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Abstract In this paper, we investigate the following ques-
tion:whenperformingnext best viewselection for volumetric
3D reconstruction of an object by a mobile robot equipped
with a dense (camera-based) depth sensor, what formula-
tion of information gain is best? To address this question,
we propose several new ways to quantify the volumetric
information (VI) contained in the voxels of a probabilis-
tic volumetric map, and compare them to the state of the
art with extensive simulated experiments. Our proposed for-
mulations incorporate factors such as visibility likelihood
and the likelihood of seeing new parts of the object. The
results of our experiments allow us to draw some clear con-
clusions about the VI formulations that are most effective
in different mobile-robot reconstruction scenarios. To the
best of our knowledge, this is the first comparative survey
of VI formulation performance for active 3D object recon-
struction. Additionally, our modular software framework is
adaptable to other robotic platforms and general reconstruc-
tion problems, and we release it open source for autonomous
reconstruction tasks.
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1 Introduction

Object reconstruction in three dimensions is an important
step in robust perception and manipulation tasks. In order
to reconstruct an object, a mobile robot must position its
sensors at different viewpoints in order to fully observe the
object. Exhaustive observation is time consuming, so choos-
ing the views that provide the most information is critical in
performing this task efficiently.

This problem has been well studied in the robotics and
computer vision literature Aloimonos et al. (1988), Bajcsy
(1988), Blake and Yuille (1988), Chen et al. (2011), Scott
et al. (2003), but often an a priori model of the object is
assumed, the implementation is robot-dependent, or the sen-
sor pose options are constrained. Based on the current state of
the art, it is not clear that there is an optimal way to quantify
the volumetric information for the object reconstruction task,
with respect to choosing views based on maximizing infor-
mation gain. Therefore, this paper’s primary contribution is
an analysis ofmany different formulations for this volumetric
information, including the current state of the artKriegel et al.
(2015), Vasquez-Gomez et al. (2014), and several new met-
rics proposed here. We additionally release a robot-agnostic
software framework for performing autonomous reconstruc-
tion with these formulations.

This paper specifically considers the problemof 3D recon-
struction of an object or scene that is unknown a priori, but
that is spatially bounded. We assume that we obtain dense
3D input data from a camera-based sensor, but do not restrict
to a particular modality. We utilize a probabilistic volumetric
map to represent the reconstruction, and we define the infor-
mation gain (IG) in terms of the information contained in its
voxels, which we denote as volumetric information (VI). We
propose several metrics for quantifying this volumetric infor-
mation based on different ways of measuring model quality
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(e.g. completeness, entropy), which focus the reconstruction
on observing unexplored regions or refining already observed
ones. The reconstruction approach and software framework
described in this paper was originally proposed in Isler et al.
(2016), but the experimental evaluation here is significantly
expanded.

1.1 Related work

Research on the Next-Best-View problem and conceptually
similar problems in Active Vision dates back several decades
Aloimonos et al. (1988), Bajcsy (1988) but remains an active
area of research Forster et al. (2014). The most frequently
referenced surveys of the field include an overview of early
approaches by Scott et al. (2003) and an overview of more
recent work by Chen et al. (2011). We will follow the cate-
gorization introduced by Scott et al. (2003) in distinguishing
between model-based and non-model-based reconstruction
methods.

Model-based methods assume at least an approximate a
priori model of the scene, e.g. from aerial imagery Schmid
et al. (2012). They rely on knowledge of the geometry and
appearance of the object, which may not be available in
many real world scenarios. Non-model based approaches use
relaxed assumptions about the structure of the object, but the
required information for planning the next best view must
be estimated online based on the gathered data Banta et al.
(1995), Forster et al. (2014). We utilize a non-model based
approach since we do not assume anything about the object
aside from its spatial bounds.

The method used to reason about possible next actions
depends on the environment representation in which the
sensor data is registered. Scott et al. (2003) distinguished
between surface-based and volumetric approaches, andmore
recently methods have been proposed that employ both
Kriegel et al. (2015). In a surface-based approach, new view
positions are evaluated by examining the boundaries of the
estimated surface, represented by e.g. a triangular mesh Pito
(1999), Chen and Li (2005). The approach fromKrainin et al.
(2011) assumes a Gaussian distribution for the uncertainty
of reconstruction along the ray from each pixel in a depth
camera. Information gain is then the sum of the entropy
reduction along all of these rays, weighted by the surface area
represented by the pixels. A surface-based approach can be
advantageous if the surface representation is also the output
of the algorithmbecause it permits examination of the quality
of the model during its construction. However, it is com-
putationally expensive due to the more complex visibility
operations that come with a surface representation. A vol-
umetric representation, on the other hand, facilitates simple
visibility operations and also allows probabilistic occupancy
estimation Hornung et al. (2013). View positions are evalu-
ated by casting rays into the model from the candidate sensor

pose and examining the traversed voxels, therefore simulat-
ing the image sampling process of a camera. We choose a
volumetric representation for its compactness and efficiency
with respect to visibility, which forms the basis of several of
our VI formulations.

Existing volumetric informationmetrics fall into two cate-
gories: counting metrics and probabilistic metrics. Connolly
(1985) and Banta et al. (2000) count the number of unknown
voxels. Yamauchi (1997) introduced the concept of fron-
tier voxels, defined as voxels bordering free and unknown
space, and counted those. This approach has found heavy use
in the exploration community, where the exploration of an
unknown environment is the goal, rather than reconstruction
of a single object Wettach and Berns (2010). The research
of Vasquez-Gomez et al. (2014) is a recent example where a
set of frontier voxels is used for reconstruction. They count
what they call occplane voxels (short for occlusion plane),
defined as voxels bordering free and occluded space.

Among probabilistic approaches, one method is to use
information theoretic entropy to estimate expected infor-
mation Kriegel et al. (2015). This necessitates the use
of occupancy probabilities but has the advantage that the
sensor uncertainty is considered. Potthast and Sukhatme
(2014) argue that the likelihood that unknown voxels will
be observed decreases as more unknown voxels are tra-
versed and that this should be considered in the information
gain calculation. They model the observability using a Hid-
den Markov Model and introduce empirically determined
state transition laws to calculate posterior probabilities in a
Bayesian way.

We propose several VI formulations of both the counting
and probabilistic types, and specifically compare to the state
of the art metrics in Kriegel et al. (2015) andVasquez-Gomez
et al. (2014).

1.2 Contributions and outline

In this paper, we propose a set of volumetric information for-
mulations and evaluate them along with recent formulations
in the literature:

– Occlusion Aware VI Quantifies the expected visible
uncertainty by weighting the entropy within each voxel
by its visibility likelihood.

– Unobserved Voxel VI Restricts the set of voxels that con-
tribute their VI to voxels that have not been observed
yet.

– Rear Side Voxel VI Counts the number of voxels expected
tobevisible on theback sideof alreadyobserved surfaces.

– Rear Side Entropy VI Quantifies the expected amount of
VI as defined for the Occlusion Aware VI, but restricted
to areas on the rear side of already observed surfaces.
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– ProximityCount VIWeighted higher for unobserved vox-
els that are close to already observed surfaces.

We evaluate all of these VIs in synthetic experiments
designed to isolate their performance from any environmen-
tal factors. We consider the following criteria: the amount of
discovered object surface (surface coverage), the reduction
of uncertainty within the map, and the computational cost of
next best view selection. This is the first such comparative
survey of information gain metrics.

We release our modular software framework for active
dense reconstruction to the public. The ROS-based, generic
system architecture enables any position controlled robot
equipped with a depth sensor to carry out autonomous recon-
structions.

The paper is organized as follows: we introduce our pro-
posed volumetric information formulations in Sect. 2, then
give anoverviewof our software framework inSect. 3. Exper-
iments comparing the performance of the VI formulations in
a simulated environment are shown in Sect. 4. In Sect. 5, we
discuss the results of our experiments, and finally, in Sect. 6
we summarize our findings.

2 Volumetric information

To find the next best view within a set of candidates, we esti-
mate the obtainable Information gain (IG) for each view by
evaluating the amount of Volumetric information (VI) con-
tained in the visible area of the map. We define VI as the
amount of information a single voxel is expected to provide
when seen from a particular view Isler et al. (2016). The
next best view (NBV) is the view that maximizes this metric,
minus any estimated costs.

For every view v within a set of candidate sensor positions
V , the 3D points from the camera-based range sensor are
projected into the map. The projection is carried out through
ray casting, yielding a set Rv of rays cast for every view.
As each ray traverses the map we accumulate the volumetric
information within the set of visited voxels X . During ray
casting, a ray ends when it is incident on a physical surface
or when it reaches the limit of the map. The predicted IG for
a view v, denoted as Gv , is then the cumulative volumetric
information I collected along all rays r cast from v, such
that:

Gv =
∑

∀r∈Rv

∑

∀x∈X
I. (1)

The formulation of VI in Eq. 1 and the set of views for
which it is evaluated define the behavior of the system. By
choosing a VI formulation that is directly proportional to
voxel uncertainty, we can favor views that observe unknown
areas in our map. If we choose a VI formulation that assigns

Fig. 1 Visualization of the IG function with different VI formulations
in 2D on an exemplary state of the map: The map shows occupied
(black), unknown (grey) and unoccupied (green) regions and a view
candidate (white camera). Additionally frontier voxels (striped white),
unknown object sides (yellow), considered ray sets (red), maximal ray
length (dashed blue circle) and VI weights (opacity of blue triangles)
are shown. Note that the proposed Proximity Count VI behaves like the
Rear Side Voxel VI (bottom left), but with a weight that is dependent
on distance from previously observed surface voxels, which would be
difficult to visualize clearly in this diagram (Color figure online)

high values at the frontiers of unknown areas and previously
observed objects, the system will favor views that explore
these boundaries and gather more information about partly
observed objectswithin themap.We discuss a set of formula-
tions for VI considering different aspects like uncertainty in
the map or the proximity of known surfaces in the following
sections.

We illustrate several of our proposed VI formulations in
Fig. 1. These diagrams show the state of the map at one point
during the reconstruction, but simplified to 2D for clarity. A
single candidate view is being evaluated under the different
VI metrics, and this view has not yet been taken by the cam-
era, so the camera position is in an unexplored part of the
map. The voxels that are considered by each VI formulation
are illustrated with colors and shading.

2.1 Considering map uncertainty

Uncertaintywithin a volumetricmap that encodes occupancy
probabilities for each voxel can be defined using the voxel’s
entropy:
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H(x) = −Po(x) ln Po(x) − Po(x) ln Po(x), (2)

where Po(x) denotes the probability of voxel x being occu-
pied, while Po(x) is the complement probability of Po, i.e.
P0 = 1−Po.Avoxel forwhichwehaveno information about
its occupancy (Po = 0.5) has the highest uncertainty (and
hence entropy) with Po(x) = 0.5 andH(x) = 1.0 Shannon.
If we consider that a view observing a map area where we
have high uncertainty is likely to yield more information,
entropy can be used as a metric to maximize the total amount
of new information gathered in each iteration of the recon-
struction. We can therefore define a VI formulation based
purely on entropy:

Ie(x) = H(x). (3)

The corresponding IG that estimates the entropy for a view
v ∈ V is given by substituting Eqs. 3 into 1.

Kriegel et al. (2015) used the entropy as defined in Eq. 2
to propose an entropy-based IG:

Gv,Kriegel(v) = 1

n

∑

∀r∈Rv

∑

∀x∈X
H(x), (4)

where n is the total number of traversed voxels. We therefore
refer to this as Average Entropy VI. While Eq. 3 favors views
for which the cast rays traverse deep into the map and visit
many voxels, Eq. 4 may also yield a high IG for views close
to known surfaces where the rays traverse fewer voxels, but
where their entropy is high.

2.2 Visibility and occlusions

Since our map is a probabilistic voxel grid, we can con-
sider the likelihood of a voxel being visible from a particular
view instead of simply integrating entropy over all traversed
voxels. We call this formulation Occlusion Aware VI. The
visibility likelihood Pv of a voxel xn is given by:

Pv(xn) =
n−1∏

i=1

Po(xi ), (5)

where xi , i = 0 . . . n − 1 are all voxels traversed along a ray
before it reaches voxel xn . Using Eq. 5 we define:

Iv(x) = Pv(x) H(x). (6)

By substituting Eq. 6 in the IG formulation from Eq. 1, this
IG formulation estimates the visible entropy for a particu-
lar view v ∈ V , thus favoring views with a high visibility
uncertainty. This is a very natural way of dealing with occlu-
sionswithin themap: a voxel with a large unobserved volume
between its position and the view candidate is less likely to

be visible due to occlusions, and is therefore less likely to
contribute information than voxels that are closer to the sen-
sor position, or that are behind more certain free space. This
VI formulation is illustrated in Fig. 1a.

2.3 Focusing on areas of interest

In goal directed tasks, not all voxels provide the same
amount of information, and intuition about the task can
be exploited to drive the choice of NBV. For example,
when reconstructing an object, views that favor parts of
the object that have not yet been observed can reveal
more of the object’s surface. To favor view candidates
that observe task-specific areas of interest, we can define
a VI formulation that assigns high information content to
voxels that have a high likelihood of belonging to the inter-
est area or a VI that removes areas of no interest from
consideration.

An example of focus by exclusion is to only sum up VI as
defined in Eq. 6 over voxels that are thus far unobserved, and
therefore remove areas with high confidence from considera-
tion.We set up an indicator function based on the observation
state of the voxel:

Iu(x) =
{
1 x is unobserved

0 x is already observed
(7)

In combinationwith the visible entropy formulation fromEq.
6 we get:

Ik(x) = Iu(x) Iv(x) (8)

We denote this VI the Unobserved Voxel VI. It estimates the
hidden information in unobserved voxels. This VI formula-
tion is illustrated in Fig. 1b.

An example of a class of interest areas is the set of
voxels that have not been observed but are adjacent to an
occupied voxel on a ray, what we refer to as rear side vox-
els, because they represent voxels on the back side of the
occupied voxels that have already been observed. The intu-
ition here is that rays that are incident on the rear side of
an already observed surface are very likely to be incident
on previously unobserved parts of the object. The simplest
formulation for this is an indicator function, which deter-
mines whether a voxel is part of an interest area in a binary
fashion:

Ib(x) =
{
1 x ∈ So

0 x /∈ So
, (9)

where So is the set of rear side voxels, defined as unobserved
voxels such that the next voxel on their ray is estimated to
be occupied. Substituting Eqs. 9 into 1 we obtain an IG that
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counts how many of the rays cast for a particular view are
incident on an unknown side of a previously observed object
surface. Such a ray is necessarily incident on an unknown
surface of the object of interest. We denote this Rear Side
Voxel VI, and visualize it in Fig. 1c.

As an alternative to this count, we reformulate So in Eq.
9 as the set of all unknown voxels between the sensor and
an occupied voxel, combined with the entropy and visibility
based formulation from Eq. 6, such that:

In(x) = Ib(x) Iv(x). (10)

This type of VI estimates the visible uncertainty within the
unknown volume behind known surfaces. We denote it as
Rear Side Entropy VI, and visualize it in Fig. 1d.

A problemwith the intuition behind theRear Side Voxel VI
(Eq. 9) and Rear Side Entropy VI (Eq. 10) is that we consider
all of the voxels behind an observed surface to have the same
weight. For continuous objects, the voxels that are closer to
the rear side of the surface aremore likely to be occupied than
those that are farther away. We propose another VI formula-
tion that introduces a weighting factor on the information in a
voxel based on its distance behind these previously observed
surfaces.

When estimating IG from a candidate sensor pose, it
would be computationally expensive to compute the distance
behind the nearest surface for each traversed voxel. Instead,
we augment our map and implement this computation during
the data registration step when the surface is first observed.
Given a point cloud of observations from the most recent
NBV that was chosen, we continue the rays for the observed
points behind the occupied voxel up to a maximum distance
dmax . For each voxel that is traversed beyond the point, we
mark it with the distance d(x) to the surface voxel. If a voxel
is already marked, we keep the smaller distance. We then
define the Proximity Count VI as:

Ip(x) =
{
dmax − d(x) x is unobserved
0 x is already observed

. (11)

This VI functions as a weighted version of the Rear Side
Voxel VI where the weight is higher the closer it is to an
already observed surface voxel.

TheOcclusion Aware VI,Unobserved Voxel VI, Rear Side
Voxel VI and the Rear Side Entropy VI are visualized in an
exemplary 2D scenario in Fig. 1. The images show a snap-
shot of a possible state in the map during reconstruction and
how IG is estimated: each voxel has a state that is estimated
based on registered point measurements. Based on this state,
we compute the voxel’s volumetric information. This VI is
then integrated for the voxels along the rays to obtain the
information gain estimate.

3 System overview

We approach the autonomous reconstruction task as an itera-
tive process consisting of the three largely independent parts
(i) 3D model building, (ii) view planning, and (iii) the cam-
era positioning mechanism, as observed in Torabi and Gupta
(2012). The orthogonality of the involved tasks has inspired
us to design our autonomous reconstruction system in amod-
ular manner to allow for fast reconfiguration of the software
for different applications and robotic setups. We utilize the
Robot operating system (ROS) Quigley et al. (2009) soft-
ware framework, which allows a hardware-agnostic design
through the use of its interprocess communication interfaces.
Within this framework, we use off-the-shelf components for
the 3Dmodel building and camera positioning sub-tasks, and
focus only on view planning based on our proposed IG for-
mulations.

Conceptually, our systems build upon the framework pre-
sented in Isler et al. (2016): it consists of several independent
modules that interact through well-defined interfaces, yield-
ing a very flexible system architecture, as shown in Fig. 2.
Single components can be exchanged without affecting other
parts of the system, and only the sensor and robot interfaces
need to be implemented for use with a new robot platform.

The components that are part of the Perception System
are responsible for data acquisition and processing. The out-
put of this module is a point cloud of observed 3D points
in world coordinates. Our software framework allows addi-
tional information such as color or measurement uncertainty
to be included and incorporated into the reconstruction, but
we do not consider any data other than the geometry in this
work.

Fig. 2 Conceptual system overview: Main modules, important com-
ponents, and their communication interfaces (arrows) are visualized
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The Motion Planning and Control components control
the movement of the robot, where the Robot Interface (RI)
defines the interaction between robot specific code and the
othermodules. Part of this interface is a service that calculates
the cost to reach candidate views, e.g. based on their distance
from the current position or the estimated energy necessary
to carry out the movement. This component is used to keep
the robot movement bounded. The robot receives commands
to move the sensor to a given new viewpoint but carries out
path planning to reach this position itself using the Robot
Interface.

All perceived data is registered within the map, which is
part of theWorld RepresentationModule (WM). Thismodule
gives access to the current map and additionally provides a
service for information gain (IG) evaluation of given views,
as discussed in Sect. 2.

The high level behavior of the robot is controlled from the
two Behavior Planning components. We define the views-
pace as the space of candidate sensor positions, often a
discrete set of 6 DoF poses (position and orientation of the
sensor). The Viewspace Module (VM) provides the current
set of candidates to the View Planner. This may be a static
set that is fixed a priori, or a dynamic set that is recreated
and evaluated at each iteration. Static viewspaces are usu-
ally sampled from simple geometries circumscribed around
the object, such as a cylinder Pito (1999), a sphere Trummer
et al. (2010), or a combination of cylinder and hemisphere
Isler et al. (2016). Dynamic viewspaces are generated based
on the currentmap and the possible poses of the robotKriegel
et al. (2015), Wettach and Berns (2010), or may also be sam-
pled from a fixed geometry, but randomly resampled with
every iteration Vasquez-Gomez et al. (2014).

The View Planner evaluates the set of candidate views it
receives from the ViewspaceModule and determines the next
best view (NBV), which it commands to the robot as the next
target position. For every view in the viewspace, it requests
the IG Gv from the World Representation Module and the
cost Cv from the Robot Interface, calculating the utility Uv

of the view:

Uv = (1 − γ )
Gv∑
V G − γ

Cv∑
V C , (12)

where
∑

V G and
∑

V C are the total IG and cost, respectively,
predicted for the current iteration over all viewcandidates and
γ ∈ [0, 1] is the user defined cost weight. The NBV v∗ in
the current viewspace is found by maximizing Eq. 12:

v∗ = arg maxv Uv. (13)

The robot stops when a predefined termination criterion is
fulfilled. For example, this criterion could be that the highest
expected information gain for any candidate view falls below
a user defined threshold,

Algorithm 1 Active Volumetric Reconstruction
1: repeat
2: Command RI Layer to move the sensor to the NBV.
3: Signal robot to collect data from the sensors.
4: Request the view candidate set from VM.
5: Request cost for each view candidate from RI Layer.
6: Request IG for each view candidate from WM.
7: Calculate the utility function combining IGs and costs.
8: Determine NBV.
9: until Termination Criteria met
10: return Volumetric map and point cloud of object

Gv < gthresh ∀v ∈ V (14)

or that a sufficient amount of the map has been observed.

4 Experiments

Wewill first discuss howwe use the presented approach from
Sects. 2 and 3 to have a simulated mobile robot generate a
complete volumetric model of an object that is unknown a
priori, but spatially bounded. The robot positions the sensor
at different viewpoints, pointing at the volume that contains
the object, with the goal of carrying out the reconstruction
as quickly as possible. Reconstruction proceeds according to
Algorithm 1 within the View Planner module until reaching
the user’s termination criterion.

Information gain based on VI is a metric used as an indi-
cator to estimate which next view will be most informative
to the reconstruction. An informative view maximizes (i)
the amount of new object surface discovered and (ii) the
uncertainty reduction in the map. Additionally, (iii), we are
interested inminimizing the computational cost of evaluating
candidate views. We therefore evaluate our VI formulations
on these three criteria.

Ourmap representation is a probabilistic volumetric voxel
grid based onOctoMapHornung et al. (2013). TheViewspace
Module feeds the View Planner a static viewspace, which is
a reasonable choice for these experiments since we know a
priori the volume in which the unknown object is contained.
We report the performance of the reconstruction planning
using the VI formulations presented in Sect. 2. We consider
the amount of object surface discovered over time and the
uncertainty reduction in the map, as a way of quantifying
the progess of the reconstruction. We also measure the com-
putation time for each VI formulation, in order to asses its
efficiency.

4.1 Experimental setup

Our simulated experiments are designed to isolate the per-
formance of the VI formulation in the reconstruction from
any environmental factors. We utilize an uncluttered scene
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and an idealized depth sensor in order to provide optimal
performance from each view.We also use a free-moving sen-
sor as an idealized “robot” without movement constraints or
sensor pose uncertainty. Consequently, the only independent
variable in evaluating the performance is the next best view
chosen by each VI formulation.

The reconstruction scene for the simulation consists of
an object placed in an empty environment with no ground
plane. Each model was adjusted in size to be approximately
0.5 m in length along its largest dimension, so that its extent is
bounded within a 1.0 m cube. Around the object we generate
a set of 48 candidate views, distributed uniformly across a
cylinder with a half-sphere on top, such that they face the
model from different poses. We present results for a total
of 11 models: All of them have been generated from data
available online. Our dataset features the Stanford bunny and
dragon,1 the Armadillo model from TU Munich,2 and eight
models generated from color-tagged 3D range data.3 The
robot is a free-flying, idealized RGB-D sensor that captures
the structure of the scene exactly, and with which we can
carry out unconstrained movements in 6 DoF.

For a simulation environment, we use Gazebo4 in con-
junction with ROS. The generated, Gazebo-readymodels are
available online.5

All simulated reconstructions begin by placing the RGB-
D sensor at a randomly chosen view from the view space. The
sensor output is a point cloud that is integrated into theWorld
Module’s OctoMap Hornung et al. (2013). We use a resolu-
tion of 1cm for themap, with 0.97 as the likelihood threshold
to consider a voxel to be occupied, and 0.12 as the threshold
to be considered free. Views are removed from the candidate
set once visited in order to only visit novel views during the
reconstruction. We do not use the termination criterion but
instead run 20 iterations for each trial.

4.2 Evaluation

We present the results of our simulated experiments in
Table 1, and more extensive visualizations for a few select
models in Fig. 3. Reconstruction for eachmodel and VI com-
binationwas performed 20 times, eachwith a random starting
view, and the results were averaged over all of the trials.

To quantify the reconstruction progress in terms of sur-
face coverage, we compare the pointcloud models obtained

1 Available from the Stanford University Computer Graphics Lab.
2 Presented in Rodolà et al. (2013); available from TUM Computer
Vision Group.
3 GeneratedwithMeshLab from themultiple view stereo (MVS) dataset
Jensen et al. (2014) from the Image Analysis and Computer Graphics
section at DTU Denmark.
4 http://www.gazebosim.org.
5 http://rpg.ifi.uzh.ch.

during reconstruction with a pointcloud generated from the
ground truthmodel. For each point in the ground truthmodel,
the closest point in the reconstruction point cloud is queried.
If this point is closer than a registration threshold6 the sur-
face point of the original model is considered to have been
observed. The surface coverage cs is then the percentage of
observed surface points compared to the total number of sur-
face points of the model:

Surface coverage cs = Observed surface points

Surface points in original model
.

(15)

To calculate the total entropywe consider a bounding cube
with 1.28 m side length around the object and define the total
entropy to be

Entropy in map =
∑

Entropy of voxels within cube.

(16)

All the models evaluated in simulation have an extent less
than 1 m3. For our OctoMap resolution of 0.01 m, a cube
with (1.28 = 0.01 × 27) m side length is the smallest level
in the octree completely containing our models. The result-
ing maximal entropy within this bounding box, where each
voxel is initialized to an occupancy likelihood of 50%, is
−(27)3 log2 0.5 = 2.097 × 106 Shannon.

For both surface coverage and entropy, we have computed
the area under the curve (AUC) as a way to summarize the
performance of each VI over the course of the full recon-
struction procedure. The view iteration is normalized by the
maximum number of views (20 in our experiments) and the
maximum value of the metric, and then the area is computed
for each VI. Therefore, the AUC varies between 0.0 and 1.0,
with a higher value being better for surface coverage, and a
lower value being better for entropy. Note that since there
are many unobserved voxels in the scene, the entropy AUC
remains high, even for the best performing VIs.

We also measured the time required to evaluate the next
best view for each VI formulation, averaged over each itera-
tion, over all of the 20 trials and all of the 11models. All trials
were performed on a PC with an 8-core Intel i7-4770K CPU,
operating at 3.50GHz, and using 8 parallel threads for the
ray-casting step in evaluating each view. The timing results
are presented in Table 2.

We compare our formulations to the information gain
methods proposed by Kriegel et al. (2015) (see Eq. 4) and
Vasquez-Gomez et al. (2014). Vasquez-Gomez et al. (2014)
define desired percentages αdes,oc = 0.2 and αdes,op = 0.8 of
occupied and occplane voxels in the view, respectively, and

6 We chose dreg = 0.5cm.
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Table 1 Simulation results for all tested models and VI formulations, averaged over 20 trials each

Model VI Surface coverage [%] Iteration nr. Entropy in map Model VI Surface coverage [%] Iteration nr. Entropy in map

2 4 6 10 AUC AUC 2 4 6 10 AUC AUC

OA 0.732 0.904 0.960 0.963 0.882 0.9473 OA 0.645 0.882 0.980 0.993 0.893 0.9466

UV 0.741 0.910 0.959 0.963 0.883 0.9473 UV 0.594 0.857 0.980 0.994 0.887 0.9466

RSV 0.686 0.941 0.961 0.964 0.881 0.9471 RSV 0.647 0.833 0.908 0.986 0.876 0.9464

RSE 0.714 0.949 0.961 0.964 0.884 0.9472 RSE 0.636 0.811 0.933 0.988 0.878 0.9464

PC 0.798 0.930 0.954 0.964 0.888 0.9472 PC 0.766 0.950 0.979 0.990 0.908 0.9465

VG 0.844 0.950 0.961 0.963 0.895 0.9471 VG 0.776 0.944 0.973 0.981 0.906 0.9463

Kr 0.742 0.919 0.955 0.961 0.883 0.9470 Kr 0.652 0.903 0.974 0.989 0.896 0.9466

Rand 0.719 0.883 0.922 0.958 0.872 0.9470 Rand 0.643 0.876 0.957 0.986 0.885 0.9464

OA 0.665 0.894 0.955 0.957 0.869 0.9401 OA 0.607 0.810 0.915 0.924 0.829 0.9462

UV 0.657 0.889 0.955 0.956 0.867 0.9401 UV 0.568 0.800 0.915 0.924 0.824 0.9462

RSV 0.669 0.951 0.955 0.958 0.882 0.9402 RSV 0.605 0.721 0.868 0.916 0.812 0.9461

RSE 0.692 0.951 0.954 0.958 0.884 0.9402 RSE 0.622 0.794 0.869 0.920 0.825 0.9461

PC 0.883 0.949 0.954 0.958 0.893 0.9406 PC 0.707 0.861 0.898 0.917 0.839 0.9464

VG 0.815 0.934 0.946 0.952 0.882 0.9403 VG 0.716 0.880 0.908 0.916 0.842 0.9463

Kr 0.718 0.894 0.928 0.950 0.867 0.9400 Kr 0.575 0.870 0.899 0.910 0.827 0.9459

Rand 0.714 0.904 0.935 0.952 0.870 0.9401 Rand 0.583 0.781 0.865 0.903 0.813 0.9460

OA 0.676 0.932 0.963 0.969 0.883 0.9418 OA 0.494 0.717 0.883 0.936 0.820 0.9443

UV 0.718 0.932 0.963 0.969 0.886 0.9418 UV 0.521 0.741 0.907 0.934 0.825 0.9442

RSV 0.683 0.935 0.955 0.967 0.884 0.9419 RSV 0.417 0.615 0.859 0.927 0.798 0.9440

RSE 0.645 0.935 0.961 0.966 0.883 0.9419 RSE 0.461 0.599 0.883 0.930 0.807 0.9437

PC 0.731 0.925 0.952 0.966 0.885 0.9423 PC 0.604 0.789 0.873 0.932 0.836 0.9447

VG 0.724 0.883 0.915 0.953 0.870 0.9417 VG 0.622 0.798 0.858 0.910 0.826 0.9436

Kr 0.670 0.893 0.940 0.963 0.872 0.9415 Kr 0.467 0.795 0.869 0.911 0.812 0.9443

Rand 0.656 0.849 0.919 0.959 0.864 0.9418 Rand 0.524 0.737 0.820 0.899 0.800 0.9439

OA 0.814 0.942 0.957 0.957 0.888 0.9411 OA 0.723 0.871 0.992 0.999 0.901 0.9462

UV 0.836 0.946 0.957 0.957 0.890 0.9410 UV 0.689 0.887 0.994 0.999 0.901 0.9462

RSV 0.812 0.954 0.957 0.959 0.893 0.9409 RSV 0.685 0.717 0.965 0.999 0.886 0.9462

RSE 0.800 0.954 0.957 0.958 0.892 0.9409 RSE 0.651 0.743 0.964 0.999 0.883 0.9462

PC 0.924 0.951 0.956 0.957 0.897 0.9411 PC 0.881 0.993 0.998 0.999 0.929 0.9464

VG 0.874 0.940 0.944 0.949 0.887 0.9409 VG 0.896 0.994 0.998 0.999 0.931 0.9463

Kr 0.798 0.945 0.952 0.955 0.888 0.9410 Kr 0.695 0.991 0.996 0.998 0.917 0.9458

Rand 0.760 0.925 0.945 0.955 0.882 0.9409 Rand 0.739 0.935 0.988 0.998 0.912 0.9459

OA 0.548 0.717 0.879 0.889 0.791 0.9445 OA 0.532 0.766 0.869 0.901 0.807 0.9450

UV 0.617 0.750 0.878 0.889 0.799 0.9446 UV 0.466 0.766 0.868 0.898 0.800 0.9452

RSV 0.549 0.606 0.714 0.876 0.754 0.9445 RSV 0.481 0.623 0.693 0.843 0.750 0.9451

RSE 0.577 0.702 0.801 0.886 0.780 0.9445 RSE 0.527 0.673 0.745 0.861 0.776 0.9448

PC 0.633 0.836 0.881 0.887 0.810 0.9450 PC 0.494 0.722 0.821 0.887 0.788 0.9451

VG 0.734 0.840 0.879 0.885 0.815 0.9448 VG 0.616 0.744 0.827 0.874 0.804 0.9446

Kr 0.573 0.851 0.882 0.888 0.806 0.9433 Kr 0.563 0.751 0.816 0.893 0.804 0.9446

Rand 0.566 0.791 0.867 0.887 0.795 0.9437 Rand 0.473 0.692 0.784 0.878 0.778 0.9445

OA 0.601 0.853 0.888 0.919 0.828 0.9439 OA Occlusion Aware (Sec. 2.2)

UV 0.569 0.853 0.890 0.919 0.827 0.9439 UV Unobserved Voxel (Sec. 2.3)

RSV 0.565 0.665 0.850 0.907 0.797 0.9440 RSV Rear Side Voxel (Sec. 2.3)

RSE 0.638 0.816 0.868 0.904 0.815 0.9439 RSE Rear Side Entropy (Sec. 2.3)

PC 0.636 0.833 0.873 0.894 0.816 0.9446 PC Proximity Count (Sec. 2.3)

VG 0.657 0.830 0.871 0.892 0.819 0.9437 VG Area Factor (Vasquez-Gomez et al. 2014)

Kr 0.570 0.787 0.881 0.907 0.810 0.9433 Kr Average Entropy (Kriegel et al. 2015)

Rand 0.593 0.786 0.848 0.900 0.808 0.9437 Rand Random View

Surface coverage is shown for several iterations during the reconstruction procedure. Additionally, the Area Under the Curve (AUC) is shown for the surface coverage and entropy.
Surface coverage AUC is normalized by total reconstruction steps (20); higher is better, with a maximum of 1.0. Entropy AUC is normalized by the maximum possible entropy in
the map, and total reconstruction steps; lower is better. We compare our proposed formulations to the state of the art (Kriegel et al. 2015; Vasquez-Gomez et al. 2014) as well as
randomized view selection without consideration of IG. The best performing VI is shown in bold for each model and column
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Dragon Owl Rabbit

Fig. 3 Surface completion (top) and total map entropy (bottom) for
selected models. These models illustrate how the Area Factor VI
Vasquez-Gomez et al. (2014) and our proposed Proximity Count VI
formulation perform significantly better in surface completion over the

first five views of an object than the other VIs. The Average Entropy VI
Kriegel et al. (2015) also performs well, but not as consistently in the
first views. The total map entropy plots also illustrate how that metric
is not well correlated with surface completion

Table 2 Timing results for each VI formulation, averaged over all tri-
als, models, and views in the simulated experiments. Differences in
computational cost are negligible across all of the proposed VIs and the
state of the art

Volumetric information Avg. time per view [s]

Occlusion Aware 3.7798

Unobserved Voxel 3.7786

Rear Side Voxel 3.7709

Rear Side Entropy 3.7889

Proximity Count 3.7756

Area Factor (Vasquez-Gomez et al. 2014) 3.7618

Average Entropy (Kriegel et al. 2015) 3.7714

base the IG formulation on the difference in the expected
percentages αoc and αop:

Gv,Vasquez(v) = f (αoc, αdes,oc) + f (αop, αdes,op) (17)

with

f (α, αdes) =
{
h1(α, αdes) if α ≤ αdes

h2(α, αdes) if α > αdes
(18)

where

h1(α, αdes) = − 2

α3
des

α3 + 3

α2
des

α2 (19)

and

h2(α, αdes) = − 2

(αdes − 1)3
α3 + 3(αdes + 1)

(αdes − 1)3
α2

− 6αdes

(αdes − 1)3
α + 3αdes − 1

(αdes − 1)3
(20)

f (·) is equal to one if the estimated percentage matches the
desired percentage. This formulation is referred to as Area
Factor VI.

We also compare all of the VI formulations to a next best
view planner that chooses randomly from the available views
in the view space at each iteration.

5 Discussion

Considering our target scenario—3D reconstruction of a
bounded object by a mobile robot with a camera-based depth
sensor— we evaluated the proposed and state of the art vol-
umetric information formulations based on their ability to
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choose views that efficiently lead to a complete object model.
Based on our simulated experiments, theArea Factor VI pro-
posed by Vasquez-Gomez et al. in Vasquez-Gomez et al.
(2014) and our proposedProximity Count VI exhibit superior
performance during the first few views of the object. Using
the Area Under the Curve as a metric for the efficiency of the
reconstruction over the full trial, both of these VIs also out-
perform the other formulations, performing best on 4 of the
11 models each. However, other VIs typically achieve com-
parable or superior surface coverage after 4–6 views, and
beyond 6–10 views, depending on the model, the surface
completion is asymptotic.

Choosing random views performs reasonably well when
averaged over many trials, but the variance is much larger
than any of the proposed or state of the art VIs. While this
approachwould be computationally less expensive than eval-
uating all of the candidate views for information gain, the
computation time per view in our tests was small enough
(<< 10 s) that taking additional random views would not be
more efficient based on the time for most mobile robots to
move between views.

The Average Entropy formulation from Kriegel et al.
(2015) is most effective at reducing the entropy in the map,
achieving the best AUC for most of the models. However,
measuring the total entropy reduction in the map does not
discriminate between the VIs very well, based on our tri-
als. The ability of a VI formulation to effectively reduce
the entropy in the map is not well correlated with its effec-
tiveness in surface reconstruction. Indeed, this conclusion
is supported by the update procedure for a volumetric rep-
resentation like ours. Since we must observe the same
voxel multiple times to increase our certainty about its
occupancy, and therefore decrease its entropy, we would
therefore fail to optimize our observation of new regions
of the object. Additionally, for many robotic applications
such as the estimation of grasping affordances, map entropy
would be much less informative than surface completion
in completing the task. However, for scenarios in which
the certainty about the occupancy of the volumes is more
important than completeness,Average Entropy is more effec-
tive than any of the other VIs, but the results are not very
conclusive.

Within our software framework, computational cost is
negligibly different between all of the proposed and state
of the art VI formulations. Consequently, the efficiency of
the reconstruction is dependent primarily on the number of
views required to reconstruct the object.

Based on the results of our experiments, in which we
isolated the choice of formulation for volumetric informa-
tion as the primary independent variable, the performance of
the Vasquez-Gomez et al. Area Factor VI and our proposed
Proximity Count VI make them the best choices for efficient
reconstruction.

6 Conclusion

In this work, we have considered the problem of next-best
view selection for 3D reconstruction by a mobile robot
equipped with a camera, where the robot builds a probabilis-
tic map in real time, and quantifies the expected information
gain from a set of discrete candidate views. We proposed
several formulations to quantify this information gain for
the volumetric reconstruction task, including visibility like-
lihood and the likelihood of seeing new parts of an object
when performing volumetric reconstruction. The next best
view is selected by optimizing the expected information gain
over the candidate views of the object.

We evaluated these formulations with extensive simulated
experiments in order to asses the contribution that each VI
formulation makes in the performance at the reconstruction
task. Due to the use of an uncluttered scene containing only
the object, and an idealized sensor with no uncertainty in
its measurements or position, our experiments isolated the
performance of each VI formulation, without effects from
environmental factors. The results of the experiments indi-
cate that our proposed Proximity Count VI and the Area
Factor VI from Vasquez-Gomez et al. (2014) both pro-
vide comparably high levels of reconstruction completeness
during the first few views, as well as over the course of
the whole procedure, on a set of models with a variety of
shapes and degrees of complexity and convexity. However,
the experimental results also showed that in most cases, the
reconstruction is able to achievemost of itsmodel completion
within a small number (<10) of well-chosen views, regard-
less of the choice of VI formulation.

Our active reconstruction framework is adaptable to other
robotic platforms and reconstruction problems, and has been
released open source. The software and videos demonstrating
its performance are available at: http://rpg.ifi.uzh.ch.
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