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Abstract Most of the existing robotic exploration schemes
use occupancy grid representations and geometric targets
known as frontiers. The occupancy grid representation relies
on the assumption of independence between grid cells and
ignores structural correlations present in the environment.
We develop a Gaussian processes (GPs) occupancy map-
ping technique that is computationally tractable for online
map building due to its incremental formulation and pro-
vides a continuous model of uncertainty over the map spatial
coordinates. The standard way to represent geometric fron-
tiers extracted from occupancy maps is to assign binary
values to each grid cell. We extend this notion to novel
probabilistic frontier maps computed efficiently using the
gradient of the GP occupancymap.We also propose amutual
information-based greedy exploration technique built on that
representation that takes into account all possible future
observations. A major advantage of high-dimensional map
inference is the fact that such techniques require fewer obser-
vations, leading to a faster map entropy reduction during
exploration for map building scenarios. Evaluations using
the publicly available datasets show the effectiveness of the
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1 Introduction

Exploring anunknownenvironmentwithout anyprior knowl-
edge gives rise to difficulties for the robot to make sequential
decisions that maximize the long-term expected reward or
information gain. Among these difficulties, available infor-
mation in the current state of the robot is limited to its
perception field and the partially known state of its trajec-
tory and the map as a priori. This leads the problem towards
the sequential decision making under imperfect state infor-
mation which is known to be NP-hard (Singh et al. 2009).

Autonomous mobile robots are required to generate a spa-
tial representation of the robot environment, this is known as
the mapping problem. Solving this problem is an integral
part of all autonomous navigation systems as the map encap-
sulates the knowledge of the robot about its surrounding. In
robotic navigation tasks, a representation (map) that indicates
occupied areas of the environment is required. Furthermore,
it is desirable that such maps be generated autonomously
where the robot explores new regions of an unknown environ-
ment. This is known as the autonomous exploration problem
in robotics. In this article, we are concernedwith autonomous
exploration for map building when the robot pose is esti-
mated by an appropriate strategy such as Pose SLAM (Ila
et al. 2010).

We develop a Gaussian processes (GPs) occupancy map-
ping algorithm that is tailored for robotic navigation and is
computationally tractable due to its incremental formulation.
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This representation has been shown to be superior to the
traditional occupancy grid map (Moravec and Elfes 1985;
Elfes 1987) as it captures structural correlations present in
the environment and produces a continuous representation of
the sensing uncertainty in the map space (O’Callaghan et al.
2009; O’Callaghan and Ramos 2012; Kim and Kim 2012,
2013a, b; Ghaffari Jadidi et al. 2013a, b, 2014a, 2015; Kim
and Kim 2015; Ghaffari Jadidi et al. 2017). Furthermore,
this representation has applications beyond the occupancy
mapping problem and it has been applied for large-scale
terrain modeling (Vasudevan et al. 2009), active learn-
ing (Krause and Guestrin 2007), building maps to predict the
fluid concentration (Stachniss et al. 2008), informative path
planning (Binney and Sukhatme 2012), robotic information
gathering (Hollinger and Sukhatme 2014; Hollinger 2015;
Ghaffari Jadidi et al. 2016), and high-dimensional semantic
map representation (Ghaffari Jadidi et al. 2017a).

In the problem of robotic exploration for map building,
targets are usually defined by geometric frontiers extracted
from the occupancy grid map (OGM) (Yamauchi 1997).
We propose an algorithm to extract frontiers from Gaus-
sian processes occupancy maps (GPOMs) representations
in the form of a probability map. Furthermore, we develop
an algorithm to numerically calculate the mutual informa-
tion (MI) between the map and future measurements on that
representation. MI is a measure of the value of information
that quantifies the information gain from sensor measure-
ments (Krause and Guestrin 2005). The maximum expected
utility principle states that the robot should choose the action
that maximizes its expected utility, in the current state (Rus-
sell and Norvig 2009, p. 483). The expectation is taken due
to the stochastic nature of the state and observations. The
proposed MI algorithm takes into account all possible future
measurements (by taking expectations over them), and there-
fore, is a suitable utility function.

The MI-based utility function is computed at the cen-
troids of geometric frontiers and the frontier with the highest
information gain is chosen as the next-best “macro-action”.
We borrow the notion of macro-action from planning under
uncertainty (He et al. 2010) and define it as follows.

Definition 1 (Macro-action) A macro-action is an explo-
ration target (frontier) which is assumed to be reachable
through an open-loop control strategy.

The employed measurement model is a standard beam-
based mixture model for range-finder sensors (Thrun et al.
2005), however, the proposed algorithm can be adapted
to other sensor modalities with reasonable probabilistic
observation models. Figure 1 depicts the proposed mutual
information-based navigation process concept using
GPOMs.

Contributions This article is based on our preliminary
work (Ghaffari Jadidi et al. 2015)wherewe presented contin-
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Fig. 1 Schematic illustration of the autonomous mapping and explo-
ration process using GPs maps. The GP mapper module provides the
continuous occupancy map which can be exploited to extract geomet-
ric frontiers and mutual information maps. The maps also give support
to the planner module for basic navigation tasks as well as cost-aware
planning. The explorer node returns a macro-action (chosen frontier)
that optimizes the expected utility function. The gray nodes are not
investigated

uous probabilistic frontiermaps and an algorithm to calculate
MI between the current map and future measurements. How-
ever, the distinguishable items from the previously published
work are as follows:

– We expand the decision making part and use the notion
of macro-action.

– We provide details about the derivation of the sensor
model and the construction of the training and test point
sets.

– We present more detailed evaluations with comparable
techniques.

The main contributions of this work are as follows.

– A framework for incremental Gaussian processes occu-
pancy mapping using range-finder sensors is developed.
The method runs significantly faster with performance
close to batch computation.

– We develop a novel probabilistic geometric frontier rep-
resentation by exploiting continuous occupancy mapping
and using L1-norm of the gradient of continuous occu-
pancy maps.

– A tractable technique for greedy information gain-based
exploration is developed that takes into account all pos-
sible future observations. The technique can deal with
sparse measurements and uses a forward sensor model
for map predictions.
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– The results from publicly available datasets in a highly
structured indoor environment and a large-scale outdoor
space are presented.

Notation In the present article probabilities and probability
densities are not distinguished in general. Matrices are cap-
italized in bold, such as in X , and vectors are in lower case
bold type, such as in x. Vectors are column-wise and 1 : n
means integers from 1 to n. The Euclidean norm is shown by
‖·‖. |X| denotes the determinant of matrix X . For the sake
of compactness, random variables, such as X , and their real-
izations, x , are sometimes denoted interchangeably where it
is evident from context. x [i] denotes a reference to the i-th
element of the variable. An alphabet such as X denotes a
set, and the cardinality of the set is denoted by |X |. A sub-
script asterisk, such as in x∗, indicates a reference to a test
set quantity. The n-by-n identity matrix is denoted by In .
vec(x [1], . . . , x [n]) denotes a vector such as x constructed
by stacking x [i], ∀i ∈ {1 : n}. The function notation is over-
loaded based on the output type and denoted by k(·), k(·), and
K (·)where the outputs are scalar, vector, and matrix, respec-
tively. Finally, E[·], V[·], and Cov [·] denote the expected
value, variance, and covariance (for random vectors) of a
random variable, respectively.
Outline The remaining parts of this article are organized as
follows. In Sect. 2, a literature review is given. In Sect. 3,
we present the proposed mapping algorithms and provide
evaluations and comparison with occupancy grid maps. The
exploration approach, MI surface calculation, and decision
makingprocess proposed in thiswork are discussed inSect. 4.
Section 5 presents the results from experiments in two dif-
ference scenarios. Finally, Sect. 6 concludes the article and
discusses the limitations of this work.

2 Related work

An environment can be explored by directing a robot towards
frontiers that indicate unknown regions of the environment
in the neighboring known free areas (Yamauchi 1997). Tradi-
tional autonomous exploration strategies have been devised
to use OGM (Moravec and Elfes 1985; Elfes 1987; Konolige
1997; Thrun 2003; Hornung et al. 2013; Merali and Barfoot
2014) to represent free, occupied and unknown regions. The
followingworks use the concept of active perception (Bajcsy
1988) to take actions that reduce the uncertainty in the state
variables. A combined information utility for exploration is
developed in Bourgault et al. (2002) using the information-
based cost function in Feder et al. (1999) and an OGM. A
one-step look-ahead strategy is used to generate the locally
optimal control action. The reported results indicated that
the utility for mapping attracts the robot to unknown areas
while the localization utility keeps the robot well localized

relative to known features in the map. In Makarenko et al.
(2002) an integrated exploration approach for a robot navi-
gating in an unknown environment populated with beacons
is proposed; a total utility function consisting of the weighted
sum of the OGM entropy, navigation cost, and localizability
is used. To enhance the map quality of the EKF-based simul-
taneous localization and mapping (SLAM) (Cadena et al.
2016), an A-optimal criterion for autonomous exploration
is examined in Sim and Roy (2005). Later in Carrillo et al.
(2012a), it is shown that the D-optimal (Determinant opti-
mal) criterion (Pukelsheim 2006) is more effective in such
scenarios.

In Stachniss et al. (2005), Rao–Blackwellized particle fil-
ters (RBPF) (Doucet et al. 2000) are employed to compute
map and robot pose posteriors. The proposed uncertainty
reduction approach is based on the joint entropy mini-
mization of the SLAM posterior. The information gain is
approximated using ray-casting for a given action. In Blanco
et al. (2008), through the entropy of the expected map of
RBPF, the technique takes the uncertainty in both robot path
and map into account. In a similar framework Carlone et al.
(2010, 2014) addressed the problem of active SLAM and
exploration, specifically the inconsistency in the filter due to
information loss for a given policy using the relative entropy
concept. In Amigoni and Caglioti (2010), it is assumed that
all random variables are normally distributed and an explo-
ration strategy based on relative entropy metric, combined
traveling cost, and expected information gain is proposed.

The techniques in Valencia et al. (2012); Vallvé and
Andrade-Cetto (2013, 2014, 2015) evaluate exploratory and
place revisiting paths, which are selected based on entropy
reduction estimates of both map and path. Similar to this
work, these techniques use Pose SLAM (Ila et al. 2010;
Valencia et al. 2013), a delayed-state SLAM algorithm from
the pose graph family. Given the inherent complexity in the
formulation to calculate the joint entropy of robot pose and
map, it is assumed that they are conditionally independent.
In Carrillo et al. (2015b), to avoid the need to update the map
using unknown future measurements, the objective function
is simplified to the current map entropy. In Kim and Eustice
(2015), a greedy approach for active visual SLAM that con-
siders area coverage and navigation uncertainty is proposed.
In Julian et al. (2014), the MI surface between a map and
future measurements is computed numerically. The work
assumes known robot poses, and relies on an OGM repre-
sentation and measurements from a laser range-finder. The
algorithm integrates over an information gain function with
an inverse sensor model at its core. It is formally proven that
any controller tasked to maximize an MI reward function
is eventually attracted to unexplored areas. The technique
in Charrow et al. (2015) is closely related to this work.
The computational performance of the information gain is
increased by using Cauchy–Schwarz quadratic mutual infor-
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mation (CSQMI). It is shown that the behavior of CSQMI is
similar to that ofMIwhile it can be computed faster. The tech-
nique has also been further extended to the multi-robot sce-
nario (Faigl et al. 2012; Charrow et al. 2014; Charrow 2015).

The methods reviewed above fall short of accounting for
structural correlations in the environment. Kernel methods
in the form of a Gaussian processes framework (Ras-
mussen and Williams 2006) are non-parametric regression
and classification techniques that have been extensively used
by researchers to model spatial phenomena (Lang et al.
2007; Vasudevan et al. 2009; Hadsell et al. 2010). Gaus-
sian processes have proven particularly powerful to represent
the affinity of spatially correlated data, hence overcoming
the traditional assumption of independence between cells,
characteristic of the occupancy grid method for mapping
environments (O’Callaghan et al. 2009; O’Callaghan and
Ramos 2012). The variance surface ofGPs equate to a contin-
uous representation of uncertainty in the environment, which
it can be used to highlight unexplored regions and optimize
a robot’s search plan. The continuity property of the GP map
can improve the flexibility of the planner by inferring directly
on collected sensor data without being limited by the reso-
lution of the grid cell (Yang et al. 2013). The incremental
GP map building using the Bayesian Committee Machine
(BCM) technique (Tresp 2000) is developed in Kim and
Kim (2012); Ghaffari Jadidi et al. (2013a, b, 2014a) and for
online applications in Wang and Englot (2016). In Ramos
and Ott (2015), the Hilbert maps technique is proposed that
is more scalable and can be updated in linear time. However,
it approximates the problem and produces maps with less
accuracy than GPOM.

GPOM, in its original formulation (O’Callaghan et al.
2009; O’Callaghan and Ramos 2012), is a batch map-
ping technique and the cubic time complexity of GPs
(see Sect. 3.7) is prohibitive for scenarios such as robotic
navigation where a dense representation is preferred. The
incremental GP map building was studied in Kim and Kim
(2012), and in Ghaffari Jadidi et al. (2013a, b, 2014a). In this
work,we exploitGPs to develop tractable online roboticmap-
ping and exploration techniques. We start from the problem
of occupancymapping and expand themethod to exploration
using geometric frontiers, and mutual information-based
exploration.

3 Mapping

The GP mapper module is shown in Fig. 2 which takes
the processed measurements, i.e. training data, and a test
point window centered at the current robot pose as inputs
to perform regression and classification steps for local maps
generation and fuse them incrementally into the global frame
through the BCM technique (Tresp 2000).

Training 
Points

Test Points
 Window

BCM
Logistic

 Regression 
Classifier

GP
Regression

GP Mapper

Fig. 2 Schematic illustration of GP Mapper module. GP models the
correlation in data and place distributions on test points. The logistic
regression classifier squashes the output of GP into probabilities and
returns the local map where the BCM module updates the global map
incrementally

Before formal statement of the problem, we clarify the
following assumptions.

Assumption 1 (Static environment) The environment that
the robot navigates in is static.

Assumption 2 (Gaussian occupancy map points) Any sam-
pled point from the occupancy map representation of the
environment is a randomvariablewhose distribution is Gaus-
sian.

3.1 Gaussian processes

A Gaussian process is a collection of any finite number
of random variables which are jointly distributed Gaussian
(Rasmussen andWilliams 2006). The joint distribution of the
observed target values, y, and the function values (the latent
variable), f ∗, at the query points can be written as

[
y
f ∗

]
∼ N

(
0,

[
K (X, X) + σ 2

n In K (X, X∗)
K (X∗, X) K (X∗, X∗)

])
(1)

where X is the d × n design matrix of aggregated input
vectors x, X∗ is a d × n∗ query points matrix, K (·, ·) is
the GP covariance matrix, and σ 2

n is the variance of the
observation noise which is assumed to have an indepen-
dent and identically distributed (i.i.d.) Gaussian distribution.
Define a training set D = {(x[i], y[i]) | i = 1 : n}. The
predictive conditional distribution for a single query point
f∗|D, x∗ ∼ N (E[ f∗], V[ f∗]) can be derived as

μ = E[ f∗] = k (X, x∗)T
[
K (X, X) + σ 2

n In
]−1

y (2)

σ = V[ f∗] = k (x∗, x∗)

− k (X, x∗)T
[
K (X, X) + σ 2

n In
]−1

k (X, x∗) (3)

The Matérn family of covariance functions (Stein 1999)
has proven powerful features to model structural correlations
(Ghaffari Jadidi et al. 2013a, 2014a; Kim and Kim 2013b,
2015) and hereby we select them as the kernel of GPs. For a
single query point x∗ the function is given by
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k (x, x∗) = 1

Γ (ν)2ν−1

[√
2ν‖x − x∗‖

κ

]ν

Kν

×
(√

2ν‖x − x∗‖
κ

)
(4)

whereΓ is theGamma function, Kν(·) is themodifiedBessel
function of the second kind of order ν, κ is the characteristic
length scale, and ν is a positive parameter used to control the
smoothness of the covariance.

Thehyperparameters of the covariance andmean function,
θ , can be computed by minimization of the negative log of
the marginal likelihood (NLML) function.

log p ( y|X, θ) = −1

2
yT

[
K (X, X) + σ 2

n In
]−1

y

− 1

2
log |K (X, X) + σ 2

n In|
− n

2
log 2π (5)

3.2 Problem statement and formulation

Let M be the set of possible occupancy maps. We consider
the map of the environment to be static and as an nm-
tuple random variable (M [1], . . . , M [nm ]) whose elements
are described by a normal distribution m[i] ∼ N (μ[i], σ [i]),
i ∈ {1 : nm}. Let Z ⊂ R≥0 be the set of possible range mea-
surements. The observation consists of an nz-tuple random
variable (Z [1], . . . , Z [nz ]) whose elements can take values
z[k] ∈ Z , k ∈ {1 : nz}. Let X ⊂ R

2 be the set of spatial
coordinates to build a map on. Let x[k]

o ∈ Xo ⊂ X be an
observed occupied point by the k-th sensor beam from the
environment which, at any time-step t , can be calculated by
transforming the local observation z[k] to the global frame
using the robot pose xt ∈ SE(2). Let X [k]

f ∈ X f ⊂ X be the
matrix of sampled unoccupied points from a line segment
with the robot pose and corresponding observed occupied
point as its endpoints. Let D = Do ∪ D f be the set of all
training points. We define a training set of occupied points
Do = {(x[i]

o , y[i]
o ) | i = 1 : no} and a training set of unoc-

cupied points D f = {(x[i]
f , y[i]

f ) | i = 1 : n f } in which

yo = vec(y[1]
o , . . . , y[no]

o ) and y f = vec(y[1]
f , . . . , y

[n f ]
f ) are

target vectors and each of their elements can belong to the set
Y = {−1,+1}where−1 and+1 corresponds to unoccupied
and occupied locations, respectively, no is the total number
of occupied points, and n f is the total number of unoccupied
points. Given the robot pose xt and observations Zt = zt ,
we wish to estimate p(M = m | xt , Zt = zt ). Place a joint
distribution over M ; the map can be inferred as a Gaussian
process by defining the process as the function y : X → M,
therefore

Fig. 3 Conceptual illustration of the robot, the environment, and obser-
vations. Training data consists of free and occupied points labeled
y f = −1 and yo = +1 respectively. Free points are sampled along
each beam, i.e. negative sensor information while occupied points are
directly observable

y(x) ∼ GP (
fm (x) , k

(
x, x′)) (6)

It is often the case that we set the mean function fm(x) as
zero, unless it is mentioned explicitly that fm(x) = 0. For
a given query point in the map, x∗, GP predicts a mean, μ,
and an associated variance, σ . We can write

m[i] = y
(
x[i]∗

)
∼ N

(
μ[i], σ [i]) (7)

To show a valid probabilistic representation of the map
p(m[i]), the classification step, a logistic regression classi-
fier (Rasmussen and Williams 2006, Sections 3.1 and 3.2),
(Murphy 2012,Chapter 8), (Ghaffari Jadidi et al. 2014a),
squashes data into the range (0, 1).

3.3 Sensor model, training and test data

The robot is assumed to be equipped with a 2D range-finder
sensor. The raw measurements include points returned from
obstacle locations. For any sensor beam, the distance from
the sensor position to the detected obstacle along that beam
indicates a line from the unoccupied region of the environ-
ment. To build training data points for the unoccupied part
of the map, it is required to sample along the aforementioned
line. Figure 3 shows the conceptual illustration of the envi-
ronment and training points generation.

A sensor beam zt = (z[1]t , . . . , z[nz ]t ) has nz range obser-
vations at a specific bearing depending on the density of the
beam. The observation model for each z[k]t can be written as
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z[k]t =
[
r [k]t
α
[k]
t

]
= h

(
xt , x

[k]
o

)
+ v, v ∼ N (0, R) (8)

h
(
xt , x

[k]
o

)
�

⎡
⎢⎣

√(
x[k,1]o − x[1]t

)2 +
(
x[k,2]o − x[2]t

)2
arctan

(
x[k,2]o − x[2]t , x[k,1]o − x[1]t

)
− x[3]t

⎤
⎥⎦
(9)

where r [k]
t is the range measurement from the k-th sensor

beam and α
[k]
t is the corresponding angle of r [k]

t . The obser-
vation model noise v is assumed to be Gaussian with zero
mean and covariance R. To find x[k]

o which is in the map
space, the inverse model can be calculated as

x[k]
o = x[1:2]

t + r [k]
t R

(
x[3]
t

) ⎡
⎣cos

(
α

[k]
t

)
sin

(
α

[k]
t

)
⎤
⎦ (10)

where R
(
x[3]
t

)
∈ SO(2) indicates a 2 × 2 rotation matrix.

Having defined the observed occupied points in the map
space, now we can construct the training set of occupied
points as Do = {(x[k]

o , y[k]
o ) | k = 1 : nz}. One simple way

to build the free area training points is to uniformly sample
along the line segment, l[k]z , with the robot position and any
occupied point x[k]

o as its end points. Therefore,

X [k, j]
f = x[1:2]

t + δ j R
(
x[3]
t

)⎡
⎣cos

(
α

[k]
t

)
sin

(
α

[k]
t

)
⎤
⎦ (11)

where δ j ∼ U(0, r [k]
t ) j = 1 : n[k]

f , U(0, r [k]
t ) is a uniform

distribution with the support [0, r [k]
t ] and n[k]

f is the desired

number of samples for the k-th sensor beam. n[k]
f can be a

fixed value for all the beams or variable, e.g. a function of the
line segment length ‖l[k]z ‖ = r [k]

t . In the case of a variable
number of points for each beam, it is useful to set a minimum
value n f min . Therefore we can write

n[k]
f � max

({
n f min, sl

(
r [k]
t

)})
(12)

where sl(·) is a function that adaptively generates a number
of sampled points based on the input distance. Thisminimum
value controls the sparsity of the training set of unoccupied
points. Alternatively, we can select a number of equidistant
points instead of sampling. However, as the number of train-
ing points increases, the computational time grows cubicly.
We can construct the training set of unoccupied points as

D f = ⋃nz
i=1D[i]

f where D[i]
f =

{(
X [k]

f , y[k]
f

)
| k = 1 : nz

}

and y[k]
f = vec

(
y[1]
f , . . . , y

[n[k]
f ]

f

)
.

Remark 1 Generally speaking, query points can have any
desired distributions and the actual representation of the
map depends on that distribution. However, building the map
over a grid facilitates comparison with standard occupancy
grid-based methods, i.e. at similar map resolutions. We use
function TestDataWindow, in Algorithms 1 and 4, for
generating a grid at a given position. The size of this grid
can be set according to the maximum sensor range, the envi-
ronment size, or available computational resources for data
processing.

Remark 2 Throughout all algorithms, when we write m for
a map, it is assumed that the mean μ, the variance σ , the
occupancy probability p(m), and the corresponding spatial
coordinates are available even if they are not mentioned or
used explicitly. For simplicity, when m is used for computa-
tions such as in log(p(m)), we write log(m).

3.4 Map management

An important advantage of amappingmethod is its capability
to use past information appropriately. The mapping module
returns local maps centered at the robot pose. Therefore, in
order to keep track of the globalmap, amapmanagement step
is required where the local inferred map can be fused with
the current global map. This incremental approach allows
for handling larger map sizes, and map inference at the local
level is independent of the global map.

To incorporate new information incrementally, map
updates are performed using BCM. The technique com-
bines estimators which were trained on different data sets.
Assuming a Gaussian prior with zero mean and covari-
ance Σ and each GP with mean E[ f∗|D[i]] and covariance
Cov [ f∗|D]−1, it follows that (Tresp 2000)

E[ f∗|D] = C−1
pm∑
i=1

Cov
[
f∗|D[i]]−1

E[ f∗|D[i]] (13)

C = Cov [ f∗|D]−1

= − (pm − 1)Σ−1 +
pm∑
i=1

Cov
[
f∗|D[i]]−1

(14)

where pm is the total number of mapping processes. In this
work, we use BCM for combining a local and a previously
existing global map, or merging two global maps; therefore
pm = 2. In addition, in the case of uninformative prior over
map points the term Σ−1 can be set to zero, i.e. very large
covariances/variances.

The steps of the incremental GPOM (I-GPOM) are shown
in Fig. 2 and Algorithms 1, 2, and 3, where a BCM mod-
ule updates the global map as new observations are taken.
In Fig. 4 a comparison of the incremental (I-GPOM) and
batch (GPOM) GP occupancy mapping using the Intel
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Algorithm 1 IGPOM()
Require: Robot pose p and measurements z;
1: if firstFrame then
2: m ← ∅ // Initialize the map
3: optimize GP hyperparameters θ // Minimize the NLML, Equa-

tion (5)
4: end if
5: X∗ ← TestDataWindow( p) // Query points grid centered at the

robot pose
6: Xo, yo ← Transform2Global( p, z) // Occupied training data,

label +1, Equation (10)
7: X f , y f ← TrainingData( p, z) // Unoccupied training data,

label −1, Equation (11)
8: [μ∗, σ ∗] ← GP(θ , [Xo; X f ], [ yo; y f ], X∗) // Compute predictive

mean and variance, Equation (2) and (3)
9: m ← UpdateMap(μ∗, σ ∗,m) // Algorithm 3
10: return m

Algorithm 2 FusionBCM(μa, μb, σa, σb)

1: σc ← (σ−1
a + σ−1

b )−1 // Point-wise calculation of Equation (14)
2: μc ← σc(σ

−1
a μa + σ−1

b μb) // Point-wise calculation of Equa-
tion (13)

3: return μc, σc

Algorithm 3 UpdateMap()
Require: Global map m, μ, σ and local map m∗, μ∗, σ ∗;
1: for all i ∈ M∗ do
2: j ← find the corresponding global index of i using the map

spatial coordinates and a nearest neighbor search
3: μ[ j], σ [ j] ← FusionBCM(μ[ j],μ[i]∗ , σ [ j], σ [i]∗ ) // Algorithm 2
4: end for
5: m ← LogisticRegression(μ, σ ) // Squash data into (0,1)
6: return m

dataset (Howard andRoy 2003)with respect to the area under
the receiver operating characteristic curve (AUC) and run-
time is presented. The probability that the classifier ranks a
randomly chosen positive instance higher than a randomly
chosen negative instance can be understood using the AUC
of the classifier; furthermore, the AUC is useful for domains
with skewed class distribution and unequal classification
error costs (Fawcett 2006). Without loss of generality, a set
of 25 laser scans, where each scan contains about 180 points,
had to be set due to the memory limitation imposed by the
batch GP computations with a growing gap between suc-
cessive laser scans from 1 to 29. The proposed incremental
mapping approachusingBCMperforms accurate and close to
the batch form even with about 8 steps intermission between
successive observations and is faster.

Optimization of the hyper-parameters is performed once
at the beginning of each experiment by minimization of the
negative log of the marginal likelihood function. For the pre-
vailing case of multiple runs in the same environment, the
optimized values can then be loaded off-line.

Fig. 4 Comparison of I-GPOM and batch GPOM methods using the
Intel dataset with the observations size of 25 laser scans at each step due
to the memory limitation for the batch GP computations. The top plot
shows the AUC and the bottom plot depicts the runtime for each step.
The horizontal axes indicate observations gaps. As the number of gaps
grows, the batch GP outperforms the incremental method as it learns the
correlation between observations at once; however, with higher com-
putational time. On the other hand, the incremental method in nearly
constant time per update produces a similar average map quality with
the mean difference of 0.0078

3.5 I-GPOM2; an improved mapping strategy

Inferring a high quality map compatible with the actual
shape of the environment can be non-trivial (see Figure 9 in
O’Callaghan andRamos (2012) and Figure 3 inKimandKim
(2013a)). Although considering correlations of map points
through regression results in handling sparse measurements,
training a unique GP for both occupied and free areas has
two major challenges:

– It limits the selection of an appropriate kernel that suits
both occupied and unoccupied regions of the map, effec-
tively resulting in poorly extrapolated obstacles or low
quality free areas.

– Most importantly, it leads to a mixed variance sur-
face. In other words, it is not possible to disambiguate
between boundaries of occupied-unknown and free-
unknown space, unless the continuousmap is thresholded
(see Figure 6 in O’Callaghan and Ramos (2012)).

The first problem is directly related to the inferred map
quality, while the second is a challenge for exploration using
continuous occupancy maps. The integral kernel approach
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Fig. 5 Occupancy maps visualization; from left to right: OGM,
I-GPOM, I-GPOM2. The maps are build incrementally using all obser-
vations available in the Intel dataset. For the I-GPOM and I-GPOM2
maps the Matérn (ν = 3/2) covariance function is used. I-GPOM and
I-GPOM2 can complete partially observable areas, i.e. incomplete areas

in the OGM; however, using two GPs in I-GPOM2 method produces
more accurate maps for navigation purposes. The SLAM problem is
solved by using the Pose SLAMalgorithm and themap qualities depend
on the robot localization accuracy

Table 1 Comparison of the AUC and runtime for OGM, I-GPOM, and
I-GPOM2 using the Intel dataset

Method AUC Runtime (min)

OGM 0.9300 7.28

I-GPOM 0.9439 102.44

I-GPOM2 0.9668 114.53

(O’Callaghan and Ramos 2011) can mitigate the first afore-
mentioned deficiency, however, the integration over GPs
kernels is computationally demanding and results in less
tractablemethods. In order to address these problemswe pro-
pose training two separate GPs, one for free areas and one for
obstacles, andmerge them to build a unique continuous occu-
pancy map (I-GPOM2). The complete results of occupancy
mapping with the three different methods in the Intel dataset
are presented in Fig. 5, while the AUCs are compared in
Table 1. The I-GPOM2 method demonstrates more flexibil-
ity to model the cluttered rooms and has higher performance
than the other methods. The ground truth map was generated
using the registered points map and an image dilation tech-
nique to remove outliers. In this way, the ground truth map
has the same orientation which makes the comparison con-
venient. GPOM-basedmaps infer partially observed regions;
however, in the absence of a complete ground truth map, this
fact can be only verified using Fig. 5 and is not reflected in the
AUC of I-GPOM and I-GPOM2. Algorithms 4 and 5 encap-
sulate the I-GPOM2 methods as implemented in the present
work.

3.6 Frontier map

Constructing a frontier map is the fundamental ingredient
of any geometry-based exploration approach. It reveals the

boundaries between known-free and unknown areas which
are potentially informative regions for map expansion. In
contrast to the classical binary representation, defining fron-
tiers in a probabilistic form using map uncertainty is more
suitable for computing expected behaviors. The boundaries
that correspond to frontiers can be computed using the fol-
lowing heuristic formula.

f̄ [i] � ‖∇ p
(
m[i])‖1−β

(
‖∇ p

(
m[i]

o

)
‖1+ p

(
m[i]

o

)
− 0.5

)
(15)

where ∇ denotes the gradient operator, and β is a factor
that controls the effect of obstacle boundaries. ‖∇ p(m[i])‖1
indicates all boundaries while ‖∇ p(m[i]

o )‖1 defines obsta-
cle outlines. The subtracted constant is to remove the biased
probability for unknown areas in the obstacles probability
map.

The frontier surface is converted to a probability frontier
map through the incorporation of the map uncertainty. To
squash the frontier and variance values into the range (0, 1),
a logistic regression classifier with inputs from f̄ [i] and map
uncertainty σ [i] is applied to data which yields

p
(
f [i]|m[i], w[i]

f

)
= 1

1 + exp
(
−w

[i]
f f̄ [i]

) (16)

where w
[i]
f = γ f

√
λ[i] denotes the required weights, λ[i] �

σmin/σ
[i] is the bounded information associated with loca-

tion i , and γ f > 0 is a constant to control the sigmoid shape.
The details of the frontier map computations are presented
in Algorithm 6. Figure 6 (middle) depicts an instance of the
frontier map from an exploration experiment in the Cave
environment (Howard and Roy 2003).
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Algorithm 4 IGPOM2()
Require: Robot pose p and measurements z;
1: if firstFrame then
2: m,mo,m f ← ∅ // Initialize the map
3: optimize GP hyperparameters θo, θ f // Minimize the NLML,

Equation (5)
4: end if
5: X∗ ← TestDataWindow( p) // Query points grid centered at the

robot pose
6: Xo, yo ← Transform2Global( p, z) // Occupied training data,

label +1, Equation (10)
7: X f , y f ← TrainingData( p, z) // Unoccupied training data,

label −1, Equation (11)
8: [μo∗, σ o∗] ← GP(θo, Xo, yo, X∗) // Compute occupied map pre-

dictive mean and variance, Equation (2) and (3)
9: [μ f ∗, σ f ∗] ← GP(θ f , X f , y f , X∗) // Compute unoccupied map

predictive mean and variance using (2) and (3)
10: mo ← UpdateMap(μo∗, σ o∗,mo) // Algorithm 3
11: m f ← UpdateMap(μ f ∗, σ f ∗,m f )

12: m ← MergeMap(mo,m f ) // Algorithm 5
13: return m,mo

Algorithm 5 MergeMap()
Require: Unoccupied mapm f ,μ f , σ f and occupied mapmo,μo, σ o;
1: for all i ∈ M do
2: μ[i], σ [i] ← FusionBCM(μ

[i]
o ,μ

[i]
f , σ

[i]
o , σ

[i]
f ) // Algorithm 2

3: end for
4: m ← LogisticRegression(μ, σ ) // Squash data into (0,1)
5: return m

In practice, the following steps are required to use the
frontier map and check the termination condition:

1. The probabilistic frontier map is converted to a binary
map using a pre-defined threshold. Note that any point
with a probability higher than 0.5 is potentially a valid
frontier.

Algorithm 6 BuildFrontierMap()
Require: Current map m, σ and occupied map mo, σ o;
1: // Compute boundaries
2: dm ← ‖∇ p(m)‖1, dmo ← ‖∇ p(mo)‖1
3: σmin ← min(σ )

4: f ← ∅

5: // Compute probabilistic frontiers
6: for all i ∈ M do
7: f̄ [i] ← dm[i] − β(dm[i]

o + m[i]
o − 0.5)

8: w
[i]
f ← γ f sqrt(σmin/σ

[i]) // Logistic regression weights

9: f [i] ← (1 + exp(−w
[i]
f f̄ [i]))−1 // Squash data into (0,1), Equa-

tion (16)
10: end for
11: return f

2. The binary map of frontiers is clustered into subsets of
candidate macro-actions.

3. The centroids of clusters construct a discrete action set at
time-step t , i.e.At , that is used in the utilitymaximization
step.

4. The robot plans a path to each centroid (macro-action) to
check its reachability. A centroid that is not reachable is
then removed from the action set.

5. The exploration mission continues until the action setAt

is not empty (repeats from step 1).

3.7 Computational complexity

For themapping algorithms, the computational cost of GPs is
O(n3t ), given the need to invert a matrix of the size of training
data, nt = no + n f . BCM scales linearly with the number of
map points, nm . The overall map update operation involves a
nearest neighbor query for each test point, nq , and the logistic
regression classifier is at worst linear in the number of map
points resulting in O(n3t + nq log nq + nm).

Fig. 6 Inferred continuous occupancy map (left); associated proba-
bilistic frontier map (middle); and mutual information surface (right,
discussed in Sect. 4.1). The frontier map highlights the informative
regions for further exploration by assigning higher probabilities to fron-
tier points. The lower probabilities show the obstacles and walls while

the values greater than the no discrimination probability, 0.5, can be
considered as frontiers. In the MI surface, the areas beyond the current
perception field of the robot preserve their initial entropy values and the
higher values demonstrate regions with greater information gain. The
map dimensions are in meters and the MI values in nats
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Amore sophisticated approximation approach can reduce
the computational complexity further. The fully independent
training conditional (FITC) (Snelson and Ghahramani 2006)
based on inducing conditionals suggests an O(ntn2i ) upper
bound where ni is the number of inducing points. More
recently, in Hensman et al. (2013), the GP computation upper
bound is reduced to O(n3i ) which brings more flexibility in
increasing the number of inducing points.

4 Exploration

In the context of autonomous robotic mapping, typically, the
main goal is map completion while maintaining the local-
ization accuracy at a reasonable level.1 Let at be an action
from the set of all possible actions At at time t . The goal
is to choose the action that optimizes the desired objective
function. In the following, we define themost common utility
functions for the single robot exploration case.
Nearest frontier The nearest frontier policy drives the robot
towards the closest frontier to its current pose. Geometric
frontiers can be extracted from the occupancy map (Kei-
dar and Kaminka 2013). For the GPOM technique, we use
the probabilistic frontier map. Let Ft be the finite set of all
detected frontiers at time t . Let the action at be the planned
path from the current robot pose to the frontier ft . The cost
function, fc : At → R≥0, is the length of the path from the
current robot pose to the corresponding frontier. Therefore,

a�
t = argmin

at∈At

fc(at ) (17)

In practice, frontier cells/points are clustered, and only those
with the size above a threshold are valid. The centroid of each
cluster is considered as the target point for path planning.

Remark 3 In general, the path length can be seen as the line
integral of the curve with the current robot pose and the fron-
tier as its end points. Thus, one can define a scalar field over
themap and calculate the cost as the line integral of the scalar
field using a Riemann sum. In (17) the integrand is simply 1.

Information gain Let f I (at ), f I : At → R≥0, be a function
that quantifies the information quality of action at . To find
the action that maximizes the information gain-based utility
function, the problem can be written as

a�
t = argmax

at∈At

f I (at ) (18)

In other words, the robot takes the action that leads to the
maximum return of information. However, as it is evident

1 The required localization accuracy is subject to the specific applica-
tion.

from (18) the cost of taking that action is not included in the
utility function.
Cost-utility trade-off The third approach is based on the
idea of a trade-off between the cost and utility of an action,
i.e. the payoff. The total utility function can be constructed by
combination of (17) and (18). The primary problem is that the
units of utility/cost functions are different. One solution is to
express the cost in the form of information loss (uncertainty).
Another approach is to combine themusing appropriate coef-
ficients, e.g. a linear combination of the utility and cost
functions. Let g : R

2≥0 → R≥0 be a function that takes fc(at )
and f I (at ) as its input arguments. The problem of maximiz-
ing the total utility function, u(at ) � g( f I (at ), fc(at )), can
then be defined as follows.

a�
t = argmax

at∈At

u(at ) (19)

4.1 Mutual information algorithm

MI is the reduction in uncertainty of a random variable due to
the knowledgeof another randomvariableCover andThomas
(1991). In other words, given a measurement Z = z from Z
what will be the reduction in the map M = m uncertainty?
TheMI between themap and the futuremeasurement Zt+1 =
ẑ is

I (M; Zt+1|z1:t )

=
∫
ẑ∈Z

∑
m∈M

p
(
m, ẑ|z1:t

)
log

p
(
m, ẑ|z1:t

)
p (m|z1:t ) p

(
ẑ|z1:t

)d ẑ
= H (M |z1:t ) − H (M |Zt+1, z1:t ) (20)

where H(M |z1:t ) and H(M |Zt+1, z1:t ) are map and map
conditional entropy respectively, which by definition are

H (M |z1:t ) = −
∑
m∈M

p (m|z1:t ) log p (m|z1:t ) (21)

H (M |Zt+1, z1:t )

=
∫
ẑ∈Z

p
(
ẑ|z1:t

)
H

(
M |Zt+1 = ẑ, z1:t

)
d ẑ (22)

To compute the map conditional entropy, the predicted map
posterior given the new measurement Zt+1 = ẑt+1 is
required.TheBayesian inferencefinds theposterior probabil-
ity for each map pointm[i] and k-th beam of the range-finder
as

p
(
m[i]| ẑ[k]t+1, z1:t

)
=

p
(
ẑ[k]t+1|m[i]

)
p

(
m[i]|z1:t

)
p

(
ẑ[k]t+1|z1:t

) (23)
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Algorithm 7 BuildMIMap()
Require: Robot pose or desired location, current map estimate m,

numerical integration resolution sz , sensor model;
1: m̄ ← m
2: // Initialize MI map using current map entropy
3: I ← −(m log(m) + (1 − m) log(1 − m))

4: for all k do // Loop over all sensor beams
5: Compute ẑ[k]t+1 and I[k]

t+1 using ray casting in m
6: // Calculate map conditional entropy along beam k
7: for i ∈ I[k]

t+1 do
8: h̄ ← 0 // Initialize map conditional entropy
9: z ← s−1

z // Initialize range dummy variable

10: while z ≤ ẑ[k]t+1 do
11: // Calculate marginal measurement probability pz , Equa-

tion (24)
12: p1 ← p(z|M = 0)
13: p2 ← 0
14: for j ∈ I[k]

t+1 do
15: p1 ← p1(1 − m[ j])
16: p2 ← p2+

p(z|M = m[ j])m[ j] ∏
l< j

(1 − m[l])

17: end for
18: pz ← p1 + p2
19: // Map prediction at point i along beam k

20: m̄[i] ← p−1
z p(z|M = m[i]) m[i] ∏

l<i

(1 − m[l])

21: h̄ ← h̄+
pz[m̄[i] log(m̄[i]) + (1 − m̄[i]) log(1 − m̄[i])]

22: z ← z + s−1
z // Increase range along the beam

23: end while
24: I [i] ← I [i] + h̄s−1

z // Equation (25)
25: end for
26: end for
27: return I

p
(
ẑ[k]t+1|z1:t

)
=

∑
m[i]∈M

p
(
ẑ[k]t+1|m[i]) p

(
m[i]|z1:t

)

(24)

The likelihood function p( ẑ[k]t+1|M = m[i]) is a beam-based

mixturemeasurementmodel,where the term p( ẑ[k]t+1|M = 0)
can be interpreted as the likelihood of not observing the
map point at location i , i.e. uniform distribution. The term
p( ẑ[k]t+1|z1:t ) is the marginal distribution over measurements.
By numerically integrating over a desired beam range, we
can compute the predictedmap posterior entropy usingEqua-
tion (22). Note that the conditional entropy does not depend
on the realization of futuremeasurements, but it is an average
over them.

Let I[k]
t+1 be the index set of map points that are in the

perception field of the k-th sensor beam at time t + 1. At any
robot location, ∀i ∈ I[k]

t+1, the MI can be written as

I [i] = h
(
m[i]) − h

(
m[i]) (25)

where h(m[i]) is the current entropy of themap pointm[i] and
h(m[i]) is the estimated map conditional entropy. In practice,
at each time-step, the map is initialized with the current map
entropy, H(M |z1:t ), and for all map points inside the current
perceptionfield the estimatedmap conditional entropy is sub-
tracted from corresponding initial values. In Algorithm 7, the
implementation of the MI map is given where sz denotes the
numerical resolution of integration. In Fig. 6, an estimated
MI map during an exploration experiments in the Cave envi-
ronment (Howard and Roy 2003) is depicted.
Computational complexity For MI surface, the time com-
plexity is at worst quadratic in the number of map points in
the current perception field of the robot, n p = |⋃nz

k=1 I[k]
t+1|,

and linear in the number of sensor beams, nz , and numerical
integration’s resolution, sz , resulting in O(n2pnzsz).

4.2 Decision making

Let each geometric frontier be regarded as a macro-action.
The action space can thus be defined as At = {a[ j]

t }naj=1. We
define the utility function as the difference between the total
expected information gain predicted at the macro-action at ,
f I (at ), and the corresponding path length from the current
robot pose to the same macro-action, fc(at ), as follows

f I (at ) �
nz∑
k=1

∑
i∈I[k]

I [i](at ) (26)

u(at ) � α f I (at ) − fc(at ) (27)

where α is a factor to relate information gain to the cost of
motion. Note that the expectation over future measurements
and path lengths is already incorporated into the information
and cost functions.

The optimal action a�
t directs the robot towards the frontier

with the best balance between information gain and travel
cost. This greedy action selection is similar to what is known
as next-best view planning in the literature (González-Banos
and Latombe 2002; Surmann et al. 2003).

4.3 Map regeneration

Loop closure duringSLAMcan change themap significantly.
To account for such changes, we reset and learn the occu-
pancy map with all the available data again. To be able to
efficiently detect such a drift in the GPOM we measure the
Jensen–Shannon divergence (JSD) (Lin 1991). The gener-
alized JSD for n probability, p1, p2, . . . , pn , with weights
π1, π2, . . . , πn is

J Sπ (p1, p2, . . . , pn) = H

(
n∑

i=1

πi pi

)
−

n∑
i=1

πi H(pi ) (28)
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Table 2 The compared
exploration methods and their
corresponding attributes

NF OGMI GPNF GPMI

SLAM Pose SLAM Pose SLAM Pose SLAM Pose SLAM

Mapping OGM OGM I-GPOM2 I-GPOM2

Frontiers Binary Binary Probabilistic Probabilistic

Utility Path length MI + path length Path length MI + path length

Planner A∗ A∗ A∗ A∗

where H(·) is the Shannon entropy function and p(xi ) is the
probability associated with variable xi . All weights are set
uniformly as all points are equal.

Alternatively, cumulative relative entropy by summing the
computed Jensen–Shannon entropy in each iteration shows
map drifts over a period and contains the history of map
variations. Consequently, themethod is less sensitive to small
sudden changes.

Remark 4 The main advantage of JSD over Kullback–
Leibler divergence, in this case, is that JSD is bounded. As a
result, it is more suitable for decision making (Lin 1991).

5 Results and discussion

We now present results using two publicly available datasets
(Howard and Roy 2003). In the first scenario, we use the
Intel research lab. map which is a highly structured indoor
environment. The second scenario is based on the University
of Freiburg campus area. The second map is almost ten times
larger than the Intel map and is an example of a large-scale
environment with open areas.

The experiments include comparison among the original
nearest frontier (NF) (Yamauchi 1997), MI-based explo-
ration using OGM (OGMI), the natural extension of NF
with a GPOM representation (GPNF) (Ghaffari Jadidi et al.
2014a), and the proposed MI-based (GPMI) exploration
approaches. NF and OGMI results are computed using
OGMs while for the GPOM-based methods the I-GPOM2
representation and the probabilistic frontier map proposed in
this work are employed. For all the techniques, we use the A∗
algorithm to find the shortest path from the robot position to
any frontier. The path cost is calculated using the Euclidean
distance between map points. Details about the compared
methods are described in Table 2.

5.1 Experimental setup

The environment is constructed using a binary map of obsta-
cles and, for the Intel map, is shown in Fig. 7. The simulated
robot is equipped with odometric and laser range-finder sen-
sors to provide the required sensory inputs for Pose SLAM.
The odometric and laser range-finder sensors noise covari-

Fig. 7 The constructed environment for exploration experiments using
the binary map of obstacles from the Intel dataset

ances are set to Σu = diag(0.1, 0.1 m, 0.0026 rad)2 and
Σ y = diag(0.03, 0.03 m, 0.0013 rad)2, respectively. The
motion of the robot is modeled using a velocity motion
model (Thrun et al. 2005, Chapter 5) and a proportional con-
trol law for following a planned trajectory. Laser beams are
simulated through ray-castingoperationover the ground truth
map using the true robot pose. In all the presented results,
Pose SLAM (Ila et al. 2010) is included as the backbone to
provide localization data together with the number of closed
loops. Additionally, for each map, Pose SLAM parameters
are set and fixed regardless of the exploration method.

The localization root mean-squared error (RMSE) is com-
puted at the end of each experiment by the difference in the
robot traveled path (estimated and ground truth poses) to
highlight the effect of each exploration approach on the local-
ization accuracy. The required parameters for the beam-based
mixture measurement model (Thrun et al. 2005), frontier
maps, and MI maps computations are listed in Table 3. The
sensitivity of the parameters in Table 3 is not high and slight
variations of them (∼ 10%) do not affect the presented
results.

The implementation has been developed in MATLAB
and GP computations have been implemented by modify-
ing the open source GP library in Rasmussen and Williams
(2006). As described in Sect. 4.3, during exploration, map
drifts occur due to loop-closure in the SLAM process.
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Table 3 Parameters for frontier and MI maps computations

Parameter Symbol Value

1. Beam-based mixture measurement model

Hit std σhit 0.03m

Short decay λshort 0.2m

Max range and size of
TestDataWindow

rmax

– Intel map 14.0 m

– Freiburg map 60.0 m

Hit weight zhit 0.7

Short weight zshort 0.1

Max weight zmax 0.1

Random weight zrand 0.1

2. Frontier map

Occupied boundaries factor β 3.0

Logistic regression weight γ 10.0

Frontier probability threshold –

– Intel map 0.6

– Freiburg map 0.55

Frontier cluster size –

– Intel map 14

– Freiburg map 3

Number of clusters –

– Intel map 20

– Freiburg map 5

3. MI map and utility function

No. of sensor beams over
360 deg

nz 133

Max range rmax

– Intel map 4.0 m

– Freiburg map 60.0 m

Numerical integration resolution sz

– Intel map 10/3m−1

– Freiburg map 1 m−1

Information gain factor α

– Intel map 0.1

– Freiburg map 0.5

Occupied probability threshold po 0.65

Unoccupied probability
threshold

p f

– Intel map 0.35

– Freiburg map 0.4

Note that the employedmaximum sensor range and themaximum range
used in the MI algorithm for prediction do not need to be the same

As it is computationally expensive to process all measure-
ments from scratch at each iteration, a mechanism has been
adopted to address the problem. The cumulative relative
entropy by summing the computed JSD can detect such map
drifts.

Each technique is evaluated based on six different cri-
teria, namely, travel distance, mapping and planning time,
map entropy rate (MER), AUC of the GP occupancy map
calculated at the end of each experiment using all avail-
able observations, localization RMSE, and the number of
closed loops (NCL). The map entropy at any time-step can
be computed using (21). The map entropy calculation can
become independent of the map resolution following the
idea in Stachniss et al. (2005); that is the cell area, i.e. the
squared of the map resolution, weights each entropy term.
To see the performance of decision-making across the entire
an experiment, the MER is then computed at the end of each
experiment using the difference between final and initial map
entropies divided by the number of exploration steps. Note
that none of the compared exploration strategies explicitly
plans for loop-closing actions. For each dataset, the results
are from 10 independent runs using the same setup and
parameters.

5.2 Exploration results in the Intel map

An example of the exploration results using GPMI is shown
in Figs. 8 and 9. The statistical summary of the results are
depicted in Fig. 10. The most significant part of the results
is related to the map entropy rate in which a negative value
means the map entropy has been reduced at each step. In
the nearest frontier techniques there is no prediction step
regarding map entropy reduction; therefore, the results are
purely based on chance and structural shape of the environ-
ment. OGMI shows marginal improvements over NF with
roughly similar computational times for the exploration mis-
sion. Thus, it is the preferred technique in comparison with
NF.

GPNF and GPMI exploit I-GPOM2 for mapping, explo-
ration, and planning.GP-basedmethods handle sparse sensor
measurements by learning the structural dependencies (spa-
tial correlations) present in the environment. The significant
increase in themap entropy rate is due to this fact. The results
from GPMI show higher travel distance and a higher number
of closed loops which can be understood from the fact that
information gain in the utility function drives the robot to
possibly further but more informative targets. As this behav-
ior does not show any undesirable effect on the localization
accuracy, it can be concluded that it performs better than the
other techniques; however with a higher computational time.
The information gain calculation could be sped up by using
CSQMI due to its similar behavior to MI (Charrow et al.
2015). Under the GPMI scheme, the robot chooses macro-
actions that balance the cost of traveling and MI between the
map and future measurements. Although the utility function
does not include the localization uncertainty explicitly, the
correlation between robot poses and themaphelps to improve
the localization accuracy.
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Fig. 8 MI-based exploration in the Intel map derived from the Intel
dataset. a I-GPOM2, b the equivalent OGM computed at the end of
the experiment, c corresponding entropy map of the GPOM (nats). The
sparse observations due to the occluded perception field in a complex

environment such as the Intel map signifies the capabilities of OGM
and GPOMmethods to cope with such limitations. Map dimensions are
in meters, and the maps are built with the resolution 0.135 m

Fig. 9 Pose SLAM map of the MI-based exploration in the Intel map
derived from the Intel dataset. Dotted (red) curves are the robot path
and connecting lines (green) indicate loop-closures. Map dimensions
are in meters. The starting robot position is at (18, 26), horizontally and
vertically, respectively, and the robot terminates the explorationmission
at the most bottom right room (Color figure online)

5.3 Outdoor scenario: Freiburg campus

In the second scenario, the map is an outdoor area with a
larger size (almost ten times). Figure 11 shows the satellite
map of the area as well as the trajectory that the robot was
driven for data collection. Similar to the first experiment, a
binary map of the dataset is constructed and used for explo-
ration experiments. The statistical summary of the results
is shown in Fig. 12. To maintain the computational time
manageable, the occupancy maps are built with the coarse
resolution of 1 m.

Fig. 10 The box plots show comparison of different exploration strate-
gies in the Intel dataset from10 independent runs. The compared criteria
are travel distance (m), time (min), map entropy rate (nats/step), the
mapping performance using the area under the receiving operating
characteristic curve, localization root mean-squared error (m), and the
number of closed loops by Pose SLAM

Overall, the trend is similar to the previous test, and specif-
ically, themap entropy rate plot shows a significant difference
between GPMI and the other techniques. Again, this sig-
nificant map entropy rate improvement has been achieved
without any undesirable effects on the localization accu-
racy. The sharpness of the localization error distribution can
be seen as the reliability and repeatability characteristic of
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Fig. 11 The left picture shows the satellitemap of the FreiburgUniver-
sity Campus where the yellow dashed line indicate the robot trajectory.
The middle figure shows the corresponding occupancy map of the

dataset (Howard and Roy 2003). The right figure shows the corre-
sponding binary map of obstacles used for exploration experiments.
Map dimensions are in meters (Color figure online)

Fig. 12 The box plots show comparison of different exploration strate-
gies in the Freiburg campus dataset from 10 independent runs. The
compared criteria are travel distance (m), time (min), map entropy rate
(nats/step), the mapping performance using the area under the receiv-
ing operating characteristic curve, localization root mean-squared error
(m), and the number of closed loops by Pose SLAM

GPMI. Since this map has large open areas relative to the
robot’s sensing range, it is highly unlikely that the robot
closes loops by chance. For the GPMI, the number of closed
loops has a higher median which supports the idea of implicit
loop-closing actions due to the correlations between the map
and the robot pose. However, the NCL distribution has wider
tails which does not support its repeatability. The exploration
times in this environment is less than those of the previous
experiment in the Intel map. We associate the faster map

Fig. 13 Illustrative examples of exploration in the Freiburg Campus
map. The top left and right, and the bottom left and right figures show
the results for NF, OGMI, GPNF, and GPMI, respectively

exploration results with the combination of the difference
in map resolutions and the open shape of the Freiburg cam-
pus map. In contrast, the Intel map is highly structured with
narrow hallways and small rooms which require a finer map
resolution leading to a higher number of query points. Fur-
thermore, in the Intel map, unlike the Freiburg campus map,
a larger maximum range does not help the robot to explore
the map faster due to the occlusion problem.

Figure 13 shows the results from an exploration run in
Freiburg campus map using NF, OGMI, GPNF, and GPMI.
The robot behavior is distinguishable in all four maps. In
NF case, the robot tends to travel to every corner in the map
to complete the partially observable parts of the map. This
behavior leads to trajectories along the boundaries of themap.
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In OGMI, the prediction of the information gain reduces this
effect. However, the OGM requires a higher number of mea-
surements to cover an area; therefore, the robot still needs
to travel to the corners. In GPNF case, this effect has been
alleviated since the the continuous mapping algorithm can
deal with sparse measurements. However, in GPMI case, the
robot behaves completely different as by taking the expec-
tation over future measurements (calculating MI) the robot
does not act based on the current map uncertainty minimiza-
tion, but improving the future map state in expectation.

6 Conclusion and future work

We studied the problem of autonomous mapping and explo-
ration for a range-sensing mobile robot using Gaussian
processes maps. The continuity of GPOMs is exploited for a
novel representation of geometric frontiers, and we showed
that the GP-based mapping and exploration techniques are a
competitor for traditional occupancy grid-based techniques.
The primary motivations stemmed from the fact that high-
dimensional map inference requires fewer observations to
infer the map, leading to a faster map entropy reduction.
The proposed exploration strategy is based on learning spa-
tial correlations of map points using incremental GP-based
regression from sparse range measurements and computing
mutual information from the map posterior and conditional
entropy. We presented results for two exploration scenarios
including a highly structured indoor map as well as a large-
scale outdoor area.

When accurate sensors with large coverage relative to the
environment are available, existing SLAM techniques can
produce reliable localization without the need for an active
loop-closure detection. MI-based utility function proposed
in this work is suitable for decision making in such scenar-
ios. The more general form of this problem known as active
SLAM requires an active search for loop-closures to reduce
pose uncertainties. However, the expansion of the state space
to both the robot pose and map results in a computationally
expensive prediction problem.

Extensions of this work include development of the plan-
ning algorithmswith longer horizons aswell as incorporating
the robot pose uncertainty into the mapping and decision-
making frameworks (Ghaffari Jadidi et al. 2016, 2017).
Furthermore, as analyzed and discussed in Sect. 3.7, develop-
ment of computationally more attractive GPOM algorithms
remains as an interesting future direction.
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