, allowing a longer mission time.
For the exploration, searcher UAVs are guided by beacons
attached to the ceiling. In comparison to our approach, the
work in this article considers indoor exploration when we
assume an outdoor use case. That environment stop them
from simply using GPS for the localization. Also, in this
article the network formed by the beacons is necessary for
the search phase, when our work presents a search pattern
accepting sparsely connected swarm and therefore do not
need connectivity during the search.

McGuire et al. (2019) presented a minimal navigation
solution for unknown environment exploration with tiny fly-
ing robots. The proposed approach is called swarm gradient
bug algorithm and allows the robots to come back to the
starting point after the exploration is completed. To prove
the potential of the algorithm, it was used for a proof of con-
cept in a search and rescue application. Unlike our system,
this algorithm is designed for indoor exploration and would
not be usable outdoor since barriers such as walls used for
the wall following would not be available.

The work presented by Rouček et al. (2021) a field report
of the system developed by the CTU-CRAS-NORLAB team
for the subterranean challenge. The challenge requires a team
of mobile robots (including UAVs) to search an unknown
environment to locate and report the positions and types of
specific artifacts, with limited human interaction. Different
exploration strategies were used depending on the robots.
The UAVs, for example, aim at the exploration of further
areas of the environment instead of a thorough exploration
of nearby locations, and use a generated 3D Lidar map. As
communication issues arise in such environments, the team
had to propose an approach to maintain connectivity. Several
redundant communication systems were then implemented
to deliver at least some data to the human supervisor of the
system.AWi-Fimodule is used for usual usage of the system.
The mid-range link (mobilicom) is used during the actual
mission, with an approach similar to the one presented in
our paper: using robots as retransmission nodes to maintain
communication. The last system implemented is a long-range
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link, called Motes. Robots carry these modules and can drop
them to create a network of relays.

De Hoog et al. (2009) proposes a role-based approach
to multi-robot exploration, that is robust to communication
limitations. In fact, robots in the system can assume one
of two roles. Searchers explore the environment and meet
periodically with relays to share knowledge. Relays in turn
carry information back to a central entity. The exploration
approach presented here is similar to ours, as it exploits
period meeting for information exchange. Although, the
meeting point changes dynamically during the exploration
and differs depending on the searcher, when we propose a
static, predefined rendezvous point. It is also worth mention-
ing that the goal in the work is complete exploration, when
this metric is not of interest in our work.

Wellman et al. (2011) presented an approach to unknown
environment exploration, using sector search. In fact, robots
in the system explore independently different sectors of the
available area and use scheduled rendezvous to share new
information. Studying the performance of their system in
comparison to other communication paradigm, they con-
clude it is comparable to when robots communicate only
with other robots in proximity. This approach uses a search
approach similar to ours, but they assume robot teams to be
small, allowing for a limited number of messages at ren-
dezvous, when our approach is scalable to relatively bigger
swarms.

Meghjani and Dudek (2012) proposed a method to have
a dynamic rendezvous meeting point selection based on the
shared cost of visiting the location. Since for the rescue part
we need to have access to most robots, the dynamic ren-
dezvous method is not preferred. Because in terms of robot
failure or lost messages, some agents could meet the root
after a long time in that case.

Instead of considering the network periodically connected
same asHollinger and Singh (2012), we performed a periodic
connection at the rendezvous meeting point. This makes it
possible to reconnect an agent that is far from the other robot.

Spirin et al. (2013) propose a scheme in which agents
choose their actions based on the time preference of the base
station for information, to minimize the rate of information
update at a base station.

Pei et al. (2013) proposes another approach to solve
the connectivity problem in multi robots exploration. The
approach is bandwidth aware and allows the robots to realize
a better exploration time with enhanced connectivity when
compared to recent works. It aims to keep the connectivity,
not provide a system robust to sparsely connected swarms.

The work by Spirin and Cameron (2014) is an extension
of the role-based approach. It shows an algorithm that allows
mobile robots to plan how to transfer information by set-
ting rendezvous points either side of walls in the unknown
environment exploration application. This approach can be

of use when considering obstacles during the relay formation
in future works.

In comparison to the method introduced by Cesare et al.
(2015), we start to create the relay chain after finding the
target, and since the environment of the test could be open
water, unlike the indoor environment, it is not possible to
land and act as a relay or networker. As a result, in case of
having a low battery, the only option is to go back to the
station/meeting point to recharge the battery.

Banfi et al. (2018) address the problem of multi robot
exploration missions with communication constraints. Con-
sidering the situation in which a recurrent connectivity is
required in the system, two planning techniques are devel-
oped and extensively tested. Results from the carried out
experiments show that the approaches are effective, provid-
ing good results with a better degree of freedom for the
exploration.

The work presented by Shirsat et al. (2020) is a proba-
bilistic consensus-based multi-robot search strategy that is
robust to communication link failures.

3 Search and rescue with sparsely connected
swarms

In this paper, we consider the scenario in which a swarm of
drones needs to be deployed in an unknown environment to
search for one or more targets, and track them as rescuers are
dispatched to the target locations. The drones explore the area
autonomously and in a decentralized manner, searching for
targets. Communication links are needed between the swarm
members either to inform the others when a target is found
and to share the target positions, propagating this information
to a base station so that the targets can be rescued.

In realistic scenarios, the search area is likely to be larger
than the combined communication coverage of the robots in
the swarm. Therefore, the searching robots need to discon-
nect from their neighbors to explore enough space to find the
desired targets, creating a sparse swarm.

Let us consider a swarm S of n robots S = {1, 2, ..., n}. At
a given time step ts ≥ 0 during the mission, S is considered
a sparse swarm if a robot r ∈ S satisfies:

costr (“move to nearest neighbor”, ts) �
costr (“perform typical operation”, ts)

(1)

where� is defined as ”at least one order ofmagnitude greater
than” and costr is a function defining the cost for robot r to
perform a given task at a given time (Tarapore et al., 2020). In
order to ensure coordination and efficient searching in such
a swarm, we designed an algorithm inspired from typical
search parties in rescue operations, shown in Fig. 2.
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Fig. 2 Coordination algorithm for target searching

The overall idea is that robots perform their search for a
target, regularly reporting at a fixed rendezvous location or
meeting point. If a robot finds a target, it immediately goes
to the meeting point to share the location of the target with
the operator and the rest of the swarm. Assuming a robot is
the first to go to the meeting point after finding a target, it
becomes a root robot, and it coordinates the formation of a
relay chain towards the target. The chain construction starts
as the root robot broadcasts a call for networkers (i.e., relay
robots) that other members of the swarm respond towith bids
based on their distance from the required position of the relay,
and the root robot assigns roles based on the received bids
(Gerkey and Mataric, 2002). As robots find more targets, the
root adds branches to the relay formation, and should robots
find targets simultaneously, they elect a root through a basic
consensus mechanism.

3.1 Agent roles

The overall strategy is based on a state machine that assigns
roles to the robots in the swarm, with each role is associated
with a task executed by the robot.

Searcher: When a robot is a searcher, it looks for
targets using a predefined search method
(a belief-based search in our case). Dur-
ing its operation, a searcher listens and
responds to calls for bids from other
agents. These calls offer networker (i.e.,
relay) roles, and a searcher bids based on
its distance to the requested relay posi-
tion.

Root candidate: Upon finding a new target, an agent will
go to the rendezvous point to become a
root robot. In case of a root being already
present, the agent shares its target infor-
mationwith the existing root and go back
to being a searcher. If multiple robots are
heading to the rendezvous point, the first
robot to arrive proclaims itself thewinner
and shares that information with every
incoming robots. Should multiple agents
arrive to the rendezvous at the same time,
we use a conflict management method
based on robot ID (Pinciroli et al., 2016).

Root: Winning the bid for the root node, an
agent becomes the root: it listens for
new target information from the swarm,
it computes the number of networkers
needed per target and their positions, and
calls for robots to fill the networker roles.
The root is the only agent that recruits
the networkers. It keeps searching for
networkers until the target is reached.
Note that this strategy does not make
the system centralized: the root is eas-
ily replaced in case of failure with a new
election.

Auctioneer: When the root needs networkers to cover
a target, it switches to the auctioneer
state, for a typical market-based task
allocation strategy (Gerkey and Mataric,
2002). The root/auctioneer broadcasts
the relay position, opens the auction, lis-
tens for bids, and closes the auction after
a predefined period of time, remaining
in the same state until a winner is found.
The auctioneer then broadcasts the win-
ning bid and goes back to the root state.

Networker bidder: When a searcher receives a call for bids,
it stops moving and bids for a networker
role. Its bid value is inversely propor-
tional to its distance to the assigned relay
position.

Networker: The networker bidder that is the clos-
est to a relay position wins the bid and
becomes a networker. A network relays
information between a target location
and a base station at the meeting point,
connecting the target with the operator
and providing constant communication
coverage in the area of the target.

Rendezvous: Robots regularly switch to the rendezvous
state and go back to the meeting point to
check for any new information (new root
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node, request for a networker, or updated
found targets list). Note that robots keep
searching for targets on their way back
to the meeting point. If there are no
networker calls for bids happening, the
robots in rendezvous state go directly
back to being searchers.

3.2 Algorithm

All the robots execute their search for the targets based on
the available belief information. The belief information, rep-
resented as a map, is updated and distributed to the neighbors
during the search to avoid searching the same area multiple
times. This distributed belief map based search is inspired
from the work in Vielfaure et al. (2021). To distribute a belief
map,we use the virtual stigmergy (VS), a system that allows a
swarm of robots to agree on a set of (key,value) pairs through
gossip communication (Pinciroli et al., 2016). Thus, at each
step, a searcher will decrease the belief value for its current
position if no target is detected there. The new value is then
put into the VS, sharing the information with all neighbors in
communication range. A searcher sampling a new position
to navigate to, will then opportunistically get the most recent
belief for the position (from the initial map if no updated
version is available in the VS). It is worth noting that the
propagation of the VS is strictly best-effort, and therefore
tolerant to disconnections and communication delays. Based
on the value of the belief map, the robots decide to either
move to the sampled position or sample a new one (if the
belief is below a certain threshold).

The idea of the search pattern is to realize multiple runs of
a user-defined duration and come back to a rendezvous point
between each of them. During the search, if a robot finds a
target, it goes back to the initially fixed rally point and checks
for the existence of a root node. The first drone to come back
to the rally point after finding a target will be the root. When
multiple drones arrive to the rendezvous at the same time, a
conflict management routine selects one of the drones as the
root. This robot becomes the first link of the communication
and tracking relay between the meeting point and the targets.
The root stays at the rendezvous point and broadcasts relevant
information (updated found targets list, root id, networking
positions, etc.) to all the robots in its communication range.
As explained previously, this node computes the network-
ers’ positions and manages an auction every time it needs
a new networker by switching to the auctioneer state. The
networkers’s positions depend on the communication range
of the robots. Let N be the set of networkers positions in the
system and r the root’s position. To find the networkers posi-
tions for a target located at t, we choose a branching node at

a position b such that:

‖t − b‖ = min(‖t − n‖) (2)

for all n ∈ N
⋃

r .
The networkers are then placed one after the other on

the line connecting b and t. They are spaced at a maximum
distance of communication range to ensure connectivity in
the relay.

Other robots that did not find any target, go back period-
ically to the meeting point to check if another robot found a
target or if a networker is needed. Since the battery life of
flying robots is quite limited, this periodic check is an oppor-
tunity for recharging or battery swapping.When reaching the
meeting point, if the robot receives a message from the root
for a networking position, it immediately sends its bid for the
auction andwaits for the results announcement.When a robot
wins the bid it acknowledges the auctioneer that it received
the message and goes to its assigned position, becoming part
of the communication and tracking relay. The robots in relay
positions form a tree from the meeting point, allowing the
operator at a base station to constantly and simultaneously
to “see” and monitor the state of all the detected targets. The
chain starts from the meeting point and proceeds towards the
targets. It is worth mentioning that new branches are added
to the first chain as new targets are discovered.

With a sufficient number of searcher robots, the relay
should allow connectivity maintenance and a live camera
stream of the target to the ground operators. In the case of
a moving target, the closest robot to target has the responsi-
bility of tracking its motion and sharing the updated position
along the relay. This way, the relay can adapt itself and follow
the target up until its rescue.

3.3 Belief map search

The belief map assigns a probability to find a target to each
cell in the map. Each drone samples a new exploration target
from cells in the map that are above a certain probability
threshold, and are located in a square centered on the drone’s
current location. The size of the square is a parameter.

As they search the area, the UAVs update the belief value
at their current position (i.e. reducing the probability if they
did not find the target) and share it in the virtual stigmergy.
Thanks to this information, UAVs with the updated value
will avoid exploring areas thatwere already explored by other
drones. It is worth noting that the virtual stigmergy is updated
opportunistically, meaning that updates are propagated as
soon as robots enter each other’s communication range. This
means that, despite the lack of an explicit task allocation algo-
rithm, drones going towards the same ore neighboring cells
will update each other’s stigmergies, ultimately preventing
effort duplication.
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Fig. 3 The control architecture.
The global positioning system
and (back-up) remote
controllers joint with the DJIs
OSDK and flight controller to
perform the decentralized
behavioural Buzz script. The
entire fleet runs the same script,
interfacing with the Flight
Control Unit (FCU) through DJI
OSDK ROS and communication
device (WiFi) through the Robot
Operating System (ROS). The
communication between swarm
has been achieved by creating a
B.A.T.M.A.N ad-hoc mesh
network and using the
DJI-Manifold 2 WiFi as the
network hardware (St-Onge et
al., 2019)

3.4 Real-world deployment

For the real-world deployment of our solution, we used
DJI Matrice 300 RTK (M300 RTK) drones equipped with
a Manifold 2 onboard computer which was connected to
the drone through a serial connection. The M300 RTK is
a powerful UAV platform offering an adaptive onboard soft-
ware development kit (OSDK) for autonomous control of
the aircraft. It uses an advanced flight controller system, a 6
directional sensing and positioning system and FPV camera.
Thanks to these features, the drones were able to perform a
basic collision avoidance routine during the flights.

The decentralized control of the drones is achieved using
Buzz, a domain-specific language designed for programming
multi-robot teams and swarms behaviors (Pinciroli and Bel-
trame, 2016). The software consists of three main layers:
the Buzz control layer taking care of the algorithm logic,
the ROSBuzz (St-Onge et al., 2017) layer responsible for
the integration of the swarm-oriented programming language
and its virtual machine (BVM) into the ROS environment,
and the DJI OSDK layer that manages the flight controller
and other UAV related features. The Buzz control layer is
responsible for the system’s behavior, using a Buzz script to
implement the proposed algorithm, while sending hardware
specific commands to the lower layers.

Our whole experimental system is based on ROS (Robot
Operating System), an open-source and now standard soft-
ware system for robotic development (Quigley et al., 2009).
To link the Buzz control layer to ROS, we use ROSBuzz,

an existing implementation of the BVM as a ROS node.
ROSBuzz encapsulates all the BVM logic, publishes the
Buzz script commands, and subscribes to external data such
as sensor readings. A main feature of Buzz is the imple-
mentation of gossip-based situated communication among
neighbors in a swarm. This feature is implemented in our
systemwith batman-adv (Better Approach toMobile Ad-hoc
Networking), using a ROS node that manages the neigh-
bors of each robots and broadcasts messages as needed by
the Buzz script. Batman-adv is a layer 2-based protocol
leveraging adaptive topology and routing to offer a robust
ad-hoc networking solution (Kiran et al., 2018). As our algo-
rithm assumes sporadic connectivity among the robots in the
swarm, batman-adv can easily handle such a pattern, ensur-
ing a reliable link between the robotswhen in communication
range. The physical device supporting batman-adv is the 5
GHz WiFi antenna on the Manifold 2, set to communicate
on an common IBSS ad-hoc wireless network.

The DJI OSDK layer is a DJI proprietary API that allows
a developer to control the aircraft with a program. DJI pro-
poses a version of the OSDK integrate with ROS that we
used in our setup, and the UAVs are actuated via service
calls. The interaction between the ROSBuzz ecosystem and
the OSDK layer is taken care of by a custom adapter node.
This node receives actuation commands from the Buzz script
(in the form of topics) and sends flight controller-specific
commands to the OSDK, as well as publishing the required
data forROSBuzz’s operation (e.g.,GNSS readings). Such an
architecture, allows for a easily portable code base. In fact,
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since the adapter is the only M300 dependent node, using
the same algorithm with a different robotic platform only
requires to write a similar adapter. Figure 3 synthesizes the
described software architecture, which is completely open
source (see github.com/mistlab).

4 Experimental results: simulations

To validate the presented algorithm and evaluate the neces-
sary time required to find targets and obtain the final relay
chain, we performed a series of tests in a simulated environ-
ment. We used 15, 20, and 25 robots while randomly varying
their starting positions and the position of the targets. We
also compare the performance of a random walk search to
our dynamic belief map search, while using in both cases the
presented search pattern.

4.1 Simulation setup

We use ARGoS, a multi-physics robot simulator (Pinciroli et
al., 2012). The experiments were performed on an ARGoS
model of the Spiri Mu quadrotor from Spiri Robotics. Three
foot-bot mobile robots (Dorigo et al., 2013) were randomly
spawned and used as targets to be detected by the Spiris. To
perform the detection, we simulate a basic sensing mecha-
nism on the drones with a downward facing camera using
blob detection. Figure 4 presents an example of a starting
state of the simulation.

We first used a random walk exploration pattern (Dimi-
dov et al., 2016) where each drone sequentially samples a
2D position and autonomously navigates to it (keeping the
height constant). The second search method is the proposed
dynamic belief space exploration. In both cases, we simulate
the system until all the targets are detected and the relay net-
work is fully formed. The total time needed to find the targets
is the metric used for our evaluation.

4.2 Results

Weperform6 test caseswith three arena sizes. For these tests,
2 parameters were considered: the number of drones (15, 20
or 25 UAVs) and the search method (random walk or belief
map search). We used three arena sizes for each test: (a) 20m
× 20m, (b) 30m × 30m, and (c) 40m × 40m. To obtain
statistically relevant results, each test case was executed 30
times, randomly assigning the initial positions for the drones,
the targets’ positions and the belief map if applicable. The
other parameters, including the meeting point, were main-
tained constant through the experiments: 20 search steps,
three targets and a communication range of of 10 meters (not
realistic, but distances can be simply scaled to realistic val-
ues). An output sample for a test with with 15 drones and

Fig. 4 Initial simulation setup sample using 15 drones (R0 to R19 on
the left side)with 3 targets (R0, R10, andR20 in the searching area). The
searching area is represented as a belief 2D map where red represent a
probability close to 0 to find the target and green represent a probability
close to 1

Fig. 5 Possible final state for a test with 15 drones and 3 targets and
a communication range of 4 meters. Each drone logging its state: root,
networker or searching. The searching area is represented as a belief
2D map where red represent a probability close to 0 to find the target
and green represent a probability close to 1

3 targets is presented in Fig. 5 where we can see the relay
tree connecting the meeting point to the three targets. The
figure also show the remaining drones (not used in the relay)
searching for any additional target.

For every experiment, we report the number of Buzz
timesteps necessary to find the three targets. For reference,
a Buzz timestep is 0.1s by default but it is fully configurable
depending on the capabilities of the robots and communi-
cation system. Figures 6, 7 and 8 present the number of
timesteps necessary to find the targets for different arena
sizes and different number of drones. They show the results
obtained with both the random search and the belief space
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Fig. 6 Number of timesteps to find 3 targets in a 20 m × 20 m arena.
The results for the random search are in green and the results for the
belief space search are in orange. The BF and the error of the Bayesian
paired samples t-test for each setup are respectively 92.404, and 8.273e-
5 for 15 robots, 2.886 and 0.001 for 20 robots, and 70.606, and 1.043e-4
for 25 robots

search while increasing the number of drones and the arena
size. From those results, we can see as expected for a swarm
based SAR algorithm that the time to find the target decreases
when the number of drones increases, for all the arena sizes
(Figs. 6, 7 and 8). This observation is due to the fact that a
bigger search area can be coveredwithmore drones, allowing
them to find the targets faster.

Also, the time decreases in all cases when we use a belief
space search in comparison to a random walk search. In
fact, by reducing step after step the searching area (thanks to
the distributed belief information), our search method allows
drones to converge faster towards the targets.

Finally, when the arena size increases (from Figs. 6, 7 and
8),we can see that the timeneeded tofind the targets increases
as well (the sub graphs have different vertical scales). This
can be explained by the sampling space which gets bigger
with the arena. Thus, there aremore options to explore before
we can find the target wherever it might be.

To confirm the hypothesis that the belief space search
would be faster than the random walk, in any case, we did a
Bayesian paired samples t-test on the results by using JASP
Team (2021) software. The results show that all data accept
the hypothesis with the Bayesian Factor (BF) greater than 1
(BF min = 2.886, BF max = 66550.284).

Another hypothesis we postulated was that the search pat-
tern that was designed should create the relay formation in
nearly constant time. To verify that assertion, we considered
for each experiment the total time spent by the root node in the
auctioneer state. Figures 9, 10, and 11 summarize the results
obtained from that metric. It shows in most cases a slightly
higher formation time for the belief based search, with a
higher standard deviation. Those results hints that the relay
formation might take more time for the belief based search,
refuting our hypothesis. To get a clearer answer, we once
again did a Bayesian paired samples t-test on the statistical

Fig. 7 Number of timesteps to find 3 targets in a 30 m × 30 m arena.
The results for the random search are in green and the results for the
belief space search are in orange. TheBFof theBayesian paired samples
t-test for each setup are respectively 66550.284, for 15 robots, 914.282
for 20 robots, and 25.268 for 25 robots. No error estimate can be given
for 15 robots, however the error for 20 and 25 are respectively 4.609e-8
and 2.954e-5

Fig. 8 Number of timesteps to find 3 targets in a 40m× 40marena. The
results for the random search are in green and the results for the belief
space search are in orange. The BF and the error of the Bayesian paired
samples t-test for each setup are respectively 210.765 and 1.358e-6, for
15 robots, 203.165 and 3.369e-7 for 20 robots, 3577.307 for 25 robots.
No error estimate can be given for 25 robots

results considering the null hypothesis (i.e. the relay forma-
tion time is the same for both random, and belief search). The
results show that 89% of the data reject the null hypothesis
with the Bayesian Factor lower than 1 (BF min = 2.539e-6,
BF max = 3.862).

We can also notice a constant, but slight increase of the for-
mation time when the arena gets bigger. That fact is expected
as the searching area increases. In fact, we have less chances
of finding a drone in communication range of the root since
they will now search further from the root. Another inter-
esting result is that the formation time do not change much
when we compare for the same arena size, different num-
ber of drones. Here, the number of agents do not impact the
results as the auction time is based on whether a winner is
found or not. Thus, more agents do not change the ability for
the auctioneer to find a winner, assuming they are in range.
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Fig. 9 Number of timesteps needed per experiment to obtain the whole
relay structure in a 20m× 20m arena. The results for the random search
are in red and the results for the belief space search are in blue. The BF
and the error of the Bayesian paired samples t-test for each setup are
respectively 0.115 and 2.281e-6, for 15 robots, 8.070e-4 and 1.277e-6
for 20 robots, 2.539e-6 and 2.511e-8 for 25 robots

Fig. 10 Number of timesteps needed per experiment to obtain thewhole
relay structure in a 30m× 30m arena. The results for the random search
are in red and the results for the belief space search are in blue. The BF
and the error of the Bayesian paired samples t-test for each setup are
respectively 0.264 and 3.022e-6, for 15 robots, 3.327e-6 and 2.817e-8
for 20 robots, 0.022 and 1.896e-4 for 25 robots

Fig. 11 Number of timesteps needed per experiment to obtain thewhole
relay structure in a 40m× 40m arena. The results for the random search
are in red and the results for the belief space search are in blue. The BF
and the error of the Bayesian paired samples t-test for each setup are
respectively 3.862 and 0.001, for 15 robots, 0.017 and 1.133e-4 for 20
robots, 0.469 and 3.806e-6 for 25 robots

Fig. 12 Bandwidth usage for 15 drones using a belief search in a 20 ×
20 arena (single experiment)

Fig. 13 Bandwidth usage for 15 drones using a random search in a 20
× 20 arena (single experiment)

To explain the relay formation time difference between the
two searchmethods,wemade the hypothesis that the network
usage is at the root of this observation. In fact, because of the
dynamic update of the belief map, the network is heavily
used in the belief based search. The update messages could
delay the handling of the auction-related ones and therefore
extend the formation time. To confirm this hypothesis, we
compiled the bandwidth usage for the belief based search and
the random walk search. For the sake of brevity, we present
in Figs. 12 and 13 the results of a randomly selected exper-
iment’s configuration. We can see on the graph that for the
belief-based search, the bandwidth is constantly increasing
(reaching a maximum of 3000 bytes in the message queue)
and we observe an homogeneous network usage by all the
agents. In some rare occasions, when a drone would be out
of range, we can observe a decrease of its network usage
which increases drastically when it is back in range. In con-
trast, Fig. 13 show a maximum of 380 bytes for the message
queue size, with a relatively constant bandwidth usage after
the election of the root node (around step 15).We can observe
some high usage periods that correspond to the auction time
in the system, with the root using more bandwidth in com-
parison to the other drones. Those observations confirmed
our hypothesis by showing a fairly high network usage in the
belief search.
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Fig. 14 GPS trajectory during tests on a football filed. Right: random, Left: belief map, the yellow cells indicate the probability of having a target

It should also be noted that the number of search steps (set
to 20 for our tests) could impact the time needed to have the
relay chain, showing the importance for parameters tuning.
For example, if the target is found by a drone at step 1, the
first relays will not come to the meeting point before step
20 (unless they also find the target or are in communication
range of the root). That fact canmake the system stabilization
unnecessarily long.

5 Experiments

The real-world experiments were performed in an outdoor
football field with three DJI M300 quadcopters. The search
area considered for the tests is a 36 × 36 meters field. The
experimental platform was mainly presented in Sect. 3.4.
The decentralized control of the drones is achieved using the
same Buzz scripts used in the simulation, with some minor
changes related to the auction duration, and theM300 RTK’s
flight controller.

The tests were performed with both the random walk
search and the distributed belief map search. Each of the
experiments, were performed three times to confirm the
proper functioning of the algorithm. Figure 15 confirms the
feasibility of our method. After performing the previously
explained search pattern, the drones adopt, as seen in the
picture, a relay formation. Given that we only have one tar-
get and three drones the relay was a line from the predefined
rendezvous point to the target position. Sending a message
from the agent at the target position, the information can now
be relayed back to the root for analysis.

To give a better idea of the searching behavior during the
experiments, we present in Fig. 14 the path taken by the

drones during two randomly selected runs (Right: random,
Left: belief). That figure shows for the random search sparse
lines, scattered randomly over the field, indicating a lack of
pattern during the search. That lack of pattern can give fast
discovery of the target under certain circumstances and a
very long time in other cases. On the other hand, for a belief
search, the lines are concentrated in areas with high belief.

Table 1 presents, for information, the recorded metrics
for the belief map search. It shows the number of timesteps
needed to find the target for each of the experiments. We
obtained an average 1105 timesteps with the belief search, a
value that is bigger than the ones obtained in simulation. In
fact, the difference with field experiments is that the number
of steps required to get from one position to another is higher
because of the velocity of the drones set to a relatively low
value. The table also contains the necessary time to form a
relay chain (as the one shown in Fig. 15). The mean value
here is 295 timesteps.

Unlike the simulations, these experiments were only per-
formed 3 times with a fixed target and a fixed belief map.
That configuration can easily produce some biased results.
Therefore, more real-world tests would be necessary to have
statistically relevant data.

6 Discussion of real-world use cases

Since the presented system was designed for a real-world
deployment of UAVs swarm, a discussion in terms of prac-
tical use cases is essential to better understand when this
system could be used. This section will present that discus-
sion with some ideas to optimize the current solution.
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Table 1 Real-world tests results Experiment # Target discovery (timesteps) Relay formation (timesteps)

1 1159 301

2 863 324

3 1295 249

Fig. 15 Relay chain formation during real-world experiment

Considering our approach during the rescuing phase, with
the relay structure formation, some questions about the bene-
fits of keeping the targets in sight instead of simply reporting
the position might come in mind. For a search and res-
cue application, establishing a real-time video connection
between the base station and the found targets providesmulti-
ples advantages in comparison to simply flying back to report
the location. Among those we have:

• Allow human rescuers to monitor the state of the target
at the detected position and assess their priority during
rescue in case of multiple targets;

• Track the target in the likely case case of movement (e.g.
at sea);

• Communicate with the target till rescuer can reach it
(either via radio or speakers).

It is also worth mentioning that in the proposed algo-
rithm, the first UAV that finds a target, flies back to report
the location, that information is then used to create the relay
structure. Also, if we consider applications other than SAR,
this approach can be used to stream live video of a monitored
region to the ground station (e.g. fire monitoring).

If we consider the use of fixed wing aircraft (to which our
method can easily apply using a circling, loitering motion),
the flight range for the UAVs can be in the hundreds of kilo-
meters, and even a recent DJI M300 could fly 20–25 km if
we do not consider the range of the remote controller. It is

also worth noting that the horizon is at about 25 km distance
when flying at 50 m altitude, which also limits communi-
cation range, and 4G or 5G communication is generally not
available farther than a few km off the coast. Overall, we
believe that relay chains have practical use with the current
available communication systems, but in any case, our sys-
tems adapts and scales based on the communication range
of the UAVs, using fewer or no drones for relay as the range
expands.

Communication in the system occurs during bidding or
the belief map update (via virtual stigmergy). If a message
is lost during the bidding it could take more time to find a
winner, creating some delays in the execution or even put
the system in an undefined state. Also, if messages are lost
during the belief map update, the search time will be affected
because the agents will search at positions previously visited
by their neighbors. To prevent this from happening, acknowl-
edgement messages are used for the communication during
the bidding to ensure that we don’t get stuck in that state if
some messages get lost. As indicated previously, the belief
map update is best effort. Therefore, no specific measures
were considered to mitigate message loss impact there. The
experiments results show that the method is robust to mes-
sage loss.

The current algorithm does not take into account obstacles
to form the relay structure. Our previous work (Varadharajan
et al., 2020) does consider relays in a cluttered environment
and could be integrated. In general, the presence of obstacles
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between the member of the relay might decrease the com-
munication range and require the UAVs to get closer to one
another. In our specific case, we assume an environment with
obstacles that lie lower than the altitude of the UAVs. That
assumption removes the need for obstacle management dur-
ing the relay formation phase while staying relevant for most
SAR operations.

7 Conclusion and future works

In this paper, we presented a novel swarm robotic system
for search and rescue operations in realistic scenarios. The
proposed system is fully decentralized and robust to sporadic
disconnections. It was also coupled with an implementation
of a distributed belief map search algorithm leveraging prior
knowledge on the area to realize a faster search. Based on
the results obtained in simulation, we were able to confirm
that our search method performs better than a random walk.
The results obtained during our simulations and the real-
world experiments, confirmed the feasibility of our approach.
The deployed architecture also provide a modular, easily
portable and scalable system, that could be used in other
swarm deployments. In future work, we will leverage the
distributed belief map in the search algorithm to perform
dynamic updates on the target location belief. Indeed, we
could model the target motion (e.g. due to the flow of a river)
to update the prior over time.

Funding This work was supported by the Fonds de recherche du
Quebec—Nature et technologies (FRQNT) under Grant No. 296737
and by the National Research Council Canada (NRC).

Declarations

Conflict of interest The authors declare no potential conflict of inter-
est with respect to the research, authorship, and/or publication of this
article.

References

Alotaibi, E. T., Alqefari, S. S., & Koubaa, A. (2019). LSAR: Multi-
UAV collaboration for search and rescue missions. IEEE Access,
7, 55817–55832.

Andries, M., & Charpillet, F. (2013). Multi-robot exploration of
unknown environments with identification of exploration comple-
tion and post-exploration rendezvous using ant algorithms. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (pp. 5571–5578). IEEE.

Andries, M., & Charpillet, F. (2015). Multi-robot taboo-list exploration
of unknown structured environments. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (pp.
5195–5201). IEEE.

Apvrille, L., Tanzi, T., & Dugelay, J. L. (2014). Autonomous drones for
assisting rescue services within the context of natural disasters. In

2014 XXXIth URSI General Assembly and Scientific Symposium
(URSI GASS) (pp. 1–4). IEEE.

Banfi, J., Quattrini Li, A., Rekleitis, I., et al. (2018). Strategies for
coordinated multirobot exploration with recurrent connectivity
constraints. Autonomous Robots, 42(4), 875–894.

Belkadi, A., Ciarletta, L., & Theilliol, D. (2016). UAVS fleet control
design using distributed particle swarm optimization: A leaderless
approach. In2016 InternationalConference onUnmannedAircraft
Systems (ICUAS) (pp. 364–371). IEEE.

Brambilla, M., Ferrante, E., Birattari, M., et al. (2013). Swarm robotics:
A review from the swarm engineering perspective. Swarm Intelli-
gence, 7(1), 1–41.

Çeltek, S. A., Durdu, A., & Kurnaz, E. (2018). Design and simulation
of the hierarchical tree topology based wireless drone networks.
In 2018 International Conference on Artificial Intelligence and
Data Processing (IDAP) (pp. 1–5). IEEE, https://doi.org/10.1109/
IDAP.2018.8620755

Cesare, K., Skeele, R., Yoo, S. H., et al. (2015). Multi-uav explo-
ration with limited communication and battery. In 2015 IEEE
International Conference onRobotics andAutomation (ICRA) (pp.
2230–2235). IEEE.

De Hoog, J., Cameron, S., &Visser, A. (2009). Role-based autonomous
multi-robot exploration. In 2009 Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content,
Patterns (pp. 482–487). IEEE.

Dimidov, C., Oriolo, G., & Trianni, V. (2016). Random walks in swarm
robotics: an experimentwithKilobots. In InternationalConference
on Swarm Intelligence (pp. 185–196). Springer.

Dorigo, M., Floreano, D., Gambardella, L. M., et al. (2013). Swar-
manoid: A novel concept for the study of heterogeneous robotic
swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.

Gerkey, B. P., & Mataric, M. J. (2002). Sold!: Auction methods
for multirobot coordination. IEEE Transactions on Robotics and
Automation, 18(5), 758–768.

Hentati, A. I., & Fourati, L. C. (2020). Comprehensive survey of UAVS
communication networks. Computer Standards & Interfaces, 72,
103,451.

Hollinger, G. A., & Singh, S. (2012). Multirobot coordination with
periodic connectivity:Theory and experiments. IEEETransactions
on Robotics, 28(4), 967–973.

Hourani, H., Hauck, E.,& Jeschke, S. (2013). Serendipity rendezvous as
amitigation of exploration’s interruptibility for a team of robots. In
2013 IEEE International Conference on Robotics and Automation
(pp. 2984–2991). IEEE.

JASP Team (2021). JASP (Version )[Computer software]. URL https://
jasp-stats.org/.

Khan, A., Yanmaz, E., & Rinner, B. (2014). Information merging in
multi-uav cooperative search. In 014 IEEE international confer-
ence on robotics and automation (ICRA) (pp. 3122–3129). IEEE.

Kim, J., Ladosz, P., & Oh, H. (2020). Optimal communication
relay positioning in mobile multi-node networks. Robotics and
Autonomous Systems, 129, 103517. https://doi.org/10.1016/j.
robot.2020.103517,URLwww.sciencedirect.com/science/article/
pii/S0921889019309145.

Kiran, K., Kaushik, N., Sharath, S., et al. (2018). Experimental eval-
uation of batman and batman-adv routing protocols in a mobile
testbed. In TENCON 2018-2018 IEEE Region 10 Conference (pp.
1538–1543). IEEE.

Kobayashi, F., Sakai, S., & Kojima, F. (2002). Sharing of explor-
ing information using belief measure for multi robot exploration.
In 2002 IEEE World Congress on Computational Intelligence.
2002 IEEE International Conference on Fuzzy Systems. FUZZ-
IEEE’02. Proceedings (Cat. No. 02CH37291) (pp. 1544–1549).
IEEE.

Kobayashi, F., Sakai, S., & Kojima, F. (2003). Determination of explo-
ration target based on belief measure in multi-robot exploration.

123

https://doi.org/10.1109/IDAP.2018.8620755
https://doi.org/10.1109/IDAP.2018.8620755
https://jasp-stats.org/
https://jasp-stats.org/
https://doi.org/10.1016/j.robot.2020.103517
https://doi.org/10.1016/j.robot.2020.103517
www.sciencedirect.com/science/article/pii/S0921889019309145
www.sciencedirect.com/science/article/pii/S0921889019309145


862 Autonomous Robots (2023) 47:849–863

In Proceedings 2003 IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation. Computational
Intelligence in Robotics and Automation for the New Millennium
(Cat. No. 03EX694) (pp. 1545–1550). IEEE.

Li, J. (2019). Throughput-aware flying communication relay network
for disaster area search and rescue. In Proceedings of the 2019 8th
International Conference on Networks, Communication and Com-
puting (pp. 138–141), https://doi.org/10.1145/3375998.3376038.

Majcherczyk, N., Jayabalan, A., Beltrame, G., et al. (2018). Decen-
tralized connectivity-preserving deployment of large-scale robot
swarms. In 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (pp. 4295–4302). IEEE.

McGuire,K.,DeWagter, C., Tuyls,K., et al. (2019).Minimal navigation
solution for a swarm of tiny flying robots to explore an unknown
environment. Science Robotics, 4(35), eaaw9710.

Meghjani, M., & Dudek, G. (2012). Multi-robot exploration and ren-
dezvous on graphs. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (pp. 5270–5276). IEEE.

Nickerson, J. V. (2004). Robots and humans reconvening. In 2004 IEEE
International Conference on Systems,Man and Cybernetics (IEEE
Cat. No. 04CH37583) (pp. 2803–2808). IEEE.

Nouyan, S.,&Dorigo,M. (2006).Chain basedpath formation in swarms
of robots. In International Workshop on Ant Colony Optimization
and Swarm Intelligence (pp. 120–131). Springer.

Pei, Y., Mutka, M. W., & Xi, N. (2013). Connectivity and bandwidth-
aware real-time exploration in mobile robot networks. Wireless
Communications and Mobile Computing, 13(9), 847–863.

Pinciroli, C., & Beltrame, G. (2016). Buzz: An extensible pro-
gramming language for heterogeneous swarm robotics. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (pp. 3794–3800). IEEE.

Pinciroli, C., Trianni, V., O’Grady, R., et al. (2012). Argos: A modular,
parallel, multi-engine simulator for multi-robot systems. Swarm
intelligence, 6(4), 271–295.

Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2016). A tuple space
for data sharing in robot swarms. In Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Com-
munications Technologies (formerly BIONETICS) (pp. 287–294).

Quigley, M., Conley, K., Gerkey, B., et al. (2009). Ros: an open-source
robot operating system. In ICRA Workshop on Open Source Soft-
ware, (pp. 5). Kobe, Japan.
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