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Abstract In this paper we present a novel information-
theoretic utility function for selecting actions in a robot-
based autonomous exploration task. The robot’s goal in
an autonomous exploration task is to create a complete,
high-quality map of an unknown environment as quickly as
possible. This implicitly requires the robot to maintain an
accurate estimate of its pose as it explores both unknown
and previously observed terrain in order to correctly incor-
porate new information into the map. Our utility function
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simultaneously considers uncertainty in both the robot pose
and the map in a novel way and is computed as the dif-
ference between the Shannon and the Rényi entropy of the
current distribution over maps. Rényi’s entropy is a family of
functions parameterized by a scalar, with Shannon’s entropy
being the limit as this scalar approaches unity. We link the
value of this scalar parameter to the predicted future uncer-
tainty in the robot’s pose after taking an exploratory action.
This effectively decreases the expected information gain of
the action, with higher uncertainty in the robot’s pose lead-
ing to a smaller expected information gain. Our objective
function allows the robot to automatically trade off between
exploration and exploitation in a way that does not require
manually tuning parameter values, a significant advantage
over many competing methods that only use Shannon’s defi-
nition of entropy. We use simulated experiments to compare
the performance of our proposed utility function to these
state-of-the-art utility functions.We show that robots that use
our proposed utility function generate maps with less uncer-
tainty and fewer visible artifacts and that the robots have
less uncertainty in their pose during exploration. Finally, we
demonstrate that a real-world robot using our proposed util-
ity function is able to successfully create a high-quality map
of an indoor office environment.
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1 Introduction

Autonomous exploration using mobile robots is a high-level
task that is required for many real robotic applications such
as search and rescue (Dames and Kumar 2013), environ-
mental modeling (Hollinger et al. 2011), and archaeological
reconstruction (Eustice et al. 2006). Themain purpose of per-
forming robot-based autonomous exploration is to acquire
the most complete and accurate map of an environment in a
finite time. This task can be divided into three general steps:

1. The robot identifies areas to visit in its current estimate
of the map and plans actions to visit each location.

2. The robot computes the utility of each candidate action
and selects the action with the highest utility.

3. The robot carries out the selected action.

After completing an action, the robot returns to the first step
and the cycle repeats.

In the first step, we would ideally evaluate every pos-
sible action for the robot in every possible map that it
could be exploring. Not surprisingly, this proves to be com-
putationally intractable in real applications (Burgard et al.
2005; Martinez-Cantin et al. 2009) due to the high dimen-
sionality of the joint map and action space. Recently Berg
et al. (2012), Indelman et al. (2015) presented continuous
approximations to select destinations and actions, but the
computational complexity of these approaches is still pro-
hibitively high for real-time implementation. In practice, a
robot often selects a small subset of candidate locations
based on the information from its local neighborhood in
the maximum likelihood map. One of the most common
techniques for selecting the candidate destinations is frontier-
based exploration, first introduced by Yamauchi (1998), in
which frontiers are defined as the boundaries between known
and unknown space.

In the second step, the robot computes the utility of
performing each of the candidate actions. Autonomous
exploration requires the robot to maintain good localization
so that it can accurately construct the map from the col-
lected sensor data. However, the robot must do this while
traversing unknown space, where by definition the local-
ization uncertainty of the robot grows, in order to cover
the full environment. Thus, any measure of utility in step
2 must carefully balance the exploration of new areas with
the exploitation of previous data in order to maintain a suf-
ficiently accurate estimate of the robot’s pose. The most
common approach is to compute the expected information
gain for each action (Stachniss et al. 2005; Fairfield and
Wettergreen 2010; Carlone et al. 2014). We would ideally
use the full joint distribution of the map m and the robot’s
poses x before (P(x, m)) and after (P(x, m|u, z)) taking the
candidate action u and receiving measurements z to compute

the information gain. However, in practice this is computa-
tionally intractable. Instead it is common to approximate the
joint probability, for example by assuming that the map and
robot uncertainties are independent (Valencia and Valls Miró
2012) or conditionally independent (Stachniss et al. 2005).
These approaches often rely on a heuristic linear combina-
tion of the robot andmap uncertainties (Bourgault et al. 2002;
Makarenko et al. 2002; Blanco et al. 2008; Kim and Eustice
2013, 2015). One caveat is that the scale of the numerical
values of the map and robot uncertainties are not compara-
ble, i.e., the map’s uncertainty is often orders of magnitude
larger than the robot’s state uncertainty, requiring the user
to manually tune the weighting parameters. We describe this
phenomenon in greater depth in Sect. 2.

Finally, in the third step the selected action is carried out.
The three step cycle is then repeated until a stopping con-
dition is met. However, determining the optimal stopping
condition is still an open problem, as Cadena et al. (2016)
note. Another open problem in active SLAM is the inherent
trade-off between the length of the action and the accuracy
of the robot’s pose and map estimates. Roy et al. (1999)
pioneered the research in this topic, proposing methods to
generate robot trajectories that reduce the pose uncertainty
and the map uncertainty (Sim et al. 2004). More recently,
researchers have utilized the Theory of Optimal Experimen-
tal Design (TOED) (Pukelsheim 2006) to select actions that
reduce the uncertainty in the robot pose during autonomous
exploration. Specifically, Zhang et al. (2014, 2015) used the
A-optimality metric and Carrillo et al. (2012a) used the D-
optimality metric. We will discuss these optimality metrics
and the TOED further in Sect. 4.2.

1.1 Paper contributions

In this paper we propose a novel utility function that is based
on a novel definition of mutual information from Jumarie
(1990, Ch. 2). This definition utilizes Rényi’s general theory
of entropy (Rényi 1960, 1970), of which Shannon’s entropy
andHartley’s entropy are special cases. Jumarie’s framework
allows us to avoid using any manually-tuned, environment-
dependent parameters in the utility function, so that the robot
is able to adaptively trade-off between exploring new area to
complete the task and exploiting the existing information to
maintain good localization in a variety of environments.

Removing the need to manually tune parameters in a
SLAM system is one of the key open challenges to improve
the robustness of SLAM solutions (Cadena et al. 2016).
Indelman et al. (2015) recently devised an interesting frame-
work to plan continuous motions when there is uncertainty
in the state of the robot. Indelman et al. (2015) use this
framework to show how incorrectly tuning a utility function
can degrade the performance of their framework and explain
in great detail heuristic methods to manually tune several
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parameters in order to boost performance. Our work seeks
to remove as many of these parameters as possible and to
base any heuristics on fundamental mathematical properties
of the objective function in a way that is independent of the
environment.

Another challenge in autonomous exploration is consider-
ing both the localization andmap uncertainties in a principled
manner. Blanco et al. (2008) and Carlone et al. (2014) both
demonstrate that correctly accounting for these uncertainties
in the utility function has a major impact on the quality of
the resulting map. One key issue is that the pose of a robot
is a continuous quantity while an occupancy grid map, the
most common map representation used in SLAM solutions,
is discrete. This fundamental difference leads to issue of
numerical scaling in most current objective functions, which
we describe in greater detail in Sect. 2. Blanco et al. (2008)
and Carlone et al. (2014) both proposed solutions to miti-
gate this scaling issue but they only work for particle-filter
based SLAM back ends. Such SLAM back ends have been
supplanted by graph-based solutions in recent years due to
their superior scalability and accuracy (Grisetti et al. 2010).
Our proposed utility function works for any SLAM back
end and an occupancy grid representation of the map (or
any other representation that consists of a finite collection
of discrete random variables). However, the method that we
propose to predict the future localization uncertainty of the
robot assumes a graph-based SLAM back end. In the future
we plan to expand this method to work for Kalman filter-
based and particle filter-based SLAM systems.

The SLAM framework that we use in this paper is com-
posed bywell-knowmethods that work in practical scenarios
and that, when combined, allow us to experimentally validate
our approach, as we will show in Sect. 6. The components
are all open source and outlined in detail in Sect. 4. To the
best of our knowledge, this exact combination of approaches
has not been used before in the literature so we consider
their combination a minor contribution of this paper. More
importantly, our code will be available at https://bitbucket.
org/hcarrillo and on the authors’ websites. This will allow
other researchers to use this SLAM framework, to validate
our results, and to use our utility function as a benchmark
against their own systems.

This paper is an extension of the work presented by Car-
rillo et al. (2015a) at ICRA. This paper contains experimental
results in two new, larger environments and more detailed
analysis of the results. We have added appendices containing
proofs of relevant properties of the Rényi entropy and a defi-
nition of a probability simplex.Wehave also extended several
sections to make the description of the utility function easier
to follow and provide a more complete literature review.

Previous utility functions for Graph SLAM-based
autonomous robotic exploration that do not account correctly
for the uncertainties or that require manual, heuristic tuning

can be argued to “explain no more than they assume, and
tell us no more than the data does” (Averbeck 2015). In this
paper we argue that tuning-free utility functions are key to
enabling true robot autonomy, and that the proposed utility
function is a step in this direction.

1.2 Paper structure

We start by defining an autonomous exploration task and
providing a brief overview of the related work on using
entropy-based utility functions in Sect. 2. Next, in Sect. 3,
we detail our proposed utility function and its properties. In
Sect. 4 we present a framework for performing robot-based
autonomous exploration using the proposed utility function.
Then, in Sects. 5 and 6, we present the results of the proposed
framework in several simulated and hardware experiments
and compare several different parameterizations. Finally, we
present our concluding remarks in Sect. 7.

2 State of the art of utility functions for
autonomous robotic exploration

In this section, we provide an overview of several exist-
ing utility functions for autonomous robotic exploration.
The literature on this topic is diverse, dating back more
than 30 years. We focus on recent approaches that use an
information-theoretic framework, as these have been the
most successful and are most closely relate to our proposed
utility function. We discuss the underlying assumptions, and
associated shortcomings, of these utility functionswhen used
in an autonomous robotic exploration task. We focus on the
uncertainty terms of the utility functions, including themap’s
representation and the robot’s localization. We leave out
other auxiliary costs such as energy consumption or heuristic
travel costs, e.g., distance from a power outlet (for recharg-
ing a battery), as these have a second-order effect while we
are proposing a fundamentally different first-order approach.
Adding in these auxiliary costs to our utility function will be
the focus of future work.

2.1 Map and robot uncertainty models

In order to evaluate the uncertainty in the map and in the
pose of the robot, we must first model these quantities in a
probabilistic manner. We can then use entropy to measure of
the uncertainty of a random variable (Rényi 1960; Shannon
and Weaver 1949). The most commonly accepted definition
is from (Shannon and Weaver 1949),

H[P(x)] = −
n∑

i=1

pi log pi , (1)
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Table 1 Example of scale problems in Shannon’s entropy-based utility functions: the table shows different values of the terms of Shannon’s
entropy-based utility functions using different parameters of the occupancy grid

Trial Environment
size (m)

Grid
resolution (m)

State of cells Map entropy
(bits)

Robot’s pose
entropy (bits)

p = 0.33 (%) p = 0.5 (%) p = 1 (%)

1 10m × 10m 0.05 1 99 0 400 10.70

2 10m × 10m 0.05 3 89 8 4127.76 10.70

3 10m × 10m 0.05 2 82 15 6289.55 10.70

4 10m × 10m 0.76 1 99 0 1.73 10.70

5 10m × 10m 0.76 3 89 8 17.86 10.70

6 10m × 10m 0.76 2 82 15 27.22 10.70

7 7.5m × 7.5m 0.05 1 99 0 225 10.12

8 7.5m × 7.5m 0.05 3 89 8 2321.9 10.12

9 7.5m × 7.5m 0.05 2 82 15 3537.9 10.12

The map is an occupancy grid and its entropy is calculated using (3). The pose of the robot consists of a 2D position and orientation, and it is
represented by a Gaussian distribution with a spherical covariance matrix with a standard deviation equal to the environment size [e.g., (10, 10 m,
2π rad)]. Its entropy is shown for reference, and it is calculated using (2)

where pi = P(x = xi ) is an element of the probability
distribution P(x) of a discrete random variable x, i.e., pi ≥
0, ∀i and∑n

i=1 pi = 1. Shannon also defined the differential
entropy for continuous random variables by replacing the
summation in (1) with an integral.

It is standard to assume that the robot’s pose is represented
using a multivariate Gaussian distribution. The (differential)
Shannon entropy of the distribution is then given by the well
known expression (Cover and Thomas 2012; Stachniss et al.
2005),

H[P(x)] = n

2
(1 + log(2π)) + 1

2
log det� (2)

where n is the dimension of the robot’s pose and � is the
n × n covariance matrix.

The map is represented by an occupancy grid, where each
grid cell has associated with it an independent Bernoulli ran-
dom variable m. m = 0 corresponds to the cell being empty
andm = 1 corresponds to the cell being occupied. The Shan-
non entropy of themap distribution is then given by Stachniss
et al. (2005)

H[P(m)] ≈ −
∑

i, j

(
P(mi j ) log(P(mi j ))

+ (
1 − P(mi j )

)
log

(
1 − P(mi j )

))
, (3)

where mi j is the Bernoulli random variable associated with
cell i j of the occupancy grid map and P(mi j ) is the proba-
bility of that cell being occupied.

It is worth noting that while the map and pose entropies
are both measures of uncertainty about random variables,
they are fundamentally different quantities. The differential

entropy of a continuous random variable, such as the pose of
a robot, can take any real value while the entropy of a dis-
crete random variable, such as a grid cell in a map, is strictly
non-negative. In fact, as Jaynes (1957) notes, Shannon’s dif-
ferential entropy is not invariant under a change of variables
or dimensionally correct. On a more practical note, in an
autonomous exploration task these two entropies have vastly
different numerical values. To illustrate this, consider a sim-
ple example scenario in which a robot explores a 10 × 10 m
environment with an occupancy grid resolution of 0.05 m.
Let us assume that only 1% of the cells are unknown, i.e.,
the probability of occupancy is 0.5, and the remaining cells
are known perfectly, i.e., the probability of occupancy is 0 or
1. Using (3), the entropy of the map is 400 bits. Let the pose
of the robot, which consists of a 2D position and orientation,
be represented by a Gaussian distribution with a spherical
covariance matrix. If the standard deviation of the robot’s
pose is equal to the environment size (10, 10 m, 2π rad),
then, using (2), the entropy is only 10.70 bits. To have entropy
equal to the map entropy requires the robot’s pose to have
a standard deviation of 9.56 × 1057. See Table 1 for further
examples of this scaling issue.

2.2 Utility functions

Aseminalwork in autonomous exploration is fromYamauchi
(1998), in which the author defines frontier-based explo-
ration. However, since this initial work assumes the robot
has perfect knowledge of its state, the utility function depends
only on the map.

Bourgault et al. (2002) pioneered the use of entropy-based
utility functions for autonomous robotic exploration. Such
entropy-based methods generally evaluate the utility as:
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IG [a, ẑ] = H[P(x, m | d)]︸ ︷︷ ︸
current entropy

−H[P(x, m | d, a, ẑ)]︸ ︷︷ ︸
future/predicted entropy

(4)

where a = a1:T is a candidate action with time horizon T ,
ẑ = z1:T is the collection of sensor measurements received
while executing action a, and d = (u, z) is the history of
the data, i.e., the control inputs and received measurements.
Carlone et al. (2014) and Stachniss (2009, Ch. 7) show that
such entropy-based strategies outperform the frontier-based
method of Yamauchi (1998).

To select an action, the typical procedure is to greedily
optimize (4) over the set of possible actions:

a∗ = argmax
a

H[P(x, m | d)]︸ ︷︷ ︸
current entropy

−H[P(x, m | d, a, ẑ)]︸ ︷︷ ︸
future/predicted entropy

(5)

= argmin
a

H[P(x, m | d, a, ẑ)]︸ ︷︷ ︸
predicted joint entropy

(6)

where the second equality holds because, as Valencia and
Valls Miró (2012) noted, the starting position for each action
is the same so the current entropy is the same for every action.

However, computing the joint entropy of the posterior dis-
tribution is very difficult. In their pioneering work, Bourgault
et al. (2002) assume that the map and robot pose are indepen-
dent of one another and use a convex combination of the map
and the robot’s pose entropies. The posterior uncertainty of
the map assumes that the robot has no error when executing
actions. They compute this uncertainty of the map condi-
tioned on the pose of the robot, H[P(m | x, d)], using (3),
where d = (u, z) is the history of the data, i.e., the control
inputs and received measurements.

Stachniss et al. (2004, 2005) propose a utility function
for Rao–Blackwellized particle filter-based SLAM systems.
Based on several conditional independence assumptions, the
utility function is a linear sum of the entropy of the robot’s
poses and the expected entropy of the possible maps associ-
ated with each particle:

H[P(x, m | d)] ≈
H[P(x | d)] +

n∑

i=1

w[i]
H[P(m[i] | x[i], d)] (7)

where n is the number of particles, w[i] is the likelihood of
particle i , and d = (u, z) is the history of data. Valencia and
Valls Miró (2012) and Kim and Eustice (2013, 2015) use
graph-based SLAM systems, assuming that the mean of the
map and the robot’s poses is close to the maximum likeli-
hood estimate (Thrun et al. 2005, Ch. 11). This simplifies the
objective to:

a∗ ≈ argmin
a

H[P(x | d, a, z)]︸ ︷︷ ︸
pose entropy

+H[P(m | x, d, a, z)]︸ ︷︷ ︸
map entropy

(8)

Valencia andVallsMiró (2012) represent themap as an occu-
pancy grid and Kim and Eustice (2013, 2015) as a set of
features. Both assume that the uncertainty in the map and
the robot’s pose are independent, so the posterior entropy is
the weighted sum of the individual entropies. These weights
are chosen heuristically to trade off between exploration and
exploitation. It is worth emphasizing that (8) is an approxi-
mation meant to reduce the computational complexity of the
utility function, similar to that of Stachniss et al. (2005).

2.2.1 Scale problems in Shannon’s entropy-based utility
functions

The utility function (4), and the various approximations, are
usually computed using (2) and (3) (Stachniss et al. 2005; Du
et al. 2011; Valencia and Valls Miró 2012). As discussed in
Sect. (2.1) andnotedbyBlanco et al. (2008) andCarlone et al.
(2014), the scales of themap and pose entropy values are very
different, i.e., H[P(x | d, a, ẑ)] � H[P(m | x, d, a, ẑ)],
effectively negating the effect of the robot’s pose uncertainty.

Given this, the optimization problems (7) and (8) are effec-
tively equivalent to

a∗ ≈ argmin
a

H[P(m | x, d, a, z)]︸ ︷︷ ︸
predicted map entropy

(9)

Therefore, robots using the standard utility functions based
on Shannon’s entropy will neglect the effect of the robot’s
pose uncertainty. This will cause the robots to always priori-
tize exploring new areas while neglecting to exploit the cur-
rent information about the map during exploration (Blanco
et al. 2008; Carlone et al. 2014). This can have disastrous
consequences when a robot estimate of its pose diverges,
causing the robot to incorrectly clear a large number of cells
in the map. This yields a less accurate map despite reducing
the map entropy according to (9).

The heuristic weighting from Makarenko et al. (2002) or
Bourgault et al. (2002) can overcome this scaling issue, but it
requires careful manual tuning depending on the conditions
of the scenario the robot is exploring. Even for the same envi-
ronment, changing the number of cells in the occupancy grid
(or equivalently the grid resolution) drastically changes the
value of the map entropy in (3), as Table 1 shows. However,
the robot’s pose is independent of the grid. This means that
theweighting parametersmust be tuned again if the grid reso-
lution changes, even if the physical environment is identical.

In order to illustrate the above critical cases for Shannon’s
entropy based utility functions, let us reconsider the example
given in Sect. 2.1 with environments of different sizes and
different grid resolutions. Table 1 shows different values of
the terms of Shannon’s entropy-based utility functions using
different parameters of the occupancy grid. Each row shows
the need for manual tuning to make the scale comparable
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among the terms of the utility function. Moreover, there are
some situations where the parameters of the occupancy grid
change online (Blanco et al. 2008). Thus, even if a system
is carefully tuned at the outset of exploration, it must be re-
tuned to account for the new parameters. Examples of such
situations are:

– The number of cells changes due to a variation in the
size of the environment. This can happen if the bounds
of the area to be explored are unknown. Trials 1 and 7 in
Table 1 exemplify this situation, where the entropy values
for eachmap are quite different, and are also significantly
larger than the entropy of the robot’s pose.

– The number of cells changes due to a variation in the
resolution of the grid map. This can happen when using
adaptive discretizations, such asOctoMap (Hornung et al.
2013), or to decrease the computational load. Trials 2 and
4 in Table 1 exemplify this situation.

– There is a rapid change of the state of the cells. This can
happen due to a sensor malfunction. Trials 8 and 9 in
Table 1 exemplify this situation.

All the above situations necessitate manually tuning
parameters of a Shannon’s entropy-based utility function in
order to avoid scale problems in the entropy terms. The man-
ual tuning is performed in practice by weighting the terms.
This weighting needs to be set adaptively depending on
the aforementioned conditions. In other words, for different
scenarios or situations in the same scenario, the Shan-
non’s entropy-based utility function may need to be man-
ually tuned to provide an exploration-exploitation trade-off
behavior.

Blanco et al. (2008) and Carlone et al. (2014) present
utility functions that make the entropy computations inde-
pendent of the occupancy grid size and only consider cells
seen by the robot. However, these approaches are restricted
to particle-filter based SLAM systems, which are known not
to scale as well as graph-based approaches with the map
size. Our approach most closely resembles that of Carlone
et al. (2014), discounting the information gain of an action
based on the probability of having good localization of the
robot.

2.2.2 A tip for speeding up the computation

Note that computing (9) requires a full update of the occu-
pancy grid for each possible set of future measurements.
This is computationally intractable in practice. One common
approach to mitigate this is to use the maximum likelihood
measurements for a given action. Such measurements are
usually called “hallucinated”measurements. The set of future
measurements ẑ is commonly computed via approximate
ray-casting techniques in conjunction with a plausible sen-

sor model (Burgard et al. 2005; Stachniss et al. 2005). This
reduces the computational complexity by not considering all
possible combinations of measurements for an action a.

Even with hallucinated measurements, updating the occu-
pancy grid for each possible action can be a costly process.
Early approaches to robotic exploration using information
theory, such as Makarenko et al. (2002) or Bourgault et al.
(2002), turn this into the equivalent problem of placing the
sensor over regions of maximum entropy in the current map.
This bypasses the need to update the map using unknown
future measurements, and the objective becomes:

a∗ ≈ argmax
a

∑

m∈m(a)

H[P(m | x, d)]︸ ︷︷ ︸
current entropy

(10)

where H[P(m | x, d)] is the current entropy of cell m
and m(a) is the set of cells that the robot may see by
taking action a. The idea here is to select the action that
causes the robot’s sensor to cover as much of the uncertainty
in the current map, as measured by entropy, as possible.
Implicitly assumed here is that getting more observations
about these maximum entropy regions of the map will allow
the robot to reduce its uncertainty about the map. This
agrees with the idea of Jaynes (1957, Sect. 6) who said
that “the maximization of entropy is not an application of
a law of physics, but merely a method of reasoning which
ensures that no unconscious arbitrary assumptions have been
introduced.”

It is also possible to speed up the computation (9) by using
a plausible sensormodel and only updating the cells observed
during the action, i.e., the cells inm(a) (Stachniss et al. 2005).

3 Utility function I: Rényi’s entropy applied to
autonomous robotic exploration

Rényi (1960, 1970) generalized Shannon’s definition of
entropy, given in (1), to be:

Hα[P(x)] = 1

1 − α
log2

(
n∑

i=1

pα
i

)
. (11)

Rényi’s entropy is a parametric family of entropies which
form the most general class of information measures that
comply with Kolmogorov’s probability axioms (Principe
2010, Sect. 2.2). In other words, Rényi’s entropy is a mathe-
matical formalization of an information metric that complies
with the most commonly accepted axiomatic definitions
of entropy (Aczél and Daróczy 1975; Rényi 1970; Xu
1998).

It is worth remarking that Rényi’s entropy was not
designed with a particular application in mind, but it is used
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Fig. 1 The blue surface is the probability simplex inR3. The red dot is
a particular distribution. Thedashed red line shows the norm, or distance
to the origin, of the distribution. In Rényi’s entropy the α parameter
defines the norm in the probability simplex (Color figure online)

inmany fields, e.g., coding theory, statistical inference, quan-
tum mechanics, and thermodynamics (Principe 2010). One
of the reasons for its wide-spread use is the free parameter α,
which yields a family of measures of uncertainty (or dissim-
ilarity within a given distribution) Principe (2010, Sect. 2.2).
For example, Shannon’s entropy is a special case of Rényi
entropy in the limit as α → 1 (Principe 2010; Rényi 1960)
(Cover and Thomas 2012, Ch 17). See “Appendix A” for a
proof of this fact and other properties.

The α parameter in (11) has an intuitive, geometrical
interpretation. Consider the simplex formed by all possible
discrete probability distribution functions over a set of ran-
dom variables. Rényi’s entropy with parameter α is related to
the α norm of a point in that vector space, i.e., a probability
distribution. Figure 1 illustrates this. The reader is referred
to “Appendix B” and Principe (2010, Ch. 2) for a more com-
plete description.

3.1 A Shannon and Rényi-based utility function

Using the definitions of entropy from Shannon and Rényi,
Jumarie (1990, Ch. 2) presents a definition of mutual infor-
mation (also known as transinformation):

Ic[P(x)] = Hα=1[P(x)]︸ ︷︷ ︸
Shannon’s entropy

− Hα=c[P(x)]︸ ︷︷ ︸
Rényi’s entropy with

(12)

which is the difference between the Shannon entropy of the
probability distribution P(x) andRényi’s entropy of the same
distribution with α = c. Jumarie (1990) goes on to describe
the parameter α as a gain coefficient which measures the
efficiency of an observer who is considering the distribution
P(x) and that (11) represents an information value for α > 1
(as opposed to an uncertainty value for α < 1).

Based on this interpretation, we define a new utility func-
tion for autonomous exploration:

a∗ = argmax
a

Ic(a)[P(m | x, d)] (13)

where P(m | x, d) is the current distribution over possible
maps and the value of the parameter α = c(a) depends on the
possible future actions of the robot, a. The key insight is that
we tie the value of α, which, according to Jumarie (1990), is
an efficiency measure of the observer, to the actions of the
robot.

Note that computing (13) does not require updating the
map using possible future measurements, which in turn
would require propagating both the sensor and localiza-
tion uncertainties forward in time. Correctly modeling and
propagating these uncertainties is both difficult and computa-
tionally expensive because they are conditionally dependent
given the map. Avoiding this forward propagation of uncer-
tainty is a key advantage regarding computational speed of
our proposed utility function.

Tomake the proposed utility function evenmore computa-
tionally tractablewe can take the sameapproach as (Stachniss
et al. 2005), as described in Sect. 2.2.2, and compute the util-
ity functions only over the regions of the map that will be
visited during the action a. This leads to an approximate
form of the utility function:

a∗ =
argmax

a

∑

m∈m(a)

H[P(m | x, d)]︸ ︷︷ ︸
Shannon’s entropy

−Hα(a)[P(m | x, d)]︸ ︷︷ ︸
Rényi’s entropy with

(14)

where m(a) is the subset of the current map that may be
visible to the robot while executing action a. m(a) may be
computed using standard ray tracing techniques. The key
difference between our utility function and (10) is the Rényi
entropy.

One advantage of our proposed approach is that both
entropy terms in the right hand side of (12) are of the same
type, i.e., they can be added and subtracted in a meaningful
way, unlike the entropy terms in (7) and (8). Both terms in
(12) stem from Rényi’s general theory of entropy (Principe
2010; Rényi 1960) and both aim to quantify the uncertainty
of the same underlying probability distribution using differ-
ent “norms” in probability space. Just like Rényi’s entropy
generalizes the concept of Shannon’s entropy, our proposed
objective function generalizes previous objective functions,
such as (10).

Note that the proposed utility function makes no assump-
tion about the SLAM back end and can be used with any
system that provides a distribution over maps and the robot
pose. The solitary restriction on (14) is that it is defined only
for discrete random variables and thus requires the map to be
represented by a finite number of discrete random variables,
e.g., an occupancy grid.
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3.2 Key properties of the utility function

Rényi’s entropy has a key mathematical property:

H[P(x)] > Hα[P(x)] ≥ Hα′ [P(x)] ≥ 0, 1 < α ≤ α′.
(15)

A proof for this can be found in “Appendix A”. Using this
property, we see that when α ≥ 1 then the proposed utility
function (13):

1. is non-negative.
2. is bounded from above by Shannon’s entropy and from

below by zero.
3. monotonically increases with α.

Note that the first property complies with the Shannonian
belief that, in expectation, information is never unhelpful, i.e.,
the value of information is always non-negative. Thus, while
the parameter α ∈ [0, 1) ∪ (1,∞) is a free parameter, we
restrict our attention to the range (1,∞) so that the objective
function is non-negative.

In an autonomous exploration task we want the expected
information gain to decrease when the robot has either a high
level of certainty in the map or a high level of uncertainty in
its pose. For example, imagine a scenario where a robot has
significant drift in its odometry and it is not possible to per-
forma loop closure to correct for this. If the robot continues to
explore, the SLAM system may yield poor localization and
inconsistent map estimates. However, the map uncertainty
computed using (3) will likely decrease because the robot
will continue to visit unexplored cells. Intuitively, the Shan-
non entropy term in (14) represents an optimistic measure of
the map uncertainty assuming that the robot will not experi-
ence localization errors when carrying out action a. Thus, the
Rényi entropy term will represent a measure of map uncer-
tainty that takes into account the uncertainty in the pose of
the robot.

Figure 2 shows the value of (14) for a single Bernoulli
random variablem representing the probability of occupancy
of a single cell.

In the case that P(m) ≈ 0 (or P(m) ≈ 1), meaning we
have (nearly) perfect information about the cell, then a single
action will have little effect on the estimate, and the uncer-
tainty of the robot should not matter. This is reflected in the
cost function, where the information gain is approximately
zero for all α.

In the case that P(m) ≈ 0.5 we have (nearly) no informa-
tion about the cell. Since we have an uninformative prior, any
measurement may be considered a good measurement, and
the information gain again does not depend upon the robot
uncertainty.

Fig. 2 Value of the utility function for a Bernoulli random variable m.
The figure is mirrored for P(m) ∈ [0.5, 1]

When we have a little bit of information about a cell, i.e.,
0.05 � P(m) � 0.45 (or 0.55 � P(m) � 0.95), then the
robot uncertainty is most important, as an incorrect measure-
ment due to poor localization of the robotwill contradict prior
information, increasing the uncertainty about the map. In
other words, this case should have the largest dependence on
the uncertainty of the robot, which we see is true from Fig. 2.
We feel that this is a very useful property of the objective
function since the robot needs good measurements in order
to have full confidence about its pose and the surrounding
environment.

Overall the objective function will select actions that will
most improve the estimate of the partially explored sections
of the map, i.e., where P(m) = {0, 0.5, 1}. Such situations
arise when the robot has poor localization during its first
pass through an area or when the robot only sees an area in
passing, e.g., if the robot gets a brief glimpse into a room
while driving past the doorway. These cases will often occur
near frontiers in the map.

3.3 The parameter α

We relate the parameter α(a) in (14) to the predicted uncer-
tainty in the pose of the robot after taking action a in a way
that will decrease the information gain when the pose uncer-
tainty is high. We do this in a way that, while based on
heuristic decisions, is independent of the environment, sen-
sor, and robot; avoids the need for any manual tuning; and is
based on the mathematical properties of Rényi’s entropy and
the proposed objective function discussed above.

First, let us briefly discuss the proposed objective function
(14). The utility valuewill increasewhen an action causes the
robot’s sensor footprint to cover a larger number of uncertain
cells (P(m) = {0, 0.5, 1}). This effect naturally causes the
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robot to explore. Conversely, the utility value must decrease
when an action causes the robot’s localization uncertainty to
increase, i.e., when the robot cannot exploit existing informa-
tion. This allows the robot to autonomously switch between
exploration and exploitation, a necessity in any autonomous
exploration task. The remainder of this section suggests one
method for doing this and details the principled reasoning
behind our choice.

When the robot has perfect localization, i.e., minimal
uncertainty, then the information gain should be maximal.
Similarly, when the robot is completely lost, i.e., maximal
uncertainty, the the information gain should be zero. In other
words, we want α → 1 as the uncertainty becomes infinite
since the two entropies in (14) cancel out, and α → ∞ as the
uncertainty approaches zero, since this minimizes Rényi’s
entropy. We also want α to monotonically decrease with
increasing pose uncertainty so that (14) will monotonically
increase with improved localization of the robot.

A simple candidate relationship that meets all of these
requirements is:

α = 1 + 1

σ
(16)

where σ is a scalar related to the predicted uncertainty of the
robot’s pose while taking action a. More complex relation-
ships will be the focus of further study, but we will show in
Sect. 5 that (16) is sufficient to demonstrate the efficacy of our
proposed utility function in several different environments
and in both simulated and hardware experiments without
needing to be adjusted in any way. The computation of σ

is left until Sect. 4 as it has an indirect connection to the
proposed utility function.

4 Utility unction II: autonomous exploration
framework

In this sectionwedescribe our test framework for robot-based
autonomous exploration using the utility function from (14).
We also provide a detailed description of several methods to
compute the uncertainty scalar σ that was defined in (16),
and which we will test out in Sects. 5 and 6.

We require a framework for robot-based autonomous
exploration in order to test the proposed utility function. The
goal of the test framework is to create an accurate map of
an unknown environment in a finite time, which implicitly
requires the robot to maintain a good estimate of its pose.

Our test framework is composed of well-known, open-
source methods that work in practical scenarios and that,
when combined, allow us to experimentally validate our
approach, as we will show in Sect. 6. We assume that the
robot has a SLAM system running, simultaneously esti-

mating the robot’s pose and generating an occupancy grid
representation of the environment from the collected sen-
sor data. Our SLAM front-end is an Iterative Closest Point
(ICP)-based laser scan matcher (Pomerleau et al. 2013). Our
SLAM back-end is the Incremental Smoothing and Map-
ping (iSAM) library (Kaess et al. 2008), which builds a pose
graph using the laser odometry to constrain consecutive pose
nodes. In our framework, each node in the pose graph also
has an associated set of features extracted from the laser scan
taken at that location. These features are computed using the
Fast Laser Interest Region Transform (FLIRT) (Tipaldi and
Arras 2010).We compare the FLIRT feature sets from differ-
ent nodes using a modified RANSAC algorithm (Tipaldi and
Arras 2010), adding loop closure constraints if the match is
sufficiently strong.

Our test framework is divided into three high-level steps,
as outlined in Sect. 1: identification of the candidate actions,
computation of the utility of each action, and execution of the
selected action. We describe our approach to each of these
tasks in the remainder of this section.

4.1 Identification of candidate actions

In order to generate candidate goal locations, the robot first
identifies frontiers (Yamauchi 1998) in the latest occupancy
grid map. A cell of the occupancy grid is labeled as belong-
ing to a frontier if it is unoccupied, adjacent to an unknown
cell, and not adjacent to an occupied cell. The robot then
clusters these cells to generate frontier regions, with the goal
locations being the mean position of the cells within each
cluster. This yields a discrete, finite set of candidate actions,
and we cannot guarantee that we select the global optimal
exploration action (Indelman et al. 2015). However, using a
finite set is computationally tractable and allows for real-time
exploration.

The robot next creates an action plan a for each goal loca-
tion. An action plan is a set of waypoints, in free space,
that lead the robot from its current location to a goal: a =
{(x0, y0), (x1, y1), . . . , (xn, yn)}. We use the AD∗ algorithm
from the SBPL library (Likhachev 2015) to create the action
plans using the current occupancy grid.

4.2 Evaluation of action utilities

The robot then computes the utility of each candidate action
according to (14). We use standard ray-casting techniques,
such as the one described in Stachniss et al. (2005), to deter-
mine the set of cells, m(a), that will be visible to the robot
while executing action a. The free parameter of our utility
function is α, which depends on the predicted future uncer-
tainty of an action plan via (16). This raises two questions:
1. how to get a good approximation of the robot’s localiza-
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tion uncertainty during an action a, and 2. how to extract a
meaningful uncertainty scalar σ .

4.2.1 Uncertainty prediction

Localization uncertainty propagation has been the focus of
a great deal of scholarly work. Early work from Smith et al.
(1990) provides amethod for estimating the uncertainty asso-
ciated with rigid body transformations. Lu andMilios (1997)
extend this work for pose estimation using graph-based rep-
resentations of trajectories and landmarks. More recently,
Censi (2007) provided a computationally tractable method to
estimate the covariance of the ICPmethod, which we employ
as our SLAMfront-end. Also, Kaess andDellaert (2009) pro-
vide a method for covariance extraction in the iSAM back
end that we utilize. However, none of these methods account
for the possibility of loop closures that may occur while exe-
cuting an action plan. A loop closure event, where the robot
re-enters a previously explored region of the environment,
allows the robot to significantly reduce its localization uncer-
tainty. However, as Cadena (2016, Sect. VIII.B.1) note, there
are no efficient and principled methods that exist for predict-
ing future uncertainty with uncertain loop closure events.

We propose a solution to this problem that utilizes iSAM
with a series of heuristic rules to predict the robot’s future
localization uncertainty while executing an action plan. To
do this we create a miniature pose graph representing the
action plan, which we call the action pose graph. We place
an initial factor at the robot’s current estimated location,
with the covariance matrix taken from the most recent node
in the graph, as computed by Kaess and Dellaert (2009).
We interpolate the action plan a with some fixed step size
and add pose nodes along the length of the path, adding
odometry constraints between them. These constraints have
a fixed covariance value associated with them so that longer
actions will lead to larger increases in uncertainty. Note that
this covariance value is independent of the future measure-
ments, the map, the robot’s current pose, and the candidate
action. Future work will aim to correctly account for the
dependence of the odometry covariance on these factors,
without significantly increasing the computational time, and
to examine their effects on the overall performance of the
system.

If the action plan takes the robot near other existing nodes
in the graph, then the robot has the potential to close a loop. To
take this into account, the robot adds additional factors for any
nearby nodes in the pose graph that have a sufficiently high
number of FLIRT features, i.e., the areas of the environment
that have a great deal of structure, which the robot can use to
localize itself. The position and covariance matrix of these
factors are taken from the iSAM graph of the full map, and
we add constraints based on the transformation between the
existing and potential nodes. Future work will aim to develop

Fig. 3 Candidate path through the environment, denoted by the dashed
line. The occupancy grid map is shown in the background, with white
representing free space, black is occupied space, and grey is unknown.
The robot is at the bottom and the dashed line is a path through free
space to the frontier goal location, denoted with the X at the top. Black
squares indicate existing iSAM nodes while the hollow circles indicate
potential new nodes along the path. The dotted line is a potential loop
closure between the candidate path and a previous node in the pose
graph

a data-driven model for the probability of a loop closure that
uses a measure of the local structure of the environment (e.g.,
the number of FLIRT features).

We use the iSAM library to optimize the action pose graph
for the action plan a. These action pose graphs typically
consist of only 10’s of nodes, so the computational load is
minimal. Figure 3 illustrates this process.

Note that this method requires the use of a graph-based
SLAMback end. Future workwill aim to expand this method
to work with Kalman filter-based and particle filter-based
SLAM back ends.

4.2.2 Uncertainty scalar

We compute the uncertainty scalar σ from (16) using the
covariancematrix estimates from the actionpose graph. From
the Theory of Optimal Experimental Design (TOED) (Car-
rillo et al. 2012a, 2015b; Pukelsheim 2006), there are several
standard optimality criteria that map a covariance matrix to a
scalar value while retaining useful statistical properties. The
three most commonly used criteria are:

– A-optimality (A-opt), which minimizes the average vari-
ance,

1

n
trace(�) = 1

n

n∑

k=1

λk (17)

where n is the dimension of the covariance matrix � and
λk is its kth eigenvalue.

– D-optimality (D-opt), which minimizes the volume of
the covariance matrix ellipsoid,
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Fig. 4 The figure depicts an action plan with three steps. The mean
estimated pose (xk ) of the robot, the footprint of a laser sensor attached
to the robot ( fk ), and the covariance matrix ellipsoid of the robot’s pose
(�k ) are shown at each step

det(�)1/n = exp

(
1

n

n∑

k=1

log(λk)

)
. (18)

– E-optimality (E-opt), which minimizes the maximum
eigenvalue of the covariance matrix, �,

max(λk). (19)

These criteria can be applied to either the full covariance
matrix or to themarginal covariancematrices from each node
in the action pose graph. If the full covariance matrix is used,
there is a single α value along the entire path. Then (14) is
applied to the full subset of themap visited by the robot when
executing action a. Using the marginal covariance matrices
is more subtle, as different nodes may have different α val-
ues. For each cell m ∈ m(a), the robot finds the last node j
from which the cell was visible and uses that α j to compute
the information gain (14) in that cell. In this way, the infor-
mation gain is calculated using the uncertainty of the robot
when it last viewed each individual cell. Figure 4 illustrates
this process.

Note that actions may consist of a variable number of
waypoints, depending on the distance through the map to the
frontier. Longer paths allow the robot to explore more area at
the expense of higher uncertainty, unless the robot is able to
close a loop.Theproposedapproach implicitly penalizes long
paths due to the expected increase in the pose uncertainty,
balancing this with the potential to gain more information
by viewing a larger area.

4.3 Execution of actions

We assume that the robot has a navigation system capable of
driving it to any accessible point in the environment. For our
experiments we use the algorithm proposed in Guzzi et al.
(2013), which takes the most recent laser scan, inflates all

obstacles by a specified margin, and then drives the robot
towards the point in free space that is closest to the current
goal. While this method works well to avoid local obstacles,
the robot often gets stuck when the goal location is far away
in the map, e.g. when driving down a series of corridors with
multiple turns. To avoid this issue, the robot plans a path in
the current map and passes a sequence of intermediate way-
points to the low-level controller from Guzzi et al. (2013).

It is possible to experience a failure in the navigation or
SLAM system while executing an action. If this occurs, a
small neighborhood around the final destination of the faulty
action a is blacklisted until it is clear that the goal is acces-
sible to the robot. This prevents the robot from repeatedly
attempting an impossible action. If the failure occurs within
a short time of the beginning of the action a, the next best
action a′ is executed, without recomputing the action set.

5 Simulated experiments

We perform a series of experiments in the four simulated
environments from Fig. 5, all of which are available in the
Radish repository (Howard and Roy 2009). The code for
the experiments was written in C++ using ROS and run on
a computer with an Intel i7 processor, 8 GB of RAM, and
running 64-bit Ubuntu 12.04.

The objective of the experiments is to compare the perfor-
mance of our proposed utility function with a state-of-the-art
utility function (4) based only on Shannon’s entropy. Let
SH denote the standard utility function based on Shan-
non entropy. For our proposed utility function, we test two

Fig. 5 Maps used in the simulation experiments. a Autolab. b Cave. c
Cumberland. d Freiburg
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optimality criteria for the σ computation: A-opt (A) and D-
opt (D). Both use the full covariance matrix over the action
pose graph.

5.1 Experimental procedure

In each trial the robot starts at one of five different locations
in each environment. The robot has a 3 min time budget to
complete the exploration task. It is worth remarking that with
more time the robot would explore the whole environment,
but it is more interesting to compare the different utility func-
tions under the same conditions. Figure 8 shows an example
of a snapshot of the resulting occupancy grids for a complete
run of a simulated experiment without time constraints.

The robot is a differential drive platform equipped with a
planar laser scanner. The maximum velocity of the robot is
0.4 m/s, the maximum range of the laser is 10 m, the field of
view of the laser is 270◦, and there are 1080 beams in each
scan.

We use our own kinematic and laser simulators based on
open-source initiatives (Charrow and Dames 2016; MRPT
2016) and the work of Fernandez (2012, Ch. 5) whose mod-
els include noise. The main reason behind using our own
simulators is computational complexity. Open-source and
ROS compatible mobile robotic simulators such as Gazebo,
MORSE, orV-REP are designed to create visually appealing,
dynamic simulations and they tend to be processor, memory,
and GPU hungry. For our simulations we did not need elabo-
rate 3D graphics or robot/environment dynamics so we used
our own kinematic simulators.

The kinematic simulator keeps track of the robot’s ground-
truth position in the global frame and the noise-corrupted
pose in the odometry frame, the latter of which is used as the
input to laser odometry. The commanded linear and angular
velocities are integrated at a fixed rate of 50 Hz in the simula-
tor, and Gaussian noise is added to the estimated pose, with
standard deviations of 5 cm for every meter in the (x, y)
position and 1◦ for every 45◦ in the orientation. The laser
simulator uses the ground-truth pose in the global frame and
a ground-truth map to compute the scan, adding Gaussian
noise with a standard deviation of 1 cm to each beam. These
noise values are comparable to those seen on the actual plat-
form described in Sect. 6.

The robot begins each experiment with no information
about the environment. For each trial, we record the uncer-
tainties of the current pose and the history of poses and the
percentage of area correctly explored at every time step. We
measure the uncertainty of a covariance matrix using the
standard definition given by the theory of optimal experi-
ment design (Pukelsheim 2006), using D-optimality (i.e., the
determinant of the covariance matrix) as suggested in Car-
rillo et al. (2012a). The percentage of area correctly explored

ismeasured using the balanced accuracy, whichwe introduce
in Sect. 5.3.2.

5.2 Presentation of the results

Oneproblemwith evaluating robot-based autonomous explo-
ration experiments is that trials may have radically different
trajectories, making pairwise comparisons difficult. More-
over, presenting just the mean or the median of the trials can
be misleading. Inspired by the solution to a similar problem
from Pomerleau et al. (2013), we summarize the results of
the experiments using the cumulative distribution function
(CDF) of the metrics of interest. The CDF provides a richer
representation of the variability of the results than the mean
or median. It also avoids misleading anecdotal evidence due
to noise or outliers.

For each parameter of interest, e.g., uncertainty in the
robot’s pose, we compute the CDF from a histogram of the
available data at each time step. The bin size is automat-
ically set using the procedure described in Shimazaki and
Shinomoto (2007), summarized as follows:

1. Split the data range into N bins of width�, and count the
number of events k in each bin i .

2. Compute the mean and variance of the events as follows:

k̄ = 1

N

N∑

i=1

ki (20)

v = 1

N

N∑

i=1

(ki − k̄)2 (21)

3. Find the � that minimizes:

C(�) = 2k̄ − v

�2 (22)

Note that k̄ and v both depend on the choice � so computing
the value of� that minimizesC(�) is non-trivial. Shimazaki
and Shinomoto (2007) provide a detailed set of procedures
to efficiently compute this �.

To more clearly quantify the differences between CDFs,
we extract three point estimates: the 50th, 75th and 95th per-
centiles. For metrics in which a high value implies worse
performance, e.g., uncertainty or translational error, we
would like a CDF that reaches 1 as quickly as possible.

5.3 Simulation results

5.3.1 CDFs of uncertainty

Figures 6 and 7 show the CDFs of the position uncertainty for
all the test environments. Figure 6 shows the uncertainty in
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Fig. 6 CDF of the uncertainty in the robot pose at every time step of every simulation. Results using the SH strategy are green, the A strategy are
blue, and the D strategy are red. a Autolab. b Cave. c Cumberland. d Freiburg (Color figure online)

Fig. 7 CDF of the running average uncertainty of the robot pose over each simulation. Results using the SH strategy are green, the A strategy are
blue, and the D strategy are red. a Autolab. b Cave. c Cumberland. d Freiburg (Color figure online)

Table 2 50th, 75th and 95th
percentile of the CDFs in Figs. 6
and 7

Autolab Cave Cumberland Freiburg

P50 P75 P95 P50 P75 P95 P50 P75 P95 P50 P75 P95

Robot’s pose

A 0.048 0.121 0.302 0.040 0.092 0.262 0.040 0.082 0.222 0.045 0.088 0.159

D 0.051 0.121 0.257 0.057 0.139 0.308 0.061 0.158 0.315 0.067 0.144 0.332

SH 0.072 0.252 0.808 0.087 0.175 0.380 0.057 0.187 0.515 0.072 0.136 0.426

Pose history

A 0.023 0.039 0.116 0.022 0.043 0.106 0.022 0.047 0.101 0.025 0.040 0.081

D 0.031 0.048 0.111 0.022 0.043 0.169 0.024 0.060 0.258 0.030 0.049 0.155

SH 0.026 0.066 0.411 0.039 0.077 0.181 0.022 0.057 0.274 0.035 0.073 0.186

the robot’s pose at each individual node in the pose graph as
computed by iSAM, measuring the worst-case performance
of the exploration strategies. Figure 7 shows the running aver-
age uncertainty over the history of robot’s poses, measuring
the average performance over a trial.

Table 2 shows the percentiles of the CDF. Overall, our
proposed utility function has a lower uncertainty in both envi-
ronments. The robot using our utility function with A-opt
results in 49.70% less uncertainty in the pose at the 75th per-
centile than the robot using Shannon entropy. This difference
is still large (46.84%) at the 95th percentile.

5.3.2 Percentage of explored area

Evaluating the percentage of a map that has been correctly
labeled as free or occupied by a robot during exploration is
inherently a classification problem. However, the number of
free cells is typically much greater than the number of occu-
pied cells, and knowing the correct locations of the obstacles

is typically more important than the free space. A robot may
return a large number of matched free cells even if there are
very few matches of the occupied cells, indicating that the
obstacles are poorly localized.

To avoid this bias towards free space, we measure the map
accuracy by independently counting the number of free and
occupied cells that are correctly labeled. The percentage of
the map that has been correctly explored is then computed
using the balanced accuracy (BAC), a concept borrowed from
the machine learning community (Brodersen et al. 2010a).
The BAC equally weights the accuracy of the estimates of
the free and occupied cells:

BAC= 1

2

(
# correct free cells

# total free cells
+ # correct occupied cells

# total occupied cells

)

(23)

Table 3 shows the percentage of each map correctly
explored by a robot using each utility function. The pro-
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Table 3 Mean and standard deviation (σ ) of the area correctly explored by each exploration strategy

Autolab Cave

Free cells Occupied cells BAC Free cells Occupied Cells BAC

Accuracy (%) ±σ (%) Accuracy (%) ±σ (%) Accuracy (%) Accuracy (%) ±σ (%) Accuracy (%) ±σ (%) Accuracy (%)

A 44.66 6.09 16.27 4.86 30.46 37.73 6.27 10.89 1.96 24.31

D 38.28 5.60 20.24 5.43 29.26 40.47 5.50 9.41 1.01 24.94

SH 40.49 7.95 8.77 5.41 24.63 40.68 5.50 2.61 0.61 21.64

Cumberland Freiburg

Free cells Occupied cells BAC Free cells Occupied cells BAC

Accuracy (%) ±σ (%) Accuracy (%) ±σ (%) Accuracy (%) Accuracy (%) ±σ (%) Accuracy (%) ±σ (%) Accuracy (%)

A 32.11 7.03 6.89 2.43 19.50 44.90 6.79 14.47 3.89 29.68

D 31.65 5.98 8.51 2.21 20.08 42.60 5.01 18.68 3.30 30.64

SH 30.27 6.83 3.72 1.84 16.99 43.31 6.38 8.83 2.36 26.07

Fig. 8 Examples of complete exploration in the Autolab environment. The visualization is done in MATLAB from the data gathered in ROS. a
Ground truth of the Autolab environment. b Resulting occupancy grid and estimated trajectory in blue using A. c using D. d using SH (Color figure
online)

Fig. 9 Examples of 3min exploration in the Autolab environment, starting from a position in the center. The resulting occupancy grid and estimated
trajectory in blue using a A, b D, and c SH (Color figure online)

posed utility function, while more conservative in its choice
of actions, still explores a similar fraction of the free space
compared to the standard approach (SH)while correctly iden-
tifying a significantly higher fraction of the occupied cells.

5.4 Exploration examples

Figure 8 shows an example of an exhaustive exploration of
the Autolab environment. Although the topology of the envi-

ronment constrains the possible trajectories of the robot, it
can be seen in that robots using the strategies A and D tend
to re-traverse known terrain more frequently. On the other
hand, robots using SH tend to venture into new terrain more
quickly. In situations with high noise in the odometry and in
the sensors this sometimes leads to an incorrect loop closure,
which yields an inaccurate map. In the Autolab examples, it
can be seen that the robot using the SH strategy has notice-
able artifacts in the top-left and bottom-left corners, such as
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Fig. 10 Robotic platform used to perform the autonomous exploration
task

showing the same wall twice and showing free space outside
of awall. The result from robots using the other two strategies
are better, but they still contain minor artifacts in the walls in
the upper and bottom part with A and in the upper part with D.

Figure 9 shows examples of maps created by robots at the
3 min mark in the Autolab test environment. Note that the
estimate of the robot using SH has diverged and the map is
inconsistent, as Fig. 9 shows. The estimates of robots using
either A or D never diverged in our trials. This is likely due
to the fact that the proposed strategy is more conservative

than the SH strategy due to the novel way that we account
for localization uncertainty during exploration.

6 Hardware experiments

As Brooks et al. (1993) famously quoted, “simulations are
doomed to succeed.” To validate the real-world efficacy of
our proposed utility function we also performed a series of
experiments using the robot platform in Fig. 10 to explore the
office environment at the University of Pennsylvania shown
in Fig. 11. The hallways are not equipped with a motion
capture system, or any other method of obtaining ground
truth localization data. Because of this we cannot provide an
insightful comparison of the proposed strategy against theSH
strategy. Nevertheless, the hardware experiments will allow
us to compare different parameterizations of our framework
and check how they behave with real data in a new environ-
ment.

Instead of the SH strategy, we teleoperated the robot as a
benchmark. The teleoperated robot was running the same
SLAM system, the only difference was that the control
input was coming from a human instead of the autonomous
navigation system (which gets actions from the utility
function).

Fig. 11 Examples of the resulting maps and pose graphs from hard-
ware experiments. The robot is either teleoperated, or autonomously
explores using the A and Dmethods from Sect. 5. The blue edges indi-
cate odometry constraints in the pose graph while red edges indicate

loop closure events. a–c) The occupancy grids and pose graphs built by
the robot after 5 min. d–f The final occupancy grids and pose graphs. a
Teleoperated—5min. b A—5min. c D—5min. d Teleoperated—5min
21 s. e A—30 min 57 s. f D—16 min 41 s (Color figure online)
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The differential drive robot has a maximum velocity of
0.45 m/s and is equipped with a Hokuyo UTM-30LX laser
scanner (30 m range and 270◦ field of view with 1080 beams
per scan) that is uses both for laser-based odometry (Olson
2009) andmap building. The robot has an on-board computer
with an Intel i5 processor and 8 GB of RAM running Ubuntu
14.04 and ROS Indigo. All of the computations, including
sensor processing, SLAM, and utility computations, are per-
formed directly on the robot. Michael et al. (2008) provide
further details on the robot.

6.1 Experimental procedure

The robot begins each trial at one of five different starting
locations within the environment with no prior information
about the map. Unlike the simulated trials, where the robot
had a fixed time budget, in the hardware trials the robot
explores until it no longer has any available actions. Note
that this stopping criterion is sensitive to artifacts in the map
as phantomwalls andblurred obstacles (causedbypoor local-
ization) may create false frontiers in the map.

We recorded all of the data from each trial locally on the
robot. We then used these files to generate the resulting maps
on a separate computer after the experimental trials were
completed.

6.2 Results

We compare the results of a robot using the A and Dmethods,
as described in Sect. 4, to a teleoperated exploration. The test
environment is a typical office environment, with long and
short corridors that intersect. Figure 11 depicts an occupancy
grid representation of the environment, both after 5 min and
when the robot has completed the exploration task. Figure 11
presents the results of two exploration runs, with videos of
some experiments in the accompanyingmultimediamaterial.

Figure 12 quantifies the exploration rates that Fig. 11 qual-
itatively shows. Specifically, Fig. 12a shows the number of
cells explored over time. A cell m is labeled as explored
if, in the occupancy grid map, the probability of occupancy
P(m) = 0.5. As can be seen, the robots quickly explore a
large fraction of the map and spend the remaining time visit-
ing the rest of the environment and re-exploring areas where
themap is incomplete or inconsistent. Note that while in real-
ity the explored area monotonically increases, the number of
explored cells does not. The occasional drops in the number
of explored cells are due to loop closure events causing the
robot’s past locations, and thus the resulting estimate of the
map, to shift.

Overall, the hardware experiments show the conservative
behavior of our utility functions, with the robot re-traversing
known areas of themap in order tomaintain good localization
and correct artifacts in the map. The experiments with A-opt

Fig. 12 a Evolution of the explored cells over time for the hardware
experiments. b Evolution of map normalize entropy over time for the
hardware experiments. Each strategy quickly plateaus to a normalized
entropy less than 0.1, which corresponds to a probability of occupancy
P(m) < 0.02 (or P(m) > 0.98)). The teleoperated robot does it faster
given the human in the loop, but the robots using the A and D strategies
are able to achieve comparable results. a Cells explored versus time. b
Entropy versus time

show that it is more conservative than D-opt, which agrees
with the findings of Carrillo et al. (2012a, 2013, 2012b). The
experiments also reveal the fact that the utility function is not
robust to failure in the SLAM or navigation system. In other
words, the utility function is not fault-tolerant to failures of
the laser-based loop closure system, or to diffuse reflections
of the laser scan that produce “phantom” exploration fron-
tiers. This will be addressed in future work as it is necessary
for truly autonomous robots.

Figure 12b shows the normalized entropy of the explored
cells. This is computed by first identifying the portion of the
map that has been explored, computing the entropy of those
cells, and dividing by the total number of cells.We see that all
three hardware experiments have a similar, and low, average
entropy per explored cell. Each strategy quickly plateaus to
a normalized entropy less than 0.1, which corresponds to a
probability of occupancy P(m) < 0.02 (or P(m) > 0.98)).
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Robots using strategies A and D are slower than the tele-
operated robot, by a factor of 5.79 and 3.14, respectively.
However, in the case of the teleoperated robot the human
user had prior knowledge of the environment topology and
thus was able to move in near optimal direction at any given
time. Also, the user did not account for any uncertainty in the
pose of the robot since the human knew where they were in
the environment at all times. Lastly, the human user stopped
driving the robot after the map looked topologically correct,
even if there were small artifacts in the map that would have
caused the autonomous robot to continue exploring. Despite
these advantages for the teleoperated robot, the robots using
our proposed utility function were able to autonomously cre-
ate maps that are qualitatively and quantitatively (in terms of
area and uncertainty) similar to that of the teleoperated robot.

7 Conclusions

In this paper we presented a novel information-theoretic util-
ity function to select actions for a robot in an autonomous
exploration task. To effectively explore an unknown envi-
ronment a robot must be capable of automatically balancing
the conflicting goals of exploring new area and exploiting
prior information. The robot must do this by considering the
uncertainties in both the robot’s pose and the map as well
as predicting the effects of future actions. Most existing util-
ity functions use a convex combination of the map and the
robot’s pose uncertainty. This requires the user to manually
tune the weighting parameters, which depend on the robot,
sensor, and environment.

Insteadwe utilize a novel definition ofmutual information
fromJumarie (1990),which computes the difference between
the Shannon and Rényi entropies of the map. We tie the α

parameter in Rényi’s entropy to the predicted uncertainty in
the robot’s pose after taking a candidate action in a heuristic,
but principled, manner. This gives our utility function several
key properties: it is non-negative, it is bounded from above
by the Shannon entropy (i.e., the existing approaches), and it
monotonically decreases with the uncertainty in the robot’s
localization. These properties stem from the mathematical
relationship between the Shannon and Rényi definitions of
entropy.

Our approach reduces to the standard approaches that use
only Shannon’s entropy when the localization uncertainty
is eliminated. Carlone et al. (2010, 2014) also discount the
information gain of each action based on the probability of
having good localization of the robot. At a high level, Car-
lone’s proposal and the utility function presented in this paper
are similar. However, our work uses a different mathemati-
cal approach and can be adapted for use in different SLAM
paradigms while Carlone’s proposal is tailored for particle
filter SLAM.

A side contribution of our work is a new method for pre-
dicting the future localization uncertainty of a robot. As
Cadena et al. (2016) note, no existing methods properly
account for the effects of uncertain loop closure events in
a tractable manner. Our proposed solution creates an action
pose graph for each candidate action. This pose graph con-
sists of uniformly spaced points along a planned trajectory
that are connected with odometry constraints. The nominal
values come from the planned trajectory and each constraint
is given a fixed covariance value, independent of the envi-
ronment, robot, and action. We then add additional nodes
from the full pose graph, and edges connecting these nodes
to the action pose graph, if the action bring the robot near a
previously explored region with sufficient local structure to
close a loop, as measured by the number of FLIRT features.
This method creates a small pose graph with 10’s of nodes
for each action and can be optimized using the iSAM library
in a fraction of a second, allowing us to compute σ values
for candidate actions in real time. The only drawback is that
it restricts the SLAM back end to be graph-based, which is
minor as these are the current state of the art.

Another side contribution of the experimental sections is
the evaluation of autonomous exploration tasks using the
CDF rather than the mean or median value of the trials. The
use ofCDFs provides a richer representation of the variability
of the results than the mean or median, while avoiding mis-
leading anecdotal evidence due to noise or chance.Moreover,
given the nature of experiments in autonomous exploration,
where each trial can be thought as the result of a Monte–
Carlo simulation, the use of CDFs are justified as they allow
an easier comparison between trials with radically different
trajectories.

Finally, the last contribution is the release of the code
used in the experimental section. The code will be available
at https://bitbucket.org/hcarrillo and on the authors’ web-
sites.

A possible avenue for future work with the proposed util-
ity function is the study of different functions for mapping
the α parameter of Rényi’s entropy to the uncertainty of the
robot. In this paperwe use the Theory ofOptimal Experiment
Design to do this mapping. In particular, we map the esti-
mated covariance matrix for an action to a scalar σ and then
link this scalar σ to the α parameter using (16). The study of
the effect of different monotonic functions, such as an expo-
nential or logarithmic relationship, to map the scalar σ is of
future interest. Additionally, different techniques from those
in the theory of optimal experiment design can be used to
map the uncertainty of the robot to a scalar value, such as ker-
nel estimation techniques from Principe (2010) or Bayesian
optimization.

Another direction for future work is to improve upon our
method for predicting future localization uncertainty. First,
we could create a data-driven model for the likelihood of
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closing a loop as a function of the local structure. Second,
we could connect the covariance of each odometry constraint
to the robot, environment, and action, for example using
the work of Censi (2007). We believe that these steps will
lead to more accurate estimates of future uncertainty. We
also hope to generalize this method to other SLAM back
ends.

Our simulations and experimental results showed a sub-
stantial reduction of the robot’s pose and map uncertainties
when using our proposed utility function compared to the
state-of-the-art utility functions. This decrease in uncertainty
is due to the exploitation of the current map information,
resulting inmore loop closures.However, the resulting explo-
ration ismore conservative and the predictedpose uncertainty
used to compute α assumes that loops can be closed reliably.
Clearly, characterizing the reliability of the loop closure sys-
tem, and the subsequent effects on the information gain, is
an important direction for future work.

Appendix

A.1 Properties of Rényi’s Entropy

Entropy is a measure of the uncertainty of a random vari-
able (Shannon andWeaver 1949; Rényi 1960; Jumarie 1990).
A proper definition of entropy should comply with a set
of axioms that guarantee a coherent way of accounting for
uncertainty. A widely accepted set of axioms was developed
by Aczél and Daróczy (1975). Feinstein (1958) also devel-
oped an earlier and more succinct set.

The first attempt to mathematically define entropy was
fromHartley (1928). The second definitionwas developed by
Shannon and Weaver (1949), and is the most widely-known
and commonly-used definition. Finally Rényi (1960, 1970)
created a family of entropy functions, of which the entropies
of Hartley and Shannon are special cases. This family of
functions, parameterized by α, is defined as:

Hα[P(x)] = 1

1 − α
log2

(
n∑

i=1

pα
i

)
(A.1)

where pi = P(x = xi ) is an element of the probability
distribution of a discrete random variable x, so that pi ≥
0, ∀i and ∑n

i=1 pi = 1. The variable α is a free parameter
in the range [0, 1) ∪ (1,∞).

A.2 Hα at α = 0

Plugging α = 0 in to (A.1) yieldsH0[P(x)] = log2 n, which
is the Hartley entropy.

A.3 Hα as α → 1

Note from the definition of Rényi’s entropy in (A.1) that it is
undefined at α = 1. Thus to define H1[P(x)] we must look
at the limit as α → 1:

H1[P(x)] = lim
α→ 1

Hα[P(x)]. (A.2)

Applying the limit directly, we obtain a canonical indetermi-
nate form 0

0 . Applying l’Hôpital’s rule we see that:

H1[P(x)] = lim
α→ 1

(∑n
i=1 p

α
i

)−1 (∑n
i=1 p

α
i log2(pi )

)

−1

= −
n∑

i=1

pi log2(pi )

= H[P(x)]. (A.3)

In other words, in the limit as α → 1 Rényi’s entropy
becomes equal to Shannon’s entropy.

A.4 Hα as α → ∞

Attempting to compute the limit at infinity of Hα[P(x)]
directly yields infinity as a result. However, we can obtain the
true value using the squeeze theorem. We start by defining
pi ′ = max(pi ) and recall that i ∈ {1 . . . n}, 0 ≤ pi ≤ 1,
and

∑n
i=1 pi = 1. Hence, for 1 < α < ∞, the following

inequality stands:

pα
i ′ ≤

n∑

i=1

pα
i ≤ n pα

i ′ (A.4)

If we take the binary logarithm of (A.4), divide by 1−α, and
rearrange terms, we obtain a more familiar inequality:

log2(p
α
i ′) ≤ log2

(
n∑

i=1

pα
i

)
≤ log2(n pα

i ′)

α log2(pi ′) ≤ log2

(
n∑

i=1

pα
i

)
≤ log2(n pα

i ′)

α

1 − α
log2(pi ′)≥Hα[P(x)] ≥ log2(n)

1 − α
+ α

1 − α
log2(pi ′)

(A.5)

Computing the limit as α → ∞ with l’Hôpital’s rule, we
see that both sides yield the same value of − log2(pi ′).
Hence, according to the squeeze theorem, we can compute
the desired limit:

H∞[P(x)] = lim
α→∞Hα[P(x)] = − log2(max

i
pi ) (A.6)
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A.5 Monotonicity with respect to α

We seek to show that Rényi’s entropy monotonically decr-
eases with increasing α. To do this, we take the derivative
with respect to α and show that it is non-positive. Let
qi = pα

i /
∑

j p
α
j , and note that this defines a probability

distribution Q(x).
Taking the derivative of (A.1) with respect to α yields:

d

dα
Hα[P(x)] = d

dα

1

1 − α
log2

(
n∑

i=1

pα
i

)

= (1 − α)(
∑

j p
α
j )

−1(
∑

i p
α
i log pi ) + log(

∑
j p

α
j )

(1 − α)2

= (1 − α)(
∑

i qi log pi ) + ∑
i (qi log(

∑
j p

α
j ))

(1 − α)2

=
∑

i qi log pi − qi log pα
i + qi log(

∑
j p

α
j )

(1 − α)2

=
∑

i qi log pi − qi log qi
(1 − α)2

= −
∑

i qi log
qi
pi

(1 − α)2

= − KL[Q(x) || P(x)]
(1 − α)2

. (A.7)

Since both (1 − α)2 and the Kullback–Leibler divergence
KL[Q(x) || P(x)] are non-negative (Cover and Thomas
2012) the derivative is non-positive. Thus we conclude that
Rényi’s entropy monotonically decreases in α for α ∈
(1,∞).

A.6 Useful inequalities of Hα

Let us consider two values for the free parameter of the
Rényi entropy, α and α′, such that 1 ≤ α ≤ α′. For these two
values of the free parameter, we can show that:

1. H[P(x)] ≥ Hα[P(x)], ∀α ≥ 1
2. H[P(x)] ≥ Hα[P(x)] ≥ Hα′ [P(x)], 1 ≤ α ≤ α′.

A.6.1 H[P(x)] ≥ Hα[P(x)]

The function − log2(z) is convex and a non-negative weig-
hted sum operation does not affect the convexity of a
function Boyd and Vandenberghe (2004, Ch. 3), hence using
the pi as weights, the function −∑n

i=1 pi log2(zi ) is still
convex. Applying Jensen’s inequality we see that:

− log2

(
n∑

i=1

pi zi

)
≤ −

n∑

i=1

pi log2(zi ) (A.8)

where it is understood that
∑n

i=1 pi = 1. Letting zi = pα−1
i ,

(A.8) becomes:

− log2

(
n∑

i=1

pα
i

)
≤ −(α − 1)

n∑

i=1

pi log2(pi ) (A.9)

1

1 − α
log2

(
n∑

i=1

pα
i

)
≤ −

n∑

i=1

pi log2(pi ) (A.10)

Hα[P(x)] ≤ H[P(x)]. (A.11)

A.6.2 H[P(x)] ≥ Hα[P(x)] ≥ Hα′ [P(x)]

It is known Hardy et al. (1952, Theorem 16) that

(
n∑

i=1

wi x
β
i

) 1
β

(A.12)

is a monotone increasing function of β. Rewriting (A.1) as

Hα[P(x)] = log2

(
n∑

i=1

pi

(
1

pi

)1−α
) 1

1−α

(A.13)

and letting β = 1 − α, we may apply (A.12) to conclude
that (A.1) is a monotone decreasing function of α and the
inequality holds.

B Probability simplex

Let P(x) be a probability distribution of a discrete random
variable x, where pi = P(x = xi ) is an element of the
distribution, pi ≥ 0,∀i , and ∑N

i=1 pi = 1. The proba-
bility simplex �N is a N − 1 dimensional manifold in a
N -dimensional space where all the possible probabilities
distributions of a N multidimensional random variable x
lives (Principe 2010). That is:

�N =
{
p=(p1, . . . , pN ) ∈ RN , pi ≥0,

N∑

i=1

pi = 1, ∀i
}

(A.14)

Where any point p in the probability simplex has a natural
interpretation as a discrete probability distribution (Calafiore
and Ghaoui 2014).

As an example consider the probability simplex in R3

for three variables p1, p2, p3 where all possible distribu-
tions lives inside the equilateral triangle with vertices at
(1, 0, 0), (0, 1, 0) and (0, 0, 1). Figure 13 shows an illustra-
tion of the above.
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Fig. 13 The probability
simplex in R3 is shown as the
blue triangle with vertices at
(1, 0, 0), (0, 1, 0) and (0, 0, 1).
Any point on the simplex
represents a probability
distribution over three variables
p1, p2, p3 (Color figure online)
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