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Abstract We present a robust target tracking algorithm for
amobile robot. It is assumed that amobile robot carries a sen-
sor with a fan-shaped field of view and finite sensing range.
The goal of the proposed tracking algorithm is to minimize
the probability of losing a target. If the distribution of the
next position of a moving target is available as a Gaussian
distribution fromamotionprediction algorithm, the proposed
algorithm can guarantee the tracking success probability. In
addition, the proposed method minimizes the moving dis-
tance of the mobile robot based on the chosen bound on the
tracking success probability.While the considered problem is
a non-convex optimization problem, we derive a closed-form
solution when the heading is fixed and develop a real-time
algorithm for solving the considered target tracking prob-
lem. We also present a robust target tracking algorithm for
aerial robots in 3D. The performance of the proposedmethod
is evaluated extensively in simulation. The proposed algo-
rithm has been successful applied in field experiments using
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1 Introduction

The problem of tracking amoving target has received consid-
erable attention due to its wide applications, such as hospital
monitoring, surveillance, museum guidance (Trahanias et al.
2005) and selfie robots (Schneider 2015). In general, amobile
sensor (or a mobile robot) is better suited for monitoring a
large area over time than a static sensor whose sensing range
is limited. In many cases, a mobile sensor has a bounded
and limited field of view, e.g., laser range finders and RGB-
D cameras. The bounded sensing region limits the ability
of a robot when tracking a moving target. Hence, when we
assume that a sensor is mounted on a robot, it is required to
consider the orientation and range of the sensing regionwhen
controlling a robot. At the same time, it is desirable to reduce
the moving distance of the robot to save energy. In addition,
if a mobile robot is used in a domestic environment, such as
hospitals, nursing homes, and homes, it is not desirable to
draw attention from users by making frequent movements.
Due to measurement noises and uncertainties in the environ-
ment, a mobile robot may fail to track a target with its finite
sensing region. Hence, it is also important to guarantee the
performance of amobile robot against possible uncertainties.

In target tracking, it is often assumed that a sensor has an
omnidirectional or infinite sensing region and the position of
amoving target can bemeasured at all times (Kanayama et al.
1991; Belkhouche et al. 2007; Başar and Bernhard 2008).
They find a control to catch the target by setting the reference
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position of the robot as the current position of the target.
However, those approaches do not consider the visibility of
the target, which is required for many existing sensors with
a bounded and limited field of view.

Shkurti and Dudek (2014) formulate a problem of maxi-
mizing the visibility as a game for omnidirectional sensors
with an infinite range. There are a number of game-theory
based or greedy methods to maintain visibility of a tar-
get (Bhattacharya and Hutchinson 2010; Bhattacharya et al.
2007). They often assume that sensors have an omnidirec-
tional sensing region with an infinite range. Some authors
consider more realistic sensors with a finite field of view
(Bandyopadhyay et al. 2006). Some authors have presented
amotion strategy for sensorswith omnidirectional but limited
ranges (Muppirala et al. 2005; Masehian and Katebi 2014;
Murrieta-Cid et al. 2005a, 2011, 2007).

In this paper, we consider a sensor model with a bounded
and limitedfieldof viewwhich is generally used in laser range
finders, image sensors, and RGB-D cameras. Such sensor
model is considered in (Bandyopadhyay et al. 2009b; Lee
et al. 2002; Gonzalez-Banos et al. 2002; Murrieta-Cid et al.
2005b), where the risk of losing the visibility of a target is
formulated as a risk function and the negative gradient of the
risk function is used for the control. Some of them formulate
a gamewhich assumes that a target tries to escape the sensing
region while a pursuer tries to follow the target (Gonzalez-
Banos et al. 2002; Lee et al. 2002;Murrieta-Cid et al. 2005b).
Contrary to the game-based framework, we assume that the
target’s next position is predictable and the target does not
try to escape from the robot.

In Frew and Rock (2003) and Zhou and Roumeliotis
(2011), the motion of a target is predicted and the motion of
a following robot is controlled to minimize the uncertainty
of the prediction. Instead of minimizing the uncertainty, we
focus on minimizing the tracking failure probability for the
guaranteed performance. Becker et al. (1995), LaValle et al.
(1997) and Wei et al. (2014) maximize the probability of
future visibility, whose goal is similar to ours.

This paper presents a one-step looking-aheadmotion strat-
egy that maximizes the probability that the target remains in
the field of view of a mobile robot. We apply the chance-
constrained optimizationmethod (Blackmore andOno 2009)
to guarantee the upper bound of the tracking failure proba-
bility. The proposed approach provides robustness against
uncertainties in our prediction about the target’s next posi-
tion. Since no deterministic guarantee can be made under
the probabilistic or stochastic setting, our goal is to develop
a robust tracking method, which can provide a probabilis-
tic guarantee on its performance. The term, robustness, is
often used in literature if a probabilistic guarantee can be
made against uncertainty (Luders et al. 2010; Blackmore
et al. 2006). In addition, we minimize the moving distance
of a robot to save energy consumption and to cause less

annoyance from users. The problem is first formulated as a
multi-objective optimization problem which minimizes both
the upper bound on the tracking failure probability and the
moving distance. We solve the problem sequentially by first
finding a good upper bound on the tracking failure proba-
bility and then searching for a control which minimizes the
moving distance while maintaining the upper bound on the
tracking failure probability. While the considered problem
is non-convex, we divide the problem into two convex sub-
problems. Then we derive a closed-form solution when the
heading of the robot is fixed. Using the closed-form solu-
tion, we develop a real-time target tracking algorithm with a
guarantee on the tracking success probability. The proposed
robust target tracking algorithm is developed for tracking
a target in 2D and extended to track a target in a three-
dimensional space. We have validated the performance of
the proposed method extensively from a number of simula-
tions and experiments using a Pioneer robot.

This paper makes three main contributions. First, we pro-
vide a robust tracking method considering a realistic sensor
with a fan-shaped and finite sensing region and a nonlinear,
nonholonomic dynamic model. Second, the propose method
can provide a probabilistic guarantee on the tracking perfor-
mance. The upper bound on the tracking failure probability
is derived and the proposed tracking algorithm controls a
robot to minimize this upper bound. In addition, the prob-
lem is solved efficiently by convexifying the constraints on
the sensor model. Lastly, we apply the proposed algorithm
in various real systems to demonstrate its effectiveness. We
have conducted experiments using a Pioneer mobile robot in
various environments, including uncontrolled environments,
such as cafeterias and markets.

The remainder of this paper is structured as follows. The
target tracking problem in 2D is formulated in Sect. 3. The
dynamic model and sensing model are described in Sects. 4
and 5, respectively. An analytical solution to the proposed
target tracking problem is presented in Sect. 6. The proposed
robust target tracking in 3D is described in Sect. 7 for an aerial
mobile sensor pursuing a target in 3D. Results from simu-
lation and real-world experiments are presented in Sects. 8
and 9.

2 Related work

A target tracking algorithm differs greatly depending on
whether a complete or partial model of the behavior of a
target is available or not. When a behavioral model is not
considered, a tracking algorithm often does not predict the
motion of a target and treats the current position of the tar-
get as a goal position. Then the algorithm steers a robot to
the goal. Kanayama et al. (1991) define a system where the
desired state is the current position of the target and the cur-
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rent state is the position of a mobile robot and proposed a
controller satisfying Lyapunov stability. Similarly, Başar and
Bernhard (2008) designate the desired position of a robot as
the target’s position and follow the target using the H∞ opti-
mal control. Some authors integrate the robot and the target
kinematic equations with geometric rules and then suggest
a control to reach the position of a target without following
the path of the target (Belkhouche et al. 2007; Kunwar et al.
2006). In Choi andKim (2014), an observermoves in a three-
dimensional space to track a target and proposed a controller
with the stability guarantee. However, these methods do not
consider the visibility of a target.

There are approaches to maintain the visibility of a tar-
get (Murrieta-Cid et al. 2011, 2007, 2005a; Bandyopadhyay
et al. 2006, 2009b; Murrieta-Cid et al. 2005b; Bhattacharya
and Hutchinson 2010; Bhattacharya et al. 2007; Lee et al.
2002; Gonzalez-Banos et al. 2002). Bhattacharya et al.
(2007) propose a pursuit-evasion game to maintain visibility
of the target when the motion of the target is unpredictable.
They present a partition of the visibility region of the tar-
get and propose different motion strategies depending on the
region where the target lies. Bhattacharya and Hutchinson
(2010) formulate a game where the pursuer maximizes the
time that it can track the evader and the evader minimizes
it. The proposed strategy follows the equilibrium strategy.
Bhattacharya et al. (2007) and Bhattacharya and Hutchinson
(2010) assume that the position of the target is completely
known if the line of sight is not occluded. Their sensor model
has an omnidirectional and unbounded sensing region. Some
authors suggested target tracking with a bounded sensing
region (Masehian and Katebi 2014; Murrieta-Cid et al. 2011,
2007, 2005a; Muppirala et al. 2005). Masehian and Katebi
(2014) employ the parallel navigation which states that the
relative velocity between the robot and the target keeps paral-
lel to the relative position vector from the robot to the target.
But they are concerned with an omnidirectional sensor with
a limited range and they proposed the control to catch the
target. Murrieta-Cid et al. (2011, 2007, 2005a) formulate a
game-based problem to maintain the visibility of the target.
They propose the winning condition of each player by deter-
mining the lower bound on the required speed of the target
with the given upper bound on the target. Muppirala et al.
(2005) present a motion strategy based on a critical event
when the target tries to escape the sensing region. A critical
event signals the follower to perform a rotational motion to
prevent the target from escaping the sensing region. These
game-based techniques concern the worst case move of the
target. In addition, they try to keep the visibility at a fixed dis-
tance from the target (Murrieta-Cid et al. 2011, 2007, 2005a;
Muppirala et al. 2005). We can propose a more efficient con-
trol since the motion of the target is predictable and we do
not specify the desired distance between the target and the
robot.

Target tracking with a sensor model with a finite range
and limited field of view has been considered for a cam-
era sensor. There are vision-based tracking algorithms using
cameras (Jia et al. 2006; Hirai and Mizoguchi 2003; Kwon
et al. 2005). Jia et al. (2006) survey vision-based tracking
algorithms, including human-following methods. Hirai and
Mizoguchi (2003) detect the back of a human to follow the
human. Kwon et al. (2005) estimate the position of a target
using a camera and try to locate the center of the target at
the center of the image. However, the vision-based meth-
ods focus on improving image processing for detecting a
target and follow the target using a simple heuristic con-
trol. Contrary to these vision-based approaches, we approach
the problem more formally so the proposed method can be
applied to a wide range of sensors with a bounded sensing
range and limited field of view. In Lee et al. (2002) and
Gonzalez-Banos et al. (2002), a sensor is assumed to have
a limited range and 180-degree angular field of view. They
define a risk function for escaping the sensing region and
propose a controller to reduce the risk. In Murrieta-Cid et al.
(2005b), the proposed method maximizes the shortest dis-
tance that a target needs to escape the sensing region. They
find the optimal control among candidate paths generated
by sampling. They do not predict the movement of the tar-
get and find a solution considering the worst case. Panagou
and Kumar (2014) consider the tracking problem as a leader-
follower problem. If a targetmoves under specific conditions,
such that the follower can track the target easily, then the
proposed motion of the follower can guarantee successful
tracking.

When the target behavior is available, this information can
improve tracking strategies. In Bandyopadhyay et al. (2006,
2009b, a), a risk function for an edge is defined as the amount
of time required by a target to reach the edge. The escape risk
is represented as a weighted sum of risk functions of edges
and a weight of an edge is determined by the probability that
the target heads for the particular edge. Since they reduce the
risk function using the gradient of the risk function but do
not optimize it at one step, the optimality of the risk function
can not be guaranteed and the visibility of a target cannot
be guaranteed. Some authors proposed control methods to
minimize the uncertainty in the predicted location of the tar-
get (Frew and Rock 2003; Zhou and Roumeliotis 2011). The
uncertainty is measured by the area of the ellipsoid formed
by an error covariancematrix (Frew andRock 2003) or by the
trace of the covariance matrix (Zhou and Roumeliotis 2011).
However, they cannot guarantee the probability of successful
tracking.

Our proposed method guarantees the tracking success
probability. Becker et al. (1995) proposes a tracking algo-
rithm to maximize the probability of future visibility, which
is similar to ours. The method is later more formalized in
LaValle et al. (1997). However, they considered an omni-
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Fig. 1 An illustration of the target tracking problem considered in this
paper. Gray regions are the sensing region of a mobile robot. A target
is detected at time k − 1 and is located at p(k − 1). The predicted new
locationof the target isp(k) at time k. Thebluedashed line represents the
variance of the prediction. The mobile robot moves to s(k) to make sure
that the target is within the sensing range with a guaranteed probability.
a Time k − 1, b Time k (Color figure online)

directional sensor and searched for a solution in a discrete
control space while we consider a sensor with a finite and
fan-shaped sensing region and find an analytical solution
in a continuous control space. Wei et al. (2014) propose a
tracking algorithm for a robot with a sensor, which has a
fan-shaped sensing region, on a 2D plane. While they find
the control iteratively using a gradient descent method, we
formulate the problem as an optimization problem and solve
it analytically. In addition, our method has been extensively
validated in real-world experiments.

3 Problem formulation

We first develop a robust tracking algorithm for 2D and
extend it for 3D in Sect. 7.We assume that amobile robot and
a target move on a 2D plane (see Fig. 1). The mobile robot
carries a sensor with a finite and fan-shaped sensing region,
such as laser range finders and RGB-D cameras. The sensor
is rigidly attached to the mobile robot and its direction is the
same as the heading of the robot. We assume that a target is
visible if it is located within the sensing region of the mobile
robot (shaded regions in Fig. 1). The sensing region of the
mobile robot at time k is denoted by V(k).

Figure 1 shows an illustration, in which a mobile robot on
a 2D plane has detected a target from time k − 2 to k − 1
(Fig. 1a) and moves to a new location to make sure the target
is within robot’s sensing range (Fig. 1b). We assume that the
distribution of the next position of the target is available using
a motion prediction algorithm, such as Kalman filters or the
autoregressive Gaussian process motion model (Choi et al.
2014). Let p(k) ∈ R

2 be the position of the target at time k.
By the motion prediction algorithm using measurements up
to time k−1, the position of a target at time k has a Gaussian
distribution with mean p̂(k) and covariance �T(k).

The position of the robot and its heading are denoted by
s(k) ∈ R

2 and ϕs(k), respectively. Let u(k) be the control
input at time k. The motion of the robot is described by a
discrete-time dynamical system

[s(k + 1)T ϕs(k + 1)]T = f (s(k), ϕs(k),u(k)).

For the control u(k), the moving distance is denoted by
d(u(k)). The function f and d(u(k)) are described in Sect. 4.

Our goal is to find control u(k − 1), such that the target is
within the sensing region of the mobile robot at time k. The
deterministic visibility condition is p(k) ∈ V(k). By consid-
ering the uncertainty in our prediction, wewant the control to
guarantee the tracking failure probability, P(p(k) /∈ V(k)).
We formulate the tracking problem as the following multi-
objective optimization problemusing the chance-constrained
optimization method (Blackmore and Ono 2009):

Π0 : min
u(k−1)

[ε(k), d(u(k − 1))]
subject to P (p(k) /∈ V(k)) ≤ ε(k),

0 ≤ E1 ≤ ε(k) ≤ E2 ≤ 1,

[s(k)T ϕs(k)]T
= f (s(k − 1), ϕs(k − 1),u(k − 1)), (1)

where ε(k) is the upper bound on the tracking failure proba-
bility.Here, our objective is tominimize the upper bound ε(k)
instead of the tracking failure probability. Simultaneously,
we aim to minimize the moving distance of a mobile sen-
sor. Notice that the domain of ε(k) is a closed set [E1, E2].
Increasing E1 allows the robot to move shorter distances but
it may produce more tracking failures. This trade-off prop-
erty is demonstrated in Sect. 8. E2 bounds the largest value
of ε(k). If E2 is decreased to a small value, a feasible space
of controls can be empty.

To solve thismulti-objective optimization problemΠ0,we
optimize ε(k) before d(u(k − 1)) since successful tracking
depends highly on ε(k). Thus, we design two subproblems:
Π1 and Π2. In Π1, we first determine ε(k) and ϕs(k). When
the solution of Π1 is given by ε∗(k) and ϕs

∗(k), we solve
Π2 to find the optimal control u(k − 1) by minimizing the
moving distance d(u(k − 1)). These two subproblems are
shown below:

Π1 : min
ϕs (k)

ε(k)

subject to P (p(k) /∈ V(k)) ≤ ε(k),

0 ≤ E1 ≤ ε(k) ≤ E2 ≤ 1,

[s(k)T ϕs(k)]T
= f (s(k − 1), ϕs(k − 1),u(k − 1)), (2)

Π2 : min
u(k−1)

d(u(k − 1))
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subject to P(p(k) /∈ V(k)) ≤ ε∗(k),
[s(k)T ϕs

∗(k)]T
= f (s(k − 1), ϕs(k − 1),u(k − 1)). (3)

4 Mobile robot’s dynamic model

For a mobile robot on a 2D plane, its position is denoted by
s(k) = [xs(k) ys(k)]T and its heading ϕs(k) is the angle from
the x-axis. A unicyclemodel is used to describe the dynamics
of a mobile robot. The continuous-time unicycle model is as
follows:

ẋs = uv cosϕs,

ẏs = uv sin ϕs,

ϕ̇s = uw,

where uv is the directional velocity and uw is the angular
velocity of the vehicle. The admissible control inputs to the
vehicle are:

Vmin ≤ uv ≤ Vmax and Wmin ≤ uw ≤ Wmax, (4)

where Vmin andWmin are lower bounds for uv and uw, respec-
tively, and Vmax andWmax are upper bounds on velocities for
uv and uw, respectively. If uv and uw are constant from time
k − 1 to time k for a unit interval of length T , as:

s(k) = s(k − 1) + fr(uw)uv, (5)

where fr(uw) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ sin ϕs(k)−sin ϕs(k−1)
uw

− cosϕs(k)−cosϕs(k−1)
uw

]

if uw �= 0,
[
T cosϕs(k − 1)
T sin ϕs(k − 1)

]

if uw = 0.

The heading of the robot is updated from time k − 1 to time
k as:

ϕs(k) = ϕs(k − 1) + uwT .

The distance travelled by the robot can be computed as fol-
lows:

d(u) =
∫ T

0

√
(
dx

dt

)2

+
(
dy

dt

)2

dt

=
∫ T

0
|uv|dt = |uv|T,

where u = [uv uw]T .

5 Bounded fan-shaped sensing region

This section describes an approximation of the sensing region
and derives visibility conditions. Our objective is to deter-
mine a one-step look-ahead motion strategy. Hence, we
simplify notations by representing all variables and con-
straints relative to s(k − 1).

Without loss of generality, we assume that s0 = [0 0]T
and ϕs(k − 1) = ϕ0, where s0 = s(k − 1). Let s = [xs ys]T
be the position of the sensor at time k. The vector from s0
to the position of the target at time k is denoted by p. To
simplify the notation further, we omit the time index k in our
discussion below.

The sensing region at time k is a convex region bounded
by l1, l2, and lr as shown in Fig. 2. The sensing range is
limited by Rs and its angular field of view is θs, which is
assumed to be less than π . Since the tracking failure prob-
ability P(p /∈ V) cannot be represented in a closed form,
we approximate this sensing region by an N -sided polygon
bounded by lines from l1 to lN , for N > 2 (the darker region
in Fig. 2). Then, we define ai as the normal vector of li , which
points outward from the sensing region, and bi as the shortest
distance between li and the current position of the robot s0
as follows:

a1 =
[− sin(ϕs + θs/2)
cos(ϕs + θs/2)

]

, b1 = aT1 s,

a2 =
[

sin(ϕs − θs/2)
− cos(ϕs − θs/2)

]

, b2 = aT2 s.

For i = 3, 4, . . . , N ,

ai =
[
cos(ϕs + θs(2i−3−N )

2(N−2) )

sin(ϕs + θs(2i−3−N )
2(N−2) )

]

,

bi = aTi s + Rs cos(θs/2(N − 2)).

Fig. 2 The light gray region is the sensing region of a mobile robot
located at s(k). The dark gray region is the approximated sensing region
(N = 5). The normal vector of line li pointing outward from the sensing
region is denoted by ai
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We project p on to the normal vector ai . Then the projec-
tion aTi p has the Gaussian distribution with mean aTi p̂ and
variance σ 2

i = aTi �Tai , since p follows N (p̂, �T).
The following theorem shows the probabilistic visibility

condition using the approximated sensing region.

Theorem 1 Given ε > 0, suppose that s satisfies the follow-
ing conditions:

aTi s ≥ ci := aTi p̂ + β(ε)σi , for i = 1, 2, (6)

aTi s ≥ ci := aTi p̂ + β(ε)σi − Rs cos(θs/2(N − 2)),

for i = 3, . . . , N (7)

where β(ε) = Φ−1(1−ε/N ) andΦ is the cumulative distri-
bution function of a standard normal random variable. Then,
P(p /∈ V) ≤ ε.

Proof We first derive P(aTi p > bi ) ≤ ε/N for the case
i = 1. With respect to β(ε), the inequality (6) becomes

b1 − aT1 p̂
σ1

≥ β(ε).

Now,we apply the standard normal Gaussian cumulative dis-
tribution function Φ to both sides to produce

Φ

(
b1 − aT1 p̂

σ1

)

≥ 1 − ε/N

since β(ε) = Φ−1(1 − ε/N ) and Φ is a non-decreasing
function. This is equivalent to

P(aT1 p ≤ b1) ≥ 1 − ε/N

because aT1 p ∼ N (aT1 p̂, σ 2
1 ). Thus,

P(aT1 p > b1) = 1 − P(aT1 p ≤ b1) ≤ ε/N .

Similarly, we can derive that P(aTi p > bi ) ≤ ε/N for i =
2, . . . , N . Finally, using the union bound, we have

P(p /∈ V) ≤ P

(
N⋃

i=1

{aTi p > bi }
)

≤
N∑

i=1

P(aTi p > bi )

≤ ε.

	

Intuitively, an intersection of resulted constraints is a fea-

sible region where a target can be located. Since bi − βσi ≥
aTi p in Theorem 1 and aTi p is the distance between li and p,

Fig. 3 The dark gray region is a desirable region to locate a target in
order to minimize the tracking failure probability

if β is larger than zero, the resulting region is a subset of the
sensing region (the dark region in Fig. 3).

Hence, the optimization problem Π2 can be reformulated
as:

Π3 : min
uv, uw

d(u) = |uv|T
subject to aTi s ≥ ci , for i = 1, 2, . . . , N ,

Vmin ≤ uv ≤ Vmax,

Wmin ≤ uw ≤ Wmax,

[sT ϕs]T = f ([0 0]T , ϕ0, u). (8)

6 Motion strategies: analytical solutions

The optimization problem presented in the previous section
has a non-convex domain since ci is a nonlinear function
of u. We make the domain convex by fixing ϕs. For a fixed
value of ϕs, we have a set of linear constraints and a solu-
tion can be easily found. Given fixed ϕs, we first determine
the optimal β(ε) by solving Π1 and ε is computed from
the cumulative distribution function of a standard normal
random variable. With the computed β(ε), an optimal con-
trol can be determined by solving Π3. This procedure is
repeated for each ϕs ∈ H, a set of candidate headings, to
find the optimal control which minimizes the tracking fail-
ure probability and the moving distance. The candidate set
isH ⊂ {ϕ0 + uwT |Wmin ≤ uw ≤ Wmax }.

6.1 Solutions to Π1

Suppose that the next orientation of the robot ϕs is known.
Then, the optimization variable uw can be determined from
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ϕs = ϕ0 + uwT . Now, uv is the only remaining opti-
mization variable. Given uw, let fr = fr(uw), which is
from (5). Then, each constraint aTi s ≥ ci is equivalent to
(aTi fr)uv ≥ ci . For ease of notation, we define index sets
as follows: I+ = {

i | aTi fr > 0
}
, I− = {

i | aTi fr < 0
}
, and

I0 = {
i | aTi fr = 0

}
. From Theorem 1, uv must satisfy the

following conditions, which depend on the sign of (aTi fr) for
successful tracking. For i = 1, 2, . . . , N ,

⎧
⎨

⎩

uv ≥ ci/(aTi fr), if i ∈ I+
uv ≤ ci/(aTi fr), if i ∈ I−
all uv, if i ∈ I0 and ci ≤ 0.

(9)

If aTi fr = 0 and ci > 0, there is no feasible uv . By combining
constraints (8) and (9), the feasible set for uv is

Ω =
{

uv

∣
∣
∣
∣uv ≥ max

(

Vmin,max
i∈I+(ci/(aTi fr))

)

,

uv ≤ min

(

Vmax, min
i∈I−(ci/(aTi fr))

)}

. (10)

To make Ω non-empty, the lower bound on uv must be less
than or equal to its upper bound, i.e.,

max

(

Vmin,max
i∈I+(ci/(aTi fr))

)

≤ min

(

Vmax, min
i∈I−(ci/(aTi fr))

)

.

This new constraint can be represented as the following set
of inequalities. For i = 1, 2 . . . , N ,

⎧
⎪⎪⎨

⎪⎪⎩

ci/(aTi fr) ≤ Vmax, if i ∈ I+
ci/(aTi fr) ≥ Vmin, if i ∈ I−
ci/(aTi fr) ≤ (c j/(aTj fr)), if i ∈ I+, j ∈ I−
ci ≤ 0. if i ∈ I0

(11)

With these constraints, the problem Π1 can be reformulated
as:

Π4 :max β

subject to

β ≤ VmaxaTi fr − c̄i
σi

(12)

β ≤ VminaTj fr − c̄ j

σ j
(13)

β ≤ c̄iaTj fr − c̄ jaTi fr

σ jaTi fr − σiaTj fr
(14)

β ≤ − c̄h
σh

(15)

Φ−1(1 − E2/N ) ≤ β ≤ Φ−1(1 − E1/N ), (16)

for i ∈ I+, j ∈ I−, and h ∈ I0, where

c̄i =
{
aTi p̂ if i = 1, 2
aTi p̂ − Rs cos(θs/2(N − 2)) if i = 3, . . . , N .

Constraints (12)–(15) for β are equivalent to a set of
constraints (11). The constraint (16) is derived from the con-
straint 0 ≤ E1 ≤ ε(k) ≤ E2 ≤ 1 in Π0. Then the problem is
a convex problem of a single variable with linear inequalities,
which can be solved easily. The maximum β holds at one of
inequalities, hence, the optimal solution is

β∗ =min

{
VmaxaTi fr − c̄i

σi
,
VminaTj fr − c̄ j

σ j
,

c̄iaTj fr − c̄ jaTi fr

σ jaTi fr − σiaTj fr
, − c̄h

σh
, Φ−1(1 − E1/N )

}

.

If β∗ is less thanΦ−1(1− E2/N ) in (16), there is no feasible
solution. Otherwise, the solution which maximizes β can be
used to determine the minimum feasible ε∗.

We repeat this process and find the optimal ε(ϕs) for each
ϕs in H. Then the solution to Π1 is ε∗ = min{ε(ϕs) : ϕs ∈
H}. The associated ϕs

∗ is used to determine u.

6.2 Solutions to Π2

Since the objective function d(u) is an increasing function of
uv , the minimum feasible uv is the optimal solution. Hence,
by (10), the optimal u∗

v is

u∗
v = max

(

Vmin,max
i∈I+(ci/(aTi fr))

)

. (17)

Finally, the optimal control is u∗ = [u∗
v u∗

w]T , where u∗
w is

determined from ϕs
∗. The associated tracking guarantee is

ε∗, which bounds the tracking failure probability.

6.3 Selection of N

Since the number of hyperplanes to approximate the sens-
ing region can vary under different conditions, we provide
a method to choose the number of hyperplanes for better
approximations.

Let the position of a robot and the predicted position of the
target as s and p̂, respectively. We assume that the variance
of the predicted position of the target is σx = σy = σ to sim-
plify our analysis below. From Theorem 1, the upper bound
of the tracking failure probability is ε = N · (1 − Φ(v∗)),

where v∗ = mini

(
bi−aTi p̂

σ

)

and N is the number of hyper-

planes of the approximated sensing region.We can view v∗ as
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Fig. 4 The range of ε corresponding to N . a p̂ = [2500, 0]T , b p̂ =
[2000, 0]T

v∗ = min(v∗
1 , v

∗
2) by separating hyperplanes into two cases

as below:

v∗
1 = min

i≤2

bi − aTi p̂

σ
and i∗1 = argmin

i≤2

bi − aTi p̂

σ
,

v∗
2 = min

i≥3

bi − aTi p̂

σ
and i∗2 = argmin

i≤3

bi − aTi p̂

σ
.

Ifwe let εi = N ·(1−Φ(v∗
i )),we have ε = N ·max(ε1, ε2).

Since v∗
1 does not depend on N , ε1 is a linear function of

N as shown in Fig. 4. Let θp be the angle of p̂ − s from
the x-axis. Let θi be the angle of ai from the x-axis, i.e.,
θi = ϕs + (−1)i+1(θs/2 + π/2) for i ≤ 2 and θi = ϕs +
θs (2i−3−N )

2(N−2) for i ≥ 3. For simplicity of notations, we define

θ̄N = θs/(2(N − 2)). Then the following equation can be
derived:

v∗
1 = min

i

(

aTi · s − p̂
||s − p̂|| ||s − p̂||

)

/σ

= − cos(θp − θi∗1 )||s − p̂||/σ.

v∗
2 = min

i

(

aTi · s − p̂
||s − p̂|| ||s − p̂|| + Rs cos(θ̄N )

)

/σ

=
(
− cos(θp − θi∗2 ) · ||s − p̂|| + Rs cos(θ̄N )

)
/σ.

Since 0 ≤ |θp − θi∗2 | ≤ 2θ̄N , the range of v∗
2 can be

bounded as vmin ≤ v∗
2 ≤ vmax, where

vmin = (−d + Rs cos(θ̄N )
)
/σ,

vmax = (− cos(2θ̄N )d + Rs cos(θ̄N )
)
/σ

with d = ||s− p̂||. Then the range of ε2 is εmin ≤ ε2 ≤ εmax,
where εmin = N (1−Φ(vmax)) and εmax = N (1−Φ(vmin)).
The range of ε is max(ε1, εmin) ≤ ε ≤ max(ε1, εmax). We
can evaluate this bound for different values of N and choose
N to minimize the bound. An example is shown in Fig. 4a,
where the shaded region is the range of ε for the case with
p̂ = [2500, 0]T , s = [0, 0]T , ϕs = 0, and σ = 600. Note
that the area of the shaded region increases as σ decreases.

As shown in Fig. 4a, we can choose N based on the bound
on ε. One possible criterion is to choose N which minimizes
ε̂ := max(ε1, εmax), to minimize the worst-case ε. As shown
in Fig. 4a, if ε̂ = εmax, we have a tendency that ε has the
minimum value at N = 4. If ε̂ = ε1, N = 3 is the best
approximation as shown in Fig. 4b.

7 Robust target tracking in 3D

In this section, we extend the proposed target tracking algo-
rithm for amobile robot in 3Dpursuing a target using a sensor
with a bounded fan-shaped sensing region. The position of
the target at time k is p(k) ∈ R

3. We also assume that the
next position of a target is available from amotion prediction
algorithm. From the motion prediction algorithm, we have
p(k) ∼ N (p̂(k),�T(k)). Let s(k) = [xs(k) ys(k) zs(k)]T ∈
R
3 be the position of the mobile robot in 3D. Its heading

is denoted by ϕs(k) = [ϕx (k) ϕy(k) ϕz(k)]T . These angles
are xyz Euler angles. The global coordinate system follows
the North-East-Down (NED) convention. The considered 3D
robust tracking problem has the same problem formulation
as Π1 and Π2.

7.1 Dynamic model

We assume that the mobile robot in the 3D space is an
aerial vehicle with a non-holonomic aircraft-like model
(Roussos and Kyriakopoulos 2009). The continuous-time
non-holonomic model is as follows:

ẋs = uv cosϕz cosϕy

ẏs = uv sin ϕz cosϕy

żs = uv sin ϕy,

ϕ̇x = w1, ϕ̇y = w2, ϕ̇z = w3,

where the input control consists of uv , the longitude velocity
along the heading of the robot, and three angular velocities,
uw = [w1 w2 w3]T . The admissible control inputs to the
vehicle are:

Vmin ≤ uv ≤ Vmax, Wi
min ≤ wi ≤ Wi

max, for i = 1, 2, 3.

Control inputs, uv and uw, are assumed to be constant for a
unit interval of length T , and the state transition function can
be derived as:

s(k) = s(k − 1) + fr(uw)uv. (18)

When we suppose that the current position of the robot is
s0 = [0 0 0]T and its heading is ϕ0 = [ϕ0

x ϕ0
y ϕ0

z ]T , the
vectored function fr(uw) is determined as follows:
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fr(uw) =
⎡

⎢
⎣

∫ T
0 cos(ϕ0

z + w3t) cos(ϕ0
y + w2t)dt

∫ T
0 sin(ϕ0

z + w3t) cos(ϕ0
y + w2t)dt

∫ T
0 sin(ϕ0

y + w2t)dt

⎤

⎥
⎦ .

The heading of the robot is updated as follows:

ϕs = ϕ0
s + uwT . (19)

The distance travelled by the aerial robot is

d(u) = |uv|T,

where u = [uv uwT ]T .

7.2 Visibility conditions

For an aircraft-like mobile robot, the sensing region V(k) is
assumed to be a cylindrical volume as shown in Fig. 5. Its
radius is Rs and its horizontal and vertical angular field of
views are θh and θv , respectively. While the sensing region
in a 2D space is approximated by a region bounded by N
lines, the sensing region in the 3D space is approximated by
a 3D region which consists of N planes, for N > 4 (see Fig.
6). Suppose that the rotation matrix R of the aerial robot is
derived as follows:

⎡

⎣
cϕzcϕy cϕzsϕysϕx − sϕzcϕx cϕzsϕycϕx + sϕzsϕx

sϕzcϕy sϕzsϕysϕx + cϕzcϕx sϕzsϕycϕx − cϕzsϕx

−sϕy cϕysϕx cϕycϕx

⎤

⎦ ,

where cϕx and sϕx represent cosϕx and sin ϕx , respectively.
Then, we define ai as the normal vector of a hyperplane and it
points ourward from the sensing region. The shortest distance
between the hyperplane and the current position of the robot
s0 is denoted by bi :

Fig. 5 The sensing region of a 3D sensor

Fig. 6 An approximated sensing region with N sides (N = 7)

a1 = R

⎡

⎣
− sin(θh/2)
cos(θh/2)
0

⎤

⎦ a2 = R

⎡

⎣
− sin(θh/2)
− cos(θh/2)
0

⎤

⎦

a3 = R

⎡

⎣
− sin(θv/2)
0
cos(θv/2)

⎤

⎦ a4 = R

⎡

⎣
− sin(θv/2)
0
− cos(θv/2)

⎤

⎦

for i = 5, . . . , N , and θ̄i = 2i − 9 − N

2N − 8
θh,

ai = R
[
cos θ̄i sin θ̄i 0

]T
,

bi =
{
aTi s if i = 1, . . . , 4,
aTi s + Rs cos(

θs
2(N−4) ) if i = 5, . . . , N .

As done in Sect. 5, we can easily derive probabilistic vis-
ibility conditions for the approximated sensing region. We
first project the position of the target p on to the normal vec-
tor ai . The projected position has the Gaussian distribution,
N (aTi p̂, σ 2

i ), where σ 2
i = aTi �T ai . Then the following the-

orem describes the visibility conditions.

Theorem 2 Given ε > 0, suppose that s satisfies the follow-
ing conditions:

for i = 1, . . . , 4,

aTi s ≥ ci := aTi p̂ + β(ε)σi ,

for i = 5, . . . , N ,

aTi s ≥ ci := aTi p̂ + β(ε)σi − Rs cos(θh/2(N − 4)),
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where β(ε) = Φ−1(1−ε/N ) andΦ is the cumulative distri-
bution function of a standard normal random variable. Then,
P(p /∈ V) ≤ ε.

7.3 Motion strategies

The motion strategy for tracking in 3D is similar to the
solution described in Sect. 6. We first fix the orienta-
tion of the mobile robot and then solve Π1 to find the
optimal ε. With the chosen ε, an optimal control can be
determined by solving Π3. This procedure is repeated for
ϕs ∈ H. The candidate set for 3D target tracking is H ⊂{
ϕ0 + uwT

∣
∣Wi

min ≤ uiw ≤ Wi
max, for i = 1, 2, 3

}
.

Given afixedϕs, fr(uw)becomes constant and the problem
Π1 can be reformulated as Π4 in Sect. 6.1. Variables c̄i s in
Π4 are defined for target tracking in 3D as follows:

c̄i =
{
aTi p̂ if i = 1, . . . , 4,
aTi p̂ − Rs cos(θh/2(N − 4)) if i = 5, . . . , N .

The solution of Π4 for target tracking in 3D is

β∗ =min

{
VmaxaTi fr − c̄i

σi
,
VminaTj fr − c̄ j

σ j
,

c̄iaTj fr − c̄ jaTi fr

σ jaTi fr − σiaTj fr
, − c̄h

σh
, Φ−1(1 − E1/N )

}

.

where i ∈ I+ := {i | aTi fr > 0}, j ∈ I− := { j | aTj fr < 0},
h ∈ I0 := {h | aTh fr = 0}. Then the maximized β minimizes
the upper bound on the failure probability ε(ϕs) when ϕs is
given.

The procedure is repeated for each ϕs in H. Then the
solution to Π1 is ε∗ = min{ε(ϕs) : ϕs ∈ H}. and its corre-
sponding heading ϕs

∗. From Sect. 6.2, the optimal uv which
minimizes a moving distance is derived as follows,

u∗
v = max

(

Vmin,max
i∈I+(ci/(aTi fr))

)

.

Finally, the optimal control is u∗ = [u∗
v uw∗T ]T , where uw∗

is determined from ϕs
∗. The associated tracking guarantee is

ε∗, which bounds the tracking failure probability.

8 Simulations

We have conducted an extensive set of simulations for one-
step andmulti-step tracking in 2D and 3D using the proposed
method to demonstrate its properties.

8.1 Single-step target tracking in 2D

For one-step target tracking, we assume that the predicted
position of a target is given by N (p̂, �T). The covariance
matrix is assumed to be the following parameterized matrix:

�T =
[

σ 2
x ρσxσy

ρσxσy σ 2
y

]

,

where σ 2
x and σ 2

y are variances of xT and yT , respectively,
and their correlation coefficient is ρ.

The position and the heading of the mobile robot are s0 =
[0 0]T and ϕ0 = 0, respectively. We assume that a mobile
robot on a 2D plane is equipped with a Microsoft Kinect
camera. The Xbox software1 which supports a Kinect sensor
requires that θs = 57◦ and Rs = 3500mm and these values
are used in simulation. We define the failure rate as the ratio
of samples outside of the sensing region to all samples. As
shown in Sect. 6.3, we can choose N based on the bound
on ε. However, for computation efficiency, we have selected
N = 4 for all simulations below since we have empirically
found that N = 4 gave the tightest bound on ε.

Figure 7 shows the result after executing the control
computed by the proposed method based on the predictive
distribution of the target position. Red plus signs are pre-
dicted positions andblue dots are 1×106 possible positions of
a target sampled fromN (p̂, �T). The mean position of a tar-
get is p̂ = [2000 1000]T . In the figure, we show results with
σx = σy = 300 at different correlation coefficient values.
In this simulation study, we adopt weak dynamic constraints
such as Vmin = −2000, Vmax = 2000, Wmin = −π/2, and
Wmax = π/2.When the absolute value of a correlation coeffi-
cient is small, the target is located at the center of the sensing
region (see Fig. 7a, e). Figures 7d and h show the cases
with large correlation coefficient values, in which the target
is positioned near the boundary in order to contain more den-
sity with the fan-shaped sensing region, leading to lowering
the upper bound of the tracking failure probability. In addi-
tion, the degree of uncertainty also determines the location
where the target is positioned in the sensing region. If the
uncertainty is large, our method tries to locate the target at
the center of the sensing region. If the uncertainty is small, the
proposed method allows the target to be near the boundary
of the sensing region to reduce the moving distance.

We computed controls at different covariances (by varying
σ from 100 to 1000 and ρ from−0.99 to 0.99) and computed
the upper bound ε. The number of bounding lines is set to
N = 4. For each covariance value, we generated 106 samples
and computed the tracking failure rate by computing the rate
between the number of samples out of the sensing region
to the total number of samples. The results are shown in

1 http://msdn.microsoft.com/en-us/library/hh973074.aspx.
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Fig. 7 Single-step target tracking in 2D. Blue dots are sampled target
positions, black solid lines represent the sensing region, and red plus
marks are the predicted positions of the target. Parameters for the covari-
ance matrix are σx = σy = 300mm. Short blue line segments around

the origin are trajectories of a mobile robot. a ρ = 0.25, b ρ = 0.50,
c ρ = 0.75, d ρ = 0.99, e ρ = −0.25, f ρ = −0.50, g ρ = −0.75, h
ρ = −0.99 (Color figure online)
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Fig. 8 Empirical tracking failure rates at different values of ε

Fig. 8. All points are under the line y = x , which means
that the empirical tracking failure rate is always smaller than
ε, showing that the proposed method properly bounds the
actual tracking failure probability.

Since there is no existing algorithm that can be directly
compared to ours as discussed in Sect. 2, we compare the pro-
posed method to a simple tracking algorithm inspired from
the formation control (Liu et al. 2007; Tran and Lee 2011).
There are a single leader and a single follower and the fol-
lower (or the mobile sensor) tracks the leader at a certain
distance and angle. In this paper, this simple tracking algo-
rithm is called as a baseline trackingmethod. For the baseline
tracking algorithm, the control to satisfy the formation con-
dition is computed from exhaustive search.

We first tested the effects of E1 on the tracking failure
probability andmoving distance.We setσ = σx = σy = 350
and ρ is varied from −0.9 to 0.9. Figure 9 describes that the
proposed method (CC-tracking) lets a mobile robot move a
shorter distance with a smaller tracking failure probability
compared with the baseline tracking algorithm when |ρ| is
small (see Fig. 9b). In Fig. 9a, if E1 is between 10−6 and
10−2.67, the failure rates of the proposed method and the
baseline stay at a low value but the proposed method requires
shorter moving distances. If E1 is larger than 10−2.67, the
moving distance decreases dramatically while the failure
probability increases slightly to 0.013. When |ρ| is larger,
the proposed method is more robust than the baseline when
E1 ≤ 10−2.11 (see Fig. 9c). Since the proposed method can
reduce the moving distance by increasing E1, it shows bet-
ter performance in both the moving distance and tracking
failure probability at around E1 = 10−2.11. The behavior of
the proposed method when |ρ| > 0.5 is similar to that of
|ρ| = 0.5.

In Figure 9, we can also observe the tradeoff between
the tracking failure probability and the moving distance. It
is clear that increasing E1 can increase the tracking failure
probability since the upper bound of the tracking failure prob-
ability is bounded above by E1. On the other hand, increasing
E1 has a positive side effect of decreasing the moving dis-
tance of the robot. In our formulation, increasing E1 can
decrease β [see (16)] and ci [see (6) and (7)]. Then, the
optimal uv can be reduced by (17) resulting in a shorter
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Fig. 9 Tracking failure rates and moving distances as functions of E1. a |ρ| = 0.0, b |ρ| = 0.0, c = |ρ| = 0.5, d |ρ| = 0.5

moving distance. Hence, using E1, we can set the priority
between two competing objectives: decreasing the tracking
failure probability and reducing the moving distance.

In Fig. 10, we provide a simulation study showing the
gap between our method and the optimal case when both uv

and uw are optimized simultaneously for E1 = 0. Figure
10 shows the value of ε at all possible values of uv and uw.
The diagrams are generated by evaluating all points (a grid
of 201 × 201) using Theorem 1. The field for ε is smooth
in uv and uw, indicating that the proposed method can find
a solution which is closed to the optimal solution if enough
values of uw are tested. The control and the upper bound
computed by our method are denoted by u∗ and ε∗, respec-
tively. The control and the upper bound computed from the
grid are denoted by ū and ε̄, respectively. In Fig. 10, the
plus mark and the circle indicates u∗ and ū, respectively.
The figures show that the proposed method find a solution

which is close to the optimal solution. In particular, the gap
|ε∗-ε̄| is 1.937 × 10−5 for the example shown in Fig. 10a,
2.560 × 10−3 for Fig. 10b, 1.850 × 10−4 for Fig. 10c, and
1.276 × 10−3 for Fig. 10d. We have also tested for different
values of p̂: [500, 700]T , [2000, 1000]T , [3000,−2000]T ,
and [−100, 2000]T . The variance σ is varied from 100 to
1100 and ρ is varying from −0.99 to 0.99. For a total of 672
cases (4×21×8), the average gap is 1.525×10−3. The gap
is sufficiently small for all cases and the simulation study
shows that there is no significant gap between the proposed
method and the optimal solution from the joint optimization.

8.2 Multi-step target tracking in 2D

For 2D multi-step target tracking, we assume a realistic
dynamic model. The dynamic model is set to −700 ≤
uv ≤ 700 and −7π/9 ≤ uw ≤ 7π/9, according to the
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Fig. 10 Values of ε at different p̂, uv and uw . a p̂ = [500, 700]T , σ = 300,ρ = 0.5,b p̂ = [2000, 1000]T , σ = 900,ρ = 0, c p̂ = [3000,−2000]T ,
σ = 500, ρ = −0.75, d p̂ = [−100, 2000]T , σ = 500, ρ = −0.25

configuration of a Pioneer 3-AT mobile robot. The candi-
date set H has 51 uniformly spaced discrete values from
ϕs(k) + WminT to ϕs(k) + WmaxT . Figure 11 depicts how
our algorithm works for multi-step target tracking compared
to the baseline method. The blue dashed lines are the mean
predicted positions of a target and blue dots are 10, 000 posi-
tions on trajectories of the target sampled from the Gaussian
distribution of the next target location. Parameters of the
covariance matrix at each time step are randomly sampled
from σx , σy ∈ [150, 250] and ρ ∈ [−0.9, 0.9]. The red
line in Fig. 11a is the path of the robot following the target
using the proposed method.When t = 55, t = 137, t = 178,
and t = 184, ε becomes large since ρ or σ is large at that
time (see Fig. 11b). For the given scenario, Fig. 11c shows
cumulative histograms of tracking failures with respect to
simulation time steps, compared to the baseline method.
The proposed method shows more tracking successes and
there are only three tracking failures from 10, 000 trajecto-
ries when E1 = 0. The performance is evaluated for 100
different scenarios (each scenario with 10, 000 trajectories)
and the result is summarized in Table 1. When E1 = 0, the
failure rate of the proposed method (CC) is much less than
the baseline method. When we increase E1 to 5 × 10−5, we
can reduce the moving distance and the number of tracking
failures is still smaller than the baseline method, showing its
robustness.

8.3 Target tracking using real human trajectories

We have conducted simulations for multi-step target track-
ing in order to validate our algorithm in realistic scenarios
using real human trajectories. In simulation, trajectories of a
target are real human trajectories collected using the Vicon
motion capture system.2 The length of a trajectory is set to
200 and there are 86 trajectories. We assume that there are
measurement noises which are independently distributed as

2 Vicon MX motion capture system. Available at http://www.vicon.
com/.

N (
0, σ 2

n

)
. We run 20 independent simulations for each tra-

jectory with random measurement noises.
The dynamic model is set to −700 ≤ uv ≤ 700 and

−7π/9 ≤ uw ≤ 7π/9, according to the configuration of
a Pioneer 3-AT mobile robot. The candidate set H has 51
uniformly spaced discrete values from ϕs(k) + WminT to
ϕs(k) + WmaxT at time k. The range of ε is E1 = 0 and
E2 = 1.

Wehave evaluated ourmotion strategywith twoprediction
algorithms: a Kalman filter and an autoregressive Gaussian
process motion model (AR-GPMM) (Choi et al. 2014; Oh
et al. 2015). AR-GPMM model is more suitable for pre-
dicting human motion because human motion is difficult to
parameterize and unpredictable.We describe each prediction
algorithm briefly.

8.3.1 Kalman filter motion model

We combine a human motion model and a Kalman filter to
predict the next position of a target.Wedefine amotionmodel
as a mapping function F which maps m recent positions of
a target to the next position p(k), i.e., F : R2m → R

2. The
motion model is defined by an autoregressive (AR) model
which is awayof representing a time-varying randomprocess
as follows:

p(k) = c +
m∑

i=1

ψip(k − i) + nk−1, (20)

whereψ1, . . . , ψm are the parameters of the ARmodel, c is a
constant, andnk is a process noise.As (20) is a linearmodel, if
we assume the process noise nk is a white Gaussian noise, the
parameters can be estimated using the ordinary least-square
method. In this simulation, we trained parameters from data
which is collected by the Vicon motion capture system and
we set m = 3.

The state of the dynamical system is a concatenated vector
of target’s past positions

Xk = [p(k)T p(k − 1)T · · · p(k − m + 1)T ]T ,
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Fig. 11 Multi-step target tracking in 2D. a Multi-step target tracking
using the proposed method (E1 = 5 × 10−5). The red line shows the
trajectory of the mobile sensor while the blue dashed line shows the

trajectory of the target. b ε for the trial shown in (a). c Cumulative
histograms of tracking failure counts (Color figure online)

the linear motion model (20) can be written in terms of Xk

as follows:

Xk+1 = FkXk + Gk + nk .

At time k, we can only measure the current position of a
target. Hence, the measurement model is

Zk = HXk + nm,

where Zk is the measurement, noise nm follows the distri-
bution N (0,Qm), and a measurement matrix is defined as
H = [

I2×2 02×2(m−1)
]
.

Since both the dynamic model and measurement model
are linear, a Kalman filter can be easily applied to predict the
next position of a target.

8.3.2 Autoregressive gaussian process motion model

The linear motion model described above allows a limited
flexibility. Since real human motions cannot be reasonably
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Table 1 Average moving distances and failure rates of two tracking
methods: CC (proposed) and baseline

Tracking method Distance (×103) Failure rate (%)

Mean Std Mean Std

CC, E1 = 0 66.684 1.775 0.246 0.399

CC, E1 = 1 × 10−5 53.749 0.679 0.288 0.396

CC, E1 = 5 × 10−5 52.327 0.337 0.406 0.401

Baseline 53.536 0.000 0.453 0.404

The smallest moving distance and failure rate are highlighted in bold
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Fig. 12 Histograms of tracking failures from the simulation using
human trajectories at different noise levels.Histograms are plotted along
the time step of a trajectory

approximated by a linear model, a linear method can give
poor predictions. To overcome these issues, Choi et al. (2014)
proposed an autoregressive Gaussian process motion model
(AR-GPMM) defined as follows:

p(k) = f (p(k − 1), . . . ,p(k − m)) (21)

∼ GPf (p(k − 1), . . . ,p(k − m)), (22)

where GPf is a Gaussian process. It is shown that AR-
GPMM performs better in real-world scenarios, since it
employs Gaussian process regression which is a non-
parametric Bayesian regression method. In addition, AR-
GPMM is more robust to noises.

8.3.3 Results

Figure 12 shows the number of tracking failures by different
algorithms with different measurement noise levels at each
time step of a trajectory. Interestingly, as the variance of the
noise process increases, the performance of our strategy with
AR-GPMM is exceptionally better compared to the Kalman
filter prediction. This is due to the fact that prediction accu-
racy of AR-GPMM is better. Due to the inaccurate prediction
of the Kalman filter, the position of a target is located near

boundaries of the sensing region at time 80, 140, 160, and
180 as shown in Fig. 13.

8.4 Multi-step target tracking in 3D

In this section, we apply the method developed in Sect. 7
for robustly tracking a target in 3D. We assume that both the
mobile sensor and a target have the same dynamic model as
discussed in Sect. 7.1.Wehavemanually controlled the target
to collect trajectories of a target. A total of 15 trajectories are
collected and each trajectory has a length of 200.

The admissible longitude velocity of a target is larger than
0 and less than 200. The angular velocities around y-axis
and z-axis of a target are in [−π/4, π/4] and [−π/2, π/2],
respectively. The admissible range of control inputs of a
mobile sensor includes that of a target. The range is set to
0 ≤ uv ≤ 300 and −π/2 ≤ wi ≤ π/2 for i = 1, 2, 3. The
candidate set H is 113 uniformly spaced discrete values in
the feasible range. The sensing region of the mobile sensor is
set to Rs = 2000, θh = 57◦, and θv = 43.5◦, considering its
moving speed. A simulation study similar to Sect. 8.1 shows
that the 3D sensing region is best approximated when the
number of hyperplance is six and this number is used for all
simulations below.

We run simulations with different levels of measurement
noises added to the collected trajectories of the target, which
have the zero-mean Gaussian distribution with a variance
σ 2
n I3×3. Each scenario is repeated for 100 times to compute

the average performance.

8.4.1 Motion prediction algorithm

For predicting a target in 3D, we employ a Kalman filter
as explained in Sect. 8.3.1. Since the AR-GPMM for 3D
requires a much larger training data set and the motion of
the target in 3D is limited by the prescribed non-holonomic
model, we find that a Kalman filter gives good predictions.
The dynamic and measurement models of the target are

Xk+1 = FkXk + nd ,

Zk = HXk + nm,

where nd and nm are noises which follow Gaussian distri-
butions,N (0,Qd) andN (0,Qm), respectively. The state of
the system is

Xk = [p(k)T p(k − 1)T · · · p(k − m + 1)T ]T .

We measure the only current position of the target and the
measurement matrix is H = [

I3×3 03×3(m−1)
]
. The param-

eters Fk is learned using the ordinary least-square method
based on training data.
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Fig. 13 Snapshots from a simulation for tracking a target on a 2D
plane. Blue dashed lines are trajectories of a target and blue dots are
measurements with noise and red lines are trajectories of a mobile sen-
sor. a–h snapshots from a simulation using AR-GPMM. i–p snapshots
from a simulation using Kalman Filter. a AR-GPMM: time step 40, b
AR-GPMM: time step 60, c AR-GPMM: time step 80, d AR-GPMM:

time step 100, e AR-GPMM: time step 120, f AR-GPMM: time step
140, g AR-GPMM: time step 160, h AR-GPMM: time step 180, i KF:
time step 40, j KF: time step 60, k KF: time step 80, l KF: time step
100,m KF: time step 120, n KF: time step 140, o KF: time step 160, p
KF: time step 180 (Color figure online)

8.4.2 Results

We run multi-step simulations, where variances of mea-
surement noise are 102I, 502I, 752I, and 1002I. Figure 14
presents a tracking example when variance of measurement
noise is 1002I. Figure 15 plots failure rates corresponding
to time steps. Tracking is successful when the noise level
is small. But as the noise level increases, tracking failures
appear. However, our algorithm shows low tracking failure
rates.

9 Experiments

This section describes field experiments for pedestrian track-
ing.Weused aPioneer 3-ATand aPioneer 3-DXmobile robot
with a Microsoft Kinect camera mounted on top of the robot
as shown in Fig. 16. All algorithms are implemented inMAT-
LAB. The position of a person is detected using the skeleton
grab API of Xbox software. Based on the Kinect sensor the
sensing region is set to θs = 50◦ and Rs = 3000mm.
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Fig. 14 An example of multi-step target tracking in the 3D space
when the measurement noise isN (0, 1002I). Blue lines are trajectories
of a target and blue dots are the positions of the target. The red line

is the trajectory of a mobile aerial sensor and gray regions
are sensing regions (Colorfigure online)
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Fig. 15 Histograms of tracking failure from multi-step tracking in 3D
at different noise levels

Fig. 16 A Pioneer 3-DXmobile robot with aMicrosoft Kinect camera

Fig. 17 The setup for experiments in Sect. 9. The blue line and num-
bered arrows shows the path of a person. Red regions are the places
where the robot lost a track due to the cluttered background (Color
figure online)

First, we conducted experiments similar to the simulation
described in Sect. 8.3. On a floor, we marked 120 waypoints
with a length of 37.43m as shown in Fig. 17. A personmoves
from one waypoint to another waypoint in two seconds3 and
we repeated the experiment 10 times. The pedestrian walks
quite slow and is detected at every 0.13s. The proposed track-
ing algorithm was executed at every 0.3s.

Out of 10 trials, the Kalman filter based predictionmethod
was successful for only three cases while the AR-GPMM
based predictionmethod combinedwith the proposedmotion
control was successful for eight cases, showing its robustness
in practical situations. In our experiments, tracking fails at
red regions shown in Fig. 17, where the cluttered background

3 To generate the same walking pattern for all 10 trials, we slow down
all the settings of the system.
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Kalman Filter
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Fail
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Fig. 18 Snapshots from experiments to compare the tracking algorithm with a Kalman filter and AR-GPMM

increases the measurement noise. In spite of the noise, the
motion strategy with AR-GPMM prediction performs better
than the Kalman filter prediction based controller. Snapshots
of the experiment are in Fig. 18.At t = 45 s, trackingwith the
Kalman filter loses a target while tracking with AR-GPMM
succeeds.

We have also performed experiments to analyze the pedes-
trian speed when a mobile robot tracks a target successfully.
In Fig. 19, the histogram of the pedestrian speed for 4,021
steps is shown. In this experiment, we ran our motion con-
trol at 5 Hz and it was enough to track a person successfully.
Considering that we set the maximum speed of the robot to
0.4m/s for safety, the tracking performance was excellent.

We have also performed experiments in an open hall,
garage, lobby and cafeteria. These places are more realistic
than a laboratory. There are other persons moving around in
the background and sometimes several persons are detected
by the robot. To distinguish the target from others, we assume
that the target is a person who is the nearest to the previ-
ous position of the target. In all experiments, the target was
successfully tracked by the robot. In addition, the robot has
moved much shorter than the pedestrian (target) has moved.

We have also applied our algorithm for the development
of a smart shopping cart. As shown in Fig. 20, A smart shop-
ping cart is a ground robot with a basket. A smart shopping

Fig. 19 A histogram of the pedestrian walking speed when a mobile
robot successfully tracks a target

cart follows a customer in a close distance while avoiding
collisions and carries items selected by the customer. We
have developed the application using ROS4 on Ubuntu 14.04
and accelerated the prediction algorithm using a GPU. The
application is validated at the market as shown in Fig. 20. A
customer in a blue shirt is the target and the shopping cart
follows him. The customer does not have to pull the shop-
ping cart while putting items in the shopping cart. As you
see in the figure, the market is cluttered with many items
and contains complex backgrounds, which often interrupt

4 http://www.ros.org.
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Fig. 20 Snapshots from the smart shopping cart experiment in a market. A robot with a gray basket follows a customer in a blue shirt (Color figure
online)

the detection of a target. To overcome missing detections,
we have reduced the sensing range to Rs = 90 cm to make
the distance between the target and the robot shorter. Then
a Kinect sensor on the robot was able to focus more on the
target. From multiple trials at the market, the robot has suc-
cessfully followed customers. Results from this and other
field experiments are included in our video submission.

10 Conclusion

This paper proposed a motion strategy for tracking a moving
target with a guaranteed tracking failure probability using
a sensor with a bounded fan-shaped sensing region. The
proposed method also minimizes the moving distance for

the optimized upper bound on the tracking failure probabil-
ity. While the considered problem is non-convex, we have
derived analytical solutions for both 2D and 3D cases such
that it can be solved in real-time. In simulations, we have ana-
lyzed the properties of the proposed method. The method is
also applied to a number of field experiments using a Pioneer
robot with the Kinect sensor to track a pedestrian, including
the smart shopping cart application.

While the proposedmethod can avoid obstacles by adjust-
ing the feasible region of robot’s directional velocity, it
cannot handle the case when a target is occluded by obsta-
cles. In our future work, we plan to consider the visibility
region with respect to obstacles by combining the proposed
method and amulti-step path planningmethod, such asmodel
predictive control and rapidly-exploring random trees.
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