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Abstract This paper presents an approach to guide a fleet
of Unmanned Aerial Vehicles (UAVs) to actively gather
data in low-altitude cumulus clouds with the aim of map-
ping atmospheric variables. Building on-line maps based on
very sparse local measurements is the first challenge to over-
come, for which an approach based on Gaussian Processes is
proposed. A particular attention is given to the on-line hyper-
parameters optimization, since atmospheric phenomena are
strongly dynamical processes. The obtained local map is
then exploited by a trajectory planner based on a stochastic
optimization algorithm. The goal is to generate feasible tra-
jectories which exploit air flows to perform energy-efficient
flights, whilemaximizing the information collected along the
mission. The system is then tested in simulations carried out
using realistic models of cumulus clouds and of the UAVs
flight dynamics. Results on mapping achieved by multiple
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1 Introduction

Context Atmospheric models still suffer from a gap between
ground-based and satellitemeasurements. As a consequence,
the impact of clouds remain one of the largest uncertain-
ties in the climate General Circulation Model (GCM): for
instance the diurnal cycle of continental convection in climate
models predicts a maximum of precipitation at noon local
time, which is hours earlier compared to observations—this
discrepancy being related to insufficient entrainment in the
cumulus parameterizations (Genio and Wu 2010). Despite
the continual efforts of cloud micro-physics modelers to
increase the complexity of cloud parameterization, uncer-
tainties continue to persist in GCMs and numerical weather
prediction (Stevens andBony 2013). To alleviate these uncer-
tainties, adequate measurements of cloud dynamics and key
micro-physical parameters are required. The precision of
the instruments matters for this purpose, but it is the way
in which samples are collected that has the most important
impact. Fully characterizing the evolution over time of the
various parameters (namely pressure, temperature, radiance,
3D wind, liquid water content and aerosols) within a cloud
volume requires dense spatial sampling for durations of the
order of 1h: a fleet of autonomous lightweight Unmanned
Aerial Vehicles (UAVs) that coordinate themselves in real
time could fulfill this purpose.
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The objective of the SkyScanner project,1 which gathers
atmosphere and drone scientists, is to conceive and develop
a fleet of micro UAVs to better assess the formation and evo-
lution of low-altitude continental cumulus clouds. The fleet
should collect data within and in the close vicinity of the
cloud, with a spatial and temporal resolution of respectively
about 10m and 1Hz over the cloud lifespan. In particular, by
reasoning in real time on the data gathered so far, an adaptive
data collection scheme that detects areas where additional
measures are required can be much more efficient than a
predefined acquisition pattern: this article focuses on the def-
inition of such adaptive acquisition strategies.

Challenges The overall control of the fleet to map the
cloud must address the two following problems:

– It is a poorly informed problem. On the one hand the
UAVs perceive the variables of interest only at the posi-
tions they reach (contrary to exteroceptive sensors used
in robotics, all the atmosphere sensors perform pointwise
measures at their position), and on the other hand these
parameters evolve dynamically. Themapping problem in
such conditions consists in estimating a 4D structurewith
a series data acquired along 1D manifolds. Furthermore,
even though the coarse schema of air currents within
cumulus clouds is known (Fig. 1), the definition of laws
that relate the cloud dimensions, the inner wind speeds,
and the spatial distribution of the various thermodynamic
variables is still a matter of research—for which UAVs
can bring significant insights.

– It is a highly constrained problem. The mission duration
must be of the order of a cumulus lifespan, that is about
1h, and the winds considerably affect both the possible
trajectories of the UAVs and their energy consumption—
all the more since we are considering small sized motor
gliders aircrafts (maximum take off weight of 2.0 kg).
Since winds are the most important variables that influ-
ence the definition of the trajectories and are mapped as
the fleet evolves, mapping the cloud is a specific instance
of an “explore vs. exploit” problem.

Exploring cloud with a fleet of UAVs is therefore a par-
ticularly complex problem. The challenge to overcome is to
develop non-myopic adaptive strategies using myopic sen-
sors, that defineUAVmotions thatmaximize both the amount
of gathered information and the mission duration.

Related work Atmospheric scientists have been early
users of UAVs,2 thanks to which significant scientific results

1 https://www.laas.fr/projects/skyscanner/.
2 Cf the activities of the International Society forAtmosphericResearch
using Remotely piloted Aircraft—ISARRA, http://www.isarra.org.

Fig. 1 Schematic representation of a cumulus cloud. The arrows rep-
resent wind velocities, the orange blobs denote areas where mixing
is occurring between the cloud and the surrounding atmosphere. This
representation is very coarse: for instance the updrafts in the center of
the cloud are known to behave as “bubbles” when the cloud is young.
The cloud dimensions can vary from one to several hundreds of meters
(Color figure online)

have rapidly been obtained in various contexts: volcanic
emissions analysis (Diaz et al. 2010), polar research (Hol-
land et al. 2001; Inoue et al. 2008) and naturally climatic
and meteorological sciences (Ramanathan et al. 2007; Cor-
rigan et al. 2008; Roberts et al. 2008). UAVs indeed bring
forth several advantages over manned flight to probe atmo-
spheric phenomena: low cost, ease of deployment, possibility
to evolve in high turbulence (Elston et al. 2011), etc. An in-
depth overview of the various fixed-wing airframes, sensor
suites and state estimation approaches that have been used so
far in atmospheric science is provided in Elston et al. (2015).

In these contexts, UAVs follow pre-planned trajectories to
sample the atmosphere. In the robotics literature, some recent
works have tackled the problem of autonomously explor-
ing or exploiting atmospheric phenomena. The possibility
of using dynamic soaring to extend the mission duration for
sampling in supercell thunderstorms has been presented in
Elston and Argrow (2014). In this case, only the energetic
consumption is optimized, and the gathered information does
not drive the planning. Lawrance and Sukkarieh (2011a, b)
present an approach where a glider explores a wind field
trying to exploit air flows to augment flight duration. The
wind field is mapped using a Gaussian Process Regression
framework (GPR), and the wind currents are simulated using
combinations of sines and cosines and a toroidal model for
updrafts, and a constant lateral drift is added to introduce
dynamicity. The authors propose a hierarchic approach for
the planning, where a target point is firstly selected and then
a trajectory to reach it is generated for every planning cycle.
In a similar scenario, a reinforcement learning algorithm to
find a trade-off between energy harvesting and exploration
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is proposed in Chung et al. (2015). Autonomous soaring
has also been studied, as in Nguyen et al. (2013), where a
glider has to search for a target on the ground. The goal
here is to maximize the probability of detecting the target
traveling between thermals with known location. The prob-
lem of tracking and mapping atmospheric phenomena with
a UAV is also studied in Ravela et al. (2013). The authors
use GPR to map the updraft created by a smoke plume. Even
though themapped currents are not taken into account for the
navigation, it is worth to remark that contrary to the previ-
ous contributions, here experiments with a real platform are
presented. This shows the possibility of online mapping of
atmospheric phenomena by a fixed-wing UAV using GPR.
An other significant contribution on wind-field mapping is
presented in Langelaan et al. (2012): aiming at autonomous
dynamic soaring with a small UAV, the authors present and
approach in which the wind field is modelled by polynomi-
als, which parameters are estimated with a Kalman Filter.
Experiments in which the mapped wind-field is compared
to an “air-truth” obtained by tracking lighter than air bal-
loons small are presented. Finally, autonomous exploration
of current fields is not exclusively related to aerial appli-
cations: the use of Autonomous Underwater Vehicles for
oceanographic studies has been recently investigated (Das
et al. 2013; Michini et al. 2014).

Besides in Michini et al. (2014), in all the aforementioned
work only the use of a single vehicle to achieve the mission
is considered, and no multi-UAV systems are proposed.

Contributions and outline The work presented in this article
tackles the following problem: a fleet of a handful of UAVs
is tasked to autonomously gather information in a specified
area of the cloud. The UAVs trajectories are optimized using
an on-line updated dense model of the variables of inter-
est. The dense model is built on the basis of the gathered
data with a Gaussian Processes Regression, and is exploited
to generate trajectories that minimize the uncertainty on the
required information, while steering the vehicles within the
air flows to save energy. The results presented here signif-
icantly extend the preliminary work depicted in Renzaglia
et al. (2016): they use a realistic dynamic aircraft model, and
extensive simulation in dynamic cloudsmodels are analyzed.
The main contributions of this work with respect to the state
of the art are:

– The mapped phenomenon varies a lot in time and space,
and the ability to build proper wind maps is essential, as
it conditions the ability to derive optimal adaptive sam-
pling schemes. The hyperparameters of the GP are hence
learned online (Sect. 2), and an analysis of their evolution
is proposed (Sect. 4).

– An original exploration technique based on a stochastic
optimization scheme is proposed to plan feasible trajec-
tories in the mapped current field (Sect. 3). The approach

aims at optimizing possibly contradictory goals: aug-
menting the information gathered so far, while minimiz-
ing energy consumption.

– Realistic simulations based on a cumulus cloud model
produced by realistic large-eddy simulations and a real-
istic motor glider flight dynamics model are presented
(Sect. 4). Some exploration tasks are depicted, varying
the criteria to optimize, and we show the ability of our
approach to perform the specified mission in a realistic
setting.

A discussion concludes the paper and proposes further
research and development directions to explore, so as to
effectively deploy adaptive fleets of drones within atmo-
spheric phenomena.

2 Mapping clouds

Maintaining a reliable map of the environment is of course
of utmost importance for exploration tasks, as it is necessary
to assess both the feasibility of trajectories and the relevant
sampling locations. In the case of atmospheric phenomena,
there are numerous variables of interest to the meteorologist.
Of particular interest is the 3D wind vector: it is both one
of the most dynamic atmospheric variables and an essential
information for planning feasible and energy efficient paths.
We therefore focused our work on the mapping of dynamic
3D wind currents.

Due to the sparsity of the sampling process in a dynamic
3D environment, the GPR probabilistic framework is partic-
ularly adapted for this mapping problem, as shown by related
work (Lawrance and Sukkarieh 2011a, b; Ravela et al. 2013;
Das et al. 2013). Being statistical in nature, GPR allows to
estimate the quality of predictions. This is naturally exploited
in active perception tasks, such as in Souza et al. (2014),
where the authors derives exploration strategies for outdoor
vehicles, and in Kim and Kim (2015), where a GP frame-
work is used to drive surface reconstruction and occupancy
mapping.

The mapping framework used in this paper is similar to
the one presented in Lawrance and Sukkarieh (2011a), where
three independent GP models are used to map the com-
ponents of the 3D wind vector, but we propose an online
hyperparameter optimization, which is activated between
each planning iteration. We have also focused efforts on
deriving interesting and fast to compute information metrics
from the model to drive the exploration strategies.

2.1 Gaussian process regression model

We introduce here briefly the usage of Gaussian processes
for regression tasks. We refer the reader to the work of Ras-
mussen and Williams (2006) for an in-depth view of the
subject.
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Gaussian process regression is a very general statistical
framework, where an underlying process y = f (x): Rn →
R is modeled as “a collection of random variables, any finite
number of which have a joint Gaussian distribution” (Ras-
mussen and Williams 2006). One can view this as a way to
set a Gaussian prior over the set of all admissible functions:
given a location x ∈ R

n , the values y taken by all admissible
functions are distributed in a Gaussian manner. Under the
Gaussianity assumption, the process is fully defined by its
mean and covariance:

m(x) = E[ f (x)] ,

k(x, x′) = E[( f (x) − m(x)( f (x′) − m(x′))] .
(1)

In this model, the mean m and covariance k are not learned
directly from the data, but given as parameters. Inmost cases,
the process is assumed to have zero mean, so that the only
parameter is the covariance function or kernel. We currently
do not use any particular prior information and adopt a zero
mean process: this is amatter of furtherwork, thatwill explic-
itly define the relations between the higher level coarse cloud
model and the dense GP-basedmodel, as well as the relations
between the various variables of interest.

The kernel encodes the similarity of the target process f at
a pair of given inputs and so describes the spatial correlations
of the process. Given a set of n samples (X,Y ) and assuming
zero mean, the GP prior is fully defined by the n × n Gram
matrix �X,X = [k(Xi , X j )] of the covariances between all
pairs of sample locations. Inference of the processes value
y� at a new location x� is then done by conditioning the joint
Gaussian prior distribution on the new samples:

ȳ� = �x�,X�−1
X,XY,

V[y�] = k(x�, x�) − �x�,X�−1
X,X��

x�,X

(2)

The posterior Gaussian distribution at location x� of the
values of all admissible functions in the GP model therefore
has mean ȳ� and variance V[y�], which can be used both to
predict the value of the function and to quantify the uncer-
tainty of the model at this location.

Thanks to the Gaussianity assumption, inference has a
closed form solution involving only linear algebraic equa-
tions. Computing the model is done inO(n3), due to the cost
of inversion of the � matrix and subsequent computation
of the posterior are done in O(n2). This can be done online
using optimized linear algebra software for models of up to
a few hundreds of samples.

2.2 Learning hyperparameters

The choice of the expression of the kernel function k is cen-
tral: it sets a prior on the properties of f such as its isotropy,

stationarity or smoothness. The only requirement for the ker-
nel function is that it has to be positive semidefinite, which
means the covariance matrix � of any set of inputs must be
positive semidefinite and therefore invertible. In practice, one
selects a family of kernels, whose so called hyperparameters
are learned to fit the data. We selected the most widely used
squared exponential kernel with additive Gaussian noise:

kSE (xi, xj) = σ 2
f e

− 1
2 |xi−xj|M|xi−xj| + δi jσ

2
n (3)

where δi j is the Kronecker delta function, M = l−2 I is a
diagonal matrix that defines the characteristic anisotropic
length scales l of the process, and σ 2

f and σ 2
n are respectively

the process variance and the Gaussian noise variance over
the measures. The squared exponential kernel is stationary,
anisotropic and infinitely smooth.

The kernels hyperparameters θ = (σ f , l, σn) are chosen
by maximizing the Bayesian log marginal likelihood crite-
rion:

log p(Y|X, θ) = −1

2
Y��−1Y − 1

2
log |�| − n

2
log 2π (4)

This is a non-convex optimization problem: the optimiza-
tion function may be subject to local maxima, and therefore
may not always converge in finite time.Optimizing the kernel
hyperparameters is computationally demanding: although
the partial derivative of Eq. (4) with respect to θ can be
computed in O(n3), convergence to a local optimum may
involve a great number of steps. Usually the optimization of
hyperparameters is therefore done offline.

In our context, the input space is the four dimensional
space-time location of the UAVs, and the estimated variables
are the three components of the 3D wind vector. Therefore
we train three GP models separately, making the simplify-
ing assumption that there is no correlation between the three
components. The optimization of hyperparameters is done
online: indeed the underlying atmospheric process’s length
scales may vary from one cloud to the other, and the sta-
tionarity assumption may not hold during the course of the
mission. To alleviate computational issues we keep only the
most relevant samples. This is done by setting a tolerance
value htol , so that when comparing the newest sample xn to
an older one xo, and setting all spatial coordinates to zero,
the older one is discarded if k(xn, xo) < htol . Using this
criteria on the covariance instead of the age of the samples
lets the amount of retained samples adapt to the the temporal
length scale of the process. In order to avoid dropping all
data if the optimization produces very short length scale on
the time dimension, we also specify a minimum amount of
time it has to stay in the model, which was set to 1min in our
experiments.
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Fig. 2 Illustration of theGP-basedmapping process applied in a realis-
tic wind field. The left pictures represent the ground truth of the vertical
wind velocity, pictures in the middle show the computed maps on the
basis of the measures taken at the positions denoted by a black dot (the
measure standard deviation σn is equal to 0.25m), and the right images

show the predicted variances of the map. Unit of all depicted values is
ms−1. The sequences of measures are defined by the planning approach
presented in Sect. 3. From top to bottom, a time lapse of 20s separates
each line of pictures, the altitude shown is the one of the first UAV,
respectively 800, 825 and 850m

Figure 2 illustrates the mapping of the wind vertical com-
ponent, by virtually gathering wind data in a realistically
simulated wind field (see Sect. 4.1.1).

2.3 Computing information metrics on trajectories

As the task at hand is an exploration one, it is crucial to be
able to properly evaluate the quantity of information a set
of new samples add to the current map, so as to enable a
planning process to select informative trajectories. Since the
GP framework encodes probability distributions, the result-

ing maps are particularly well adapted for this purpose: the
variance of the GP as defined by Eq. (2), which represents
the uncertainty of the current model at each point in space,
is a natural candidate to evaluate the utility of new measure-
ments.

The problem of selecting the best possible futuremeasure-
ments to estimate a statistical model has been extensively
studied. The idea is to minimize the variance of the estimator
using a statistical criterion. Chung et al. (2015) integrate the
variance of the GP over the region to be mapped and derive a
measure of the quality of the model. Unfortunately, a closed-
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from expression of this integral does not exist in general.
The integration criterion defined in Chung et al. (2015) is an
instance of I-optimality. Other classical criteria directly seek
to minimize the covariance matrix:

– D-optimality aims to maximize the differential Shannon
entropy of the statistical model, which comes to max-
imizing the determinant of the information matrix (the
inverse of the covariance matrix).

– T-optimality aims to maximize the trace of the informa-
tion matrix.

We have found very few differences between these two cri-
teria in previous work (Renzaglia et al. 2016), so we used the
T-optimality criterion in the experiments, which it is slightly
faster to compute.

To efficiently evaluate the information gain of a new set
of measurement points, we define the conditional covariance
�Xnew |X of the set ofm new pointsXnew againstX, the points
already included in the regression model:

�Xnew |X = �Xnew,Xnew − �Xnew,X�−1
X,X��

Xnew,X (5)

The �Xnew |X matrix is of fixed size m × m, independent
of the size of the model, which yield swift computations.
The matrix itself is computed inO(nm2 +mn2), subsequent
inversion or computation of the determinant are performed
in O(m3). The value vT of the T-optimality criterion is thus
defined as:

vT (�Xnew |X) = tr([�Xnew |X + σ 2
n I ]−1) (6)

This criterion does not yield absolute values, not even
positive ones. The scale will depend on the kernel function
and on the number of samples in the model. Therefore it is
only useful for comparing trajectories generated using the
same model (and with the same amount of new samples).
To be able to integrate this information measure in a multi-
criteria optimization framework, it is necessary to normalize
it. We introduce here an empirical way of normalizing the
information measure.

Assuming a fixed sampling rate, the feasible trajectory
maximizing the information measure in a completely empty
model is a straight line in the spatial direction where the
covariances length scale is the shortest. Computing the util-
itymeasure vTb for such a trajectory gives an upper bound for
a best set of samples. Driving the UAV along a straight line
in the direction of the longest length scale would still provide
a passable utility vT p (as the model is still empty). Setting
absolute utilities for vTb and vT p then enables to define a
normalization for the information measure. This normalized
value is not relative anymore, it takes into account the current

state of the model: if the model is very dense, with low vari-
ances everywhere, then the normalized utility will be very
low (depending on the normalization function) because we
compare it to an ideal empty model. Note that these ideal tra-
jectories must be feasible for the UAV, at least in a windless
environment. As we use fixed wing UAVs, it is not realistic
to drive them along a strictly vertical trajectory. Therefore
when the shortest length scale is the vertical one, we assume
a trajectory at maximum climb rate, with the horizontal com-
ponent along the second shortest length scale.

3 Energy-efficient data gathering

The regression model presented in the previous section is
the basis on which the energy-efficient data gathering strat-
egy is developed. The local map built with the GPs is indeed
the source of two fundamental information to plan the tra-
jectories: generate feasible trajectories, and predicting the
information gain their execution will bring. The optimization
problem to solve can be then formulated as follows: generat-
ing safe and feasible trajectories which minimize the total
energy consumption according to the mapped wind field,
while maximizing the information collected along the paths.

Planning in currents fields is a challenging problem even
in standard start-to-goal problems, where a robot moves in a
static two-dimensional flow and assuming a perfect knowl-
edge of the map (Petres et al. 2007; Soulignac 2011). Our
scenario is deeply different, since the field is changing over
time, is initially unknown and sensed during the mission and
it is not possible to identify an optimal final goal to reach in
order to reduce the problem complexity. Furthermore, even
though we do not consider large swarm of UAVs, the deploy-
ment of a small number of aircrafts (typically around 3–4) is
crucial for the success of the mission, leading to larger plan-
ning spaces. All these complex issues, combined with strong
computational constraints imposed by the requirements of
on-line planning, make this multi-criteria optimization prob-
lem particularly challenging. As a result, obtaining a global
optimal solution is not feasible and we limit our convergence
requirements to local optimal solutions.

For the trajectory generation and evaluation, we consider
short-time horizons (typically in the order of ∼20s). This
choice is motivated by two main reasons: firstly, the reli-
ability of our local models significantly decreases in time,
making unrealistic any long-term prediction; secondly, the
computational constraints would be harder to respect with
larger optimization spaces. Each planning horizon ΔT is
then divided in m sub-intervals of duration dt in which the
optimization variables (controls) are constant. As a result,
the trajectory for the UAV j during ΔT is described by the
sequence u( j)

i , with i ∈ {1, . . . ,m}, and a given initial con-

dition u( j)
0 .
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3.1 Trajectory evaluation

The first criterion to evaluate the trajectories is the energy
consumption. Flying within currents leads indeed to energy
costs which strongly depend on the planning: flying against
strong wind can hugely increase the amount of required
energy, while optimally exploiting these currents (and espe-
cially ascending air flows) can on the other hand allow the
UAVs to significantly extend their flight duration. To take
into account this phenomenon in the trajectory evaluation,
we explicitly consider the total energy consumed by the fleet
over a planning horizonΔT . This value is simply represented
by the sum over time of the input power Pin(t), which is one
of the controls on which the trajectories are optimized. Intro-
ducing normalization terms, for the aircraft j , we have:

U ( j)
E (t0,ΔT ) = 1 − 1

Pmax
in ΔT

t0+ΔT∑

t=t0

P( j)
in (t)dt. (7)

The total fleet energetic utility UE is given by average this
value over the UAVs. Note that this criterion is strictly local
and does not take into account the total amount of energy
stored in the batteries: this is rather a concern for the higher-
level decision process, that must for instancemake sure every
UAV can come back the ground station. It is also independent
of the trajectory of the UAVs. Indeed exploitation of the wind
field is an indirect result of the combination of minimiza-
tion of the energetic expense with other goals. For example
when trying to reach a higher altitude, trajectories that tra-
verse updrafts will need less energy for the same climb rate
and therefore will be preferred over trajectories outside the
updraft.

The second criterion for the trajectory evaluation is
the information gain UI . To predict the information util-
ity acquired by a given set of trajectories we use the
T-information metric: after sampling the planned trajecto-
ries at at fixed sampling rate, we compute the relative utility
of the Xnew samples vT (�Xnew |X) using (6). A linear normal-
ization is obtained using UI (vTb) = 1 and UI (vT p) = 0.5,
subsequently clipping values above one and below zero:

UI (v) = max

(
0, min

(
1,

v + vTb − 2vT p
2(vTb − vT p)

))
. (8)

As discussed in Sect. 2.3, vTb and vT p are respectively the
best and worst expected information gains for an ideal recti-
linear trajectory that is not influenced by winds, on an empty
model with current hyperparameters. This waywe are able to
compute an absolute measure for the information gain, that
takes into account both the current samples in the model and
the hyperparameters. As the model fills up with samples, the
information gain lowers in already visited areas. The choice
of UI (vT p) influences what is considered a good sampling:

setting it to a low value degrades the utility of sampling along
dimensions with a longer length scale, whereas setting it to
a value close to one would not favor any particular sampling
direction. The values UI (vTb) = 1 and UI (vT p) = 0.5 have
been empirically chosen.

The third considered criterion, UG , is strictly dependent
on the specific goal of eachmission. The acquisition of infor-
mation within a given area is one of the essential task issued
by the higher planning level. Formally, defining a rectangular
box b, the utility of a given trajectory for this task is defined
as:

U j
G(t0,ΔT ) = db(X

j
t0+ΔT ) − db(X

j
t0)

VzmaxΔT
, (9)

where X j
t is the position of the j-th UAV at time t and db(X)

is the distance between the UAV and the closest point of the
box boundary (db(X) = 0 if the UAV is inside the box). The
total utility for the fleet is the mean value over all UAVs.

To tackle this centralizedmulti-criteria optimization prob-
lem we consider a linear combination of the three criteria:

Utot = wEUE + wIUI + wGUG . (10)

In Sect. 4.2 we analyze in details the effects on the mission
of different choices of the weights wx . In future work it is
our intention to explore also different methods to tackle this
multi-criteria optimization problems, e.g using multi criteria
decision making approaches (Basilico and Amigoni 2011).

3.2 Trajectory optimization

For everyΔT , we can now formulate the trajectory optimiza-
tion problem, which consists in maximizing a global utility
function Utot (u) as a function of the control variables u,
subject to some constraints:

|u( j)
i − u( j)

i−1| ≤ Δumax ∀ i, j. (11)

As defined in details in “Appendix 1”, our controls inputs are
the turn radius R and the motor power input Pin . To tackle
this optimization problem, we propose a centralized two-step
approach3: a first phase based on a blind random search in
order to have a good trajectories initialization, followed by a
gradient ascent algorithm to optimize them.

3.2.1 Trajectory initialization

The first phase of the optimization process, based on a blind
random search, is achieved creating a set of feasible trajecto-
ries obtained by a constrained random sampling of controls

3 Section 5 discusses this centralization issue.
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ut , and exploiting the approximated field generated by the
GP regression. The trajectories are then evaluated using the
utility function Utot and the best set of Nr trajectories is the
initial configuration for the gradient ascent phase. The pres-
ence of the first sampling step is due to the strong dependence
of the gradient-based solution on the initial configuration. In
this way, even though we only have local convergence guar-
antees, the probability of getting stuck in local maxima far
from the global optimal trajectories is reduced.

3.2.2 Stochastic gradient approximation

Toperform thegradient ascentwe adopt a constrainedversion
of the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm (Spall 2005; Sadegh 1997). This algorithm
is based on successive evaluations of the utility function to
obtain a numerical approximation of the gradient. At every
algorithm iteration k, the optimization variables u are hence
updated as follows:

uk+1 = Π(uk + ak ĝ(uk)), (12)

where Π is a projection operator to force u to stay in the
feasible space, and ĝ is the gradient approximation, forwhich
we used the two-sided version:

ĝk(uk) =

⎡

⎢⎢⎣

U (uk+ckΔk )−U (uk−ckΔk )
2ckΔk1

...
U (uk+ckΔk )−U (uk−ckΔk )

2ckΔkN

⎤

⎥⎥⎦ , (13)

where Δ is a random vector. Note that, due to the simul-
taneous perturbation of all the optimization variables, every
iteration requires only two evaluations ofU , regardless of the
optimization space dimension. This is in contrast with other
popular stochastic gradient approximation algorithms, such
as the Finite Difference Stochastic Approximation (FDSA),
which require 2p evaluations, where p is the dimension of
the vector u. At the same time, under reasonable general con-
ditions, these algorithms achieve the same level of statistical
accuracy for a given number of iterations (Spall 2005). This
point may be crucial for real-time applications and when the
optimization function evaluation is time consuming, as in our
case. To ensure the convergence of the algorithm, a simple
and popular distribution for the random perturbation vector
Δk is the symmetric Bernoulli ±1 distribution, and the con-
ditions on the gain sequences ak, ck are:

ak > 0, ck > 0, ak → 0, ck → 0,
∞∑

k=0

ak = ∞,

∞∑

k=0

a2k
c2k

< ∞. (14)
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Fig. 3 Illustration of the trajectory generation process in a realistic
wind field, for a planning horizon ΔT = 20 s. Projections on the xy
plane for the random sampling initialization, optimized trajectory and
final trajectory executed by the UAV are shown. The red star represents
the initial position and the map colors shows the vertical component of
the wind—with no particular units, the redder being the highest (Color
figure online)

A standard choice which satisfies the previous conditions is:

ak = a

(k + 1)α
ck = c

(k + 1)γ
. (15)

Practically effective and theoretically valid values for the
decay ratings α and γ are 0.602 and 0.101 (Spall 1998).
The coefficients a and c are more dependent on the par-
ticular problem and their choice significantly affects the
optimization result. The parameter c represents the initial
magnitude of the perturbations on the optimization variables
and, for every variable, we fixed it at ∼5% of its maximum
range. Lower values would increase the number of required
iterations to converge, while higher values would result in
instability of the algorithm since the perturbation would not
be local anymore. The coefficient a is instead chosen as a
function of the desired variation in these variables after the
update at early iterations, which can be set at same order of
the perturbations. To do this reliably, we use few initial iter-
ations to have a good estimation of the gradient ĝk(u0) and
we then exploit Eq. (12) to fix a.

3.3 Illustrative examples

Figure 3 shows the different phases of the trajectory genera-
tion for one UAV in one planning horizon within a realistic
wind field. An xy projection of the trajectories is shown,
including the vertical wind prediction at the starting alti-
tude and time. The random sampled trajectories are shown
in black, with the best one in blue. The SPSA algorithm
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Fig. 4 Behavior of Utot over a planning horizon ΔT as a function of
SPSA iterations

then locally optimizes the best trajectory, resulting here in a
loop more tightly closed around the center of the updraft (in
green). The open-loop executed trajectory is shown in red,
following closely the planned trajectory.Only a portion of the
optimal trajectory is actually executed before the next plan-
ning phase. The utility function in this case is given by Utot ,
with no information term. Its maximization as a function of
SPSA iterations is shown in Fig. 4.

Figure 5 shows some trajectories obtained after a few iter-
ations of the trajectory planning process, in an illustrative
two-dimensional case where fictitious current fields and util-
ity maps have been defined so as to ease results visualization
and understanding. Here the utility is defined as a scalar map
and the optimization function is given by the sum of the util-
ity collected along the trajectory. The figures show the results
for both a single and a multi-UAV case. It is clear how the
algorithm forces the UAVs to spread to avoid visiting the
same locations in the three-UAVs case. When possible, cur-
rents are also exploited in order to visit more locations, and
so collect more utility, in the same amount of time.

4 Integrated simulations

The final objective of the SkyScanner project to experiment
the flight of a fleet of drones within actual cumulus clouds
is yet to be achieved. Beforehand, intensive simulations are
required to assess the validity of the proposed solutions.
This section depicts a first integrated simulation architecture,
which aims at validating the mapping and planning algo-
rithms. Various results are depicted, focusing in particular
on the mapping performance and the learning of the GPR
hyperparameters.
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Fig. 5 a one UAV ismoving in a 2D environment where a scalar utility
map and a wind field are defined. The trajectories initialized by a blind
search at every planning-horizon ΔT are shown in magenta, and the
final trajectories provided by the SPSA algorithm are in red. b 3 UAVs
are steered in the same environment to maximize the total utility (only
the final trajectories are shown)

4.1 Simulation setup

4.1.1 Cloud model

To validate the mapping and planning algorithms, real-
istic cloud simulations are required: this is provided by
atmospheric models, that can simulate the microphysical,
dynamical, optical and radiative properties of clouds.

The atmospheric model used for the current study is
Meso-NH (Lafore et al. 1998). This model is the result

123



500 Auton Robot (2018) 42:491–512

of the joint collaboration between the national center of
meteorological research (CNRM, Météo-France) and Lab-
oratoire d’Aéorologie (LA, UPS/CNRS). Meso-NH is a
non-hydrostatic model with the flexibility to simulate atmo-
spheric phenomena at awide range of resolutions that extends
from 1m up to 10km. For this work, non-precipitating
shallow cumulus clouds over land are simulated with the
large-eddy simulations (LES) version ofMeso-NH, with res-
olutions down to 10m. The simulationwas driven by realistic
initial conditions obtained on June 21, 1997 from meteoro-
logical measurements at the Southern Great Plains site in
Oklahoma,USA (Brown et al. 2002). This site is the first field
measurement site established by the Atmospheric Radiation
Measurement (ARM) Program.

To capture more details about clouds and their surround-
ings, it is preferable to set the atmospheric model at its
highest resolution. The considered simulation domain is a
cube of 400 × 400 × 161 grid points representing a vol-
ume of 4 km × 4 km × 4 km with horizontal resolutions of
dx = dy = 10m, vertical resolutions from dz = 10–100m
and a time-step of 0.2 s. This setup is a compromise between
the desired high resolutions and a reasonable simulation com-
putation time.4

The 161 vertical levels have a high resolution of 10m
in both convective cloud and surface layers; in the upper
cloud-free troposphere, the domain has stretched resolutions
from 10 up to 100m. The upper five layers of the simulation
domain act as a sponge layer to prevent wave reflection. In
addition, the horizontal boundary conditions are cyclic with
a periodicity equal to the horizontal width of the simulation
domain. The simulation estimates the following atmospheric
variables: cloud liquid water content, water vapor, pressure,
temperature, and the three components of wind. Figure 6
illustrates the 3D cloud water content of convective cumulus
clouds at a given time. The overall simulation covers a time
period of 15h, but variables of interest have been saved every
second only during 1h that corresponds to the maximum of
surface fluxes.

4.1.2 UAV control

For the trajectory planning we choose a simplified aircraft
model which, whilst being computationally light, captures
the essential characteristics of the flight dynamics necessary
to simulate realistic trajectories. The considered UAV is a
Mako aircraft, 1.3m wingpsan tail-less fixed wing airframe
(Fig. 7), which model is depicted in “Appendix 1”. The real-
ism of the model relies on two hypotheses. The first one is
that the UAVs evolve in wind fields of moderate strength
and turbulence, such as in the fair weather conditions in

4 Days of computing on a large cluster are required to produce such
simulations.

Fig. 6 Meso-NH LES simulation: liquid cloud water content of the
cumulus formed at 1h30 PM (ARM Southern Great Plains, June 21,
1997 conditions)

Fig. 7 Mako aircraft used as a model for the simulations

which cumulus clouds form. The second hypothesis is that
the trajectories of the UAVs are not overly dynamic, which
is consistent with the general design of the UAVs sent by
meteorologist for such missions and the selected UAV for
the project: dynamic maneuvers indeed degrade the mea-
surements quality, and are not energy efficient.

We assume a constant total airspeed V : the fixed pitch
propeller that is used on the aircraft yields a small flight enve-
lopewhere it works efficiently, and the Paparazzi controls are
designed for a fixed airspeed. Trajectories consists of a series
of command pairs (R, Pin), which correspond to time slices
during which the commands are constant. Their computation
is depicted in “Appendix 2”: R defines the turn radius and
direction of the UAV, and Pin the power drawn by the motor
from the battery. As V is kept constant, all other parameters
are bound. To further simplify the dynamics, changes in turn
radius and direction between planned steps are assumed to
happen instantaneously. Changes in climb rate as a result of
a change of propulsive power Pin are linear. The key param-
eters and coefficients are estimated from the analysis of the
Mako aircraft selected for field experiments in the SkyScan-
ner project.

123



Auton Robot (2018) 42:491–512 501

Fig. 8 Simulation architecture

4.1.3 Simulation architecture

We tested our planning andmapping framework using a fairly
simple simulation architecture, depicted Fig. 8. The planning
algorithm optimizes the joint trajectory of all UAVs using
the predictions of the GP mapping framework. The resulting
control sequences are then sent to the UAVs, which execute
them with the dynamic model used to plan the trajectories
in open-loop: no trajectory tracking is applied, but the wind
ground truth influences the UAV actual motions, which then
differ slightly from the planned motions.5

A wind sampling process is simulated by adding zero
mean and fixed variance Gaussian noise on the wind ground
truth. This constant noise model is a simplification of the
actual errors made by processes that estimate the wind on
board micro UAVs (in Langelaan et al. 2011; Condomines
et al. 2015, the errors are indeed Gaussian, but depend of
the airspeed—yet in our simulations the aispeed is kept con-
stant).

These wind samples are then fed to the three GP models,
eachmodeling one component of the 3Dwind vector. TheGP
hyperparameter optimization step is performed before each
planning iteration.

5 The implementation of a trajectory tracker in the Paparazzi autopilot
is under way within the SkyScanner project.

The whole simulation loop is not real-time, as all steps
happen in sequence and no particular attention has been paid
to optimize the computing time. In fact, whilst the plan-
ning algorithm runs faster than real-time, the hyperparameter
optimization step can last up to a few minutes. This costly
step has not been finely tuned, and its implementation has
not been optimized—all computations were performed using
only one core on a i7 3.60GHz CPU. The simulation frame-
work is implemented in Python, with the exception of the
UAVmodel and theGPmapping frameworkwhich are imple-
mented in Cython and C++ for speed purposes. The GP
hyperparameter optimization is performed using the basin-
hopping algorithm implementation of the SciPy package,
with the ‘L-BFGS-B’ algorithm for local bound constrained
optimization. Ten local optimization steps are achieved each
time. Bounding the hyperparameters allows avoiding com-
pletely incoherent solutions, particularly in the beginning of
the simulations, and quickens the convergence.

4.1.4 Scenarios

We conducted three sets of simulations corresponding to
three different optimization scenarios:

All: Utot = 1

3
UE + 1

3
UI + 1

3
UG

No information: Utot = 1

2
UE + 1

2
UG

No energy: Utot = 1

2
UI + 1

2
UG

These scenarios have been chosen to show the possibilities
and versatility of the proposed framework, even with simple
linear combinations of criteria. For each scenario, a set of
80 simulations were run, with all other parameters remain-
ing the same. The task to achieve is the exploration of an
area defined as a box, that spans 400m in the x and y axes,
and which is 20m thick along the z axis and centered at an
altitude z = 1.0 km. Three identical UAVs start the mission
from a unique position located under the center of the box, at
an altitude of 800m. The total simulation duration is 5min.
Although all simulations share the same starting point for the
UAVs, the initial direction is chosen at random. This, coupled
to the fact that the initial map starts empty, results in com-
pletely different trajectories and maps after a few dozen of
seconds of simulation. Also, we picked a single cloud in the
weather simulation to carry our experiments, but the whole
weather simulation shares the same properties, and clouds of
similar size are very similar. To generate cloud with different
properties, one would have to run the weather simulations
again with other initial conditions and models, which was
not within our reach.
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We choose a planning horizon of ΔT = 20 s with a
dt = 1 s resolution, but a re-planning is done each 10 s, so
that only the first half of each planned trajectory is executed.
The UAVs airspeed V is set to 15ms−1. Planning is done
by sampling 200 random perturbations, then performing 400
SPSA algorithm steps. The mapping algorithm tolerance on
the time dimension is set to 0.1 or 60 s, whichever the longest
(seeSect. 2.2). Spatio-temporal length scale hyperparameters
l = (lx , ly, lz, lt ) are bounded between 1 and e5 ≈ 150m
(respectively seconds) and the σ f and σn parameters are
bounded between e−10 and e10 m (values are expressed as
exponentials because GP library optimizes the logarithm of
the hyperparameters). In the absence of a precise prior on
the σ f and σn parameters, we chose an interval wide enough
to let the hyperparameters optimization step scale them as
needed.

4.2 Results

Figure 9 shows typical trajectories for the three UAVs up
to 150 s of simulation, in the ‘No Information’ scenario that
favors the reduction of energetic expense. A first interesting
result is that the planning algorithm allows the UAVs to ben-
efit from updrafts by circling in high vertical wind regions,
thus climbing with a lesser energy expense up to the target
altitude. The UAVs then manage to stay around the desired
altitude: the trajectories are less characteristic here, as the
information gathering utility is disabled. The planned trajec-
tories seem quite natural, avoiding unnecessary changes in
heading.

4.2.1 Performance of the wind prediction for trajectory
planning

We analyze results for the vertical component of the wind,
as it is both the most relevant information for the planning
algorithm and the onewith the largest amplitude in theMeso-
NH simulation. Over all the simulated flights, the sampled
values span from −2.8 to 5.0ms−1. Figure 10 shows the
RMSE of the wind prediction during the planning iterations
as a function of time, computed along all the executed tra-
jectories. After an initial stabilization period of about five
iterations (50 s), the mean error converges towards 0.5ms−1

(6% relative error), which is quite a good estimate consider-
ing the sensors additive Gaussian noise of standard deviation
0.25ms−1 (3% relative error). It is also interesting to note
that the scenario does not impact significantly the mean error
of the GP regression, when considering the mean value over
the trajectory. The prediction of the error is also quite good,
the standard deviation estimated by theGPP follows a similar
pattern as the RMSE (Fig. 11).

We can further investigate the quality of the prediction by
looking at the standard normal deviate, obtained by divid-
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Fig. 9 Examples of 3D trajectories of the three UAVs from t = 0 s to
t = 150 s in the ‘No information’ scenario. The vertical wind compo-
nent ground truth is shown in colors. All UAVs start on the bottom at
altitude 0.8 km at the beginning of the simulation (Color figure online)

ing the (signed) prediction error by the predicted standard
deviation (Fig. 12). Here again there is not much difference
between the three scenarios: the standard deviation remains
approximately constant at ≈1.4σ , meaning the model has a
slight tendency to under-estimate the variance (e.g. the error).
In contrast, the mean decreases constantly: at the beginning
of the simulations the GP model has a tendency to under-
estimate thewind and at the end to slightly over-estimate it. If
the first behavior is expected whilst the hyperparameters are
being learned with only a few samples, the over-estimation
of the wind at the end of the simulations is not expected.
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Fig. 10 RMSE of the up wind prediction y� along the executed tra-
jectory at each iteration, computed over all the iterations of the three
scenarios
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Fig. 11 Mean of the standard deviation of the up wind prediction√
V[y�] along the executed trajectory at each iteration, computed over

all the iterations of the three scenarios

This bias may be due to the two following factors: first the
time and altitude covariance estimation is relatively poor (see
Sect. 4.2.2), and second the vertical wind values below and
at 1 km are very different, as can be seen Fig. 9. Hence sam-
ples gathered at altitudes lower than the final plateau may
still influence the prediction of the GP, resulting in a slight
positive bias.

Althoughvery little difference canbeobservedwhen look-
ing at the average error over the whole planned trajectory for
each iteration (Fig. 10), we can see more differences when
zooming in on single planning iterations. Figure 13 shows
how the prediction error evolves in average along a single
planned trajectory as the points are predicted both farther
from the current location and, more importantly, farther in
the future. Here we can clearly see that the ‘No energy’ sce-
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Fig. 12 Mean and variance of the standard normal deviate y−y�√
V[y�] of

the up wind prediction along the executed trajectory at each iteration,
computed over all the iterations of the three scenarios
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Fig. 13 Mean of the standard error of the up wind prediction along
the planned trajectory from the current planning time up to 20s in the
future, computedover all the instances of the three scenarios.Top current
planning time is t = 100 s. Bottom current planning time is t = 290 s
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Fig. 14 Position error after 10 s of open-loop following of the planned
trajectory with respect to the planned end position. Top error on the z
axis. Bottom error on the xy axis

nario comes ahead of the other, especially in the middle of
the simulation. However as we are replanning every 10s, and
as the highest difference is on the points farther in the future,
the effect is minimal when computing the mean over the first
half of the planned trajectories (such as in Figs. 10, 14).

Another indirect way to assess the quality of the mapping
is to look at the position error induced by the wind prediction
error at the end of each planning iteration. Indeed, as we
execute the planned trajectories computed over the predicted
wind in open loop, the wind prediction is the sole source
of error in the final position of the aircraft. The up wind
prediction error induces error in predicting the altitude of the
UAV, while the horizontal wind prediction contributes to the
horizontal xy position error (Fig. 14). The xy and z position
errors are of the same order of magnitude, with an average
around 2.5m in both cases, with a standard deviation of about
2.5m, over a constant trajectory length of 150m. The key
importance of a good prediction of the up wind is clear: at
the start of the simulations, the mean error in altitude is about

ten times more than at the end of the simulation, whereas
the xy error is only about 1.5m. This is due to the nature
of our Meso-NH simulations, which are initialized without
advection (that is, no horizontal wind). In real-life cases,
one should also estimate independently the mean horizontal
wind, even if it varies only very slowly across space and time.

4.2.2 Hyperparameters optimization

The evolution of the hyperparameter values of the GP model
are also an indication of the quality and stability of themodel.
Figure 15 shows 2D histograms of the hyperparameter val-
ues, for all simulation scenarios combined, during the course
of the simulation. The type of scenario does not impact much
the hyperparameter optimization, but all parameters are not
estimated equally well. The estimation of the parameter σn
is particularly good and stable, with a median slightly above
its actual value (set to 0.25ms−1), and a narrow distribution.
It is not surprising as the additive noise added to the samples
is a pure Gaussian one, and modeled as such. The process
variance σ f starts quite high at about 4 to end around 0.5,
with the distribution narrowing around the median rapidly as
simulation time passes. Considering the GP posterior vari-
ance in Eq. (2), we see that the maximal posterior variance
is k(x�, x�) = σ 2

f . Therefore the process variance indicates
the maximum possible predictive uncertainty of the model.
As the amplitude of the measurements does not decrease so
drastically through time, it seems to indicate that it is not
directly the process variance that is optimized. Indeed, as
in the second half of the flights the UAVs gather samples
in the same area (the plateau at 1 km altitude), the type II
maximum likelihood [Eq. (4)] used to optimize the hyper-
parameters overfits the data, which leads to the model being
overconfident.

The evolution of the spatio-temporal length scales also
exhibits some discrepancies. The length scales in the x and
y directions are quite precisely estimated, and seem stable.
The lx hyperparameter converges in most cases to a value
between 30 and 40m, the ly parameter distribution being
a bit wider, with the median around 40–50. Both hyperpa-
rameters show distributions peeking around the median and
densely packed, indicating convergence towards a common
value. On the other hand the vertical length scale lz and the
temporal length scale lt exhibit a completely different behav-
ior. The distributions remain very spread out in both cases.
For a significant proportion of the simulations, the values are
set to the upper bound given to the optimizer, indicating that
the GPmodel is unable to estimate them properly. Even after
5min, about 2% of the simulations still have a maximum
value for the lt parameter, and more than 20% of the simula-
tions exhibit this behavior for the lz parameter. This failure to
estimate properly the time and altitude correlations is most
probably caused by a problem of observability. As amatter of
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Fig. 15 2D histograms of the values of all GP parameters through time. The median is plotted as a black line

fact, the UAVs rapidly explore the x and y axis, and change
altitude much slower. In addition, the time correlations are
more difficult to estimate because time is the only dimension
upon which the UAVs have no control: good estimation of
this parameter is dependent on the frequency at which UAVs

go back to a similar location in space. It is also possible that
temporal correlations cannot be well fitted with our choice
of model.

It should be noted that, as we have seen, the failure to
extract some of the underlying processes parameter does
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not induce bad prediction performances: on the contrary,
the model adapts the parameters to keep a good predictive
accuracy. This problem could be mitigated by keeping more
samples in the model, or more interestingly by defining util-
ity measures that lead to a more informative sampling for the
hyperparameter optimization (as opposed to gathering infor-
mation for map exploration purpose only). Finally, one could
modify the GP model to account for the particular nature of
the temporal dimension, either by developing a more appro-
priate kernel or by encoding the temporal dimension within
a meta-model.

4.2.3 Impact of weights in the utility function

While the definition of the scenario does not affect much
the GP prediction, it strongly impacts the way the mission is
achieved.

Starting with the “explore-box” objective, the UAVs have
no trouble staying in the xy bounds of the box, but the choice
ofweights on the combination affects how they reach and stay
in the z bounds (Fig. 16). When the optimization of energy
is disabled (‘No energy’ scenario), the UAVs go faster to a
mean altitude of 1 km (the center of the box), staying until
the end of the simulation a bit above. Standard deviation lies
equally on both sides of the 1 kmmark. On the contrary when
the information gain utility is disabled (‘No information’ sce-
nario), the 1 km altitude is reached later and themean altitude
then starts to slowly decrease until the end of the simulation:
the UAVs have difficulties maintaining their altitude because
of the associated energy expense. We see the same effect
when all utilities are equally weighted, although the mean
altitude is a bit higher, allowing the UAVs to explore a larger
portion of the box. Interestingly, when the energy utility is
turned on, the mean altitude’s variance starts decreasing after
the first half of the simulation. It can be explained by the fact
that, once the box is sufficiently explored, the absolute value
of the information gain decreases up to a point where it does
not counterbalance the energetic expense anymore, forcing
the UAVs to lose altitude.

The impact of the energy optimization on the battery level
is shown in Fig. 17. Optimizing the energy saves on average
4% percent of the battery level at the end of the simulation in
the ‘All’ scenario and 5% in the ‘No information’ scenario
as opposed to the ‘No energy’ one. Considering that the ‘No
information’ scenario consumes just under 20% of the bat-
tery on average, the relative gain is respectively 20 and 25%.
When looking at the progression of the battery level through-
out the simulation, it is clear that even though the difference
in battery savings is higher during the ascension phase (0–1
min), optimizing energy consumption is helpful throughout
the whole mission to save battery.

The information gain is more difficult to assess: we have
already seen that optimizing this utility impacts only a lit-
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Fig. 16 Mean altitude of theUAVs through time for all three scenarios.
The standard deviation is plotted in dashed lines of the same color
(Color figure online)

0 50 100 150 200 250 300
Time (seconds)

75

80

85

90

95

100

B
at

te
ry

le
ve

l(
%

)

All
No information
No energy

All No information No energy
74

76

78

80

82

84

86

88

90

B
at

te
ry

le
ve

l(
%

)

Fig. 17 Evolution of the battery level. Top Mean of the battery level
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Fig. 18 Box and violin plot of the RMSE of the prediction over the
box defining the mission, at the end of the simulation (t = 300 s), over
all instances of the three scenarios. The box is sampled at a spatial
resolution of 10m, and the GP predictions on the samples at t = 300 s
are compared with the ground truth

tle the predictive power of the GP for the planning purpose
and not at all the quality of the hyperparameter optimiza-
tion. Also, as old samples are discarded in the model and
the observed process is dynamic, it is difficult to compute
a total amount of gathered information. Nevertheless one
can look at the RMSE of the prediction computed on the
whole “mission-box” at the end of the simulation (Fig. 18).
Unsurprisingly there is little difference between the three
scenarios: at the end of the mission, they all perform well
enough. The limited temporal validity of the samples (due
to the weather dynamics) and the instability of some hyper-
parameters weigh heavily on the results. However the “No
energy” is still indubitably statistically better than the other
two scenarios, even if the absolute difference remains small
(under 0.1ms−1 between medians).

Another way to approach this is to look directly at the
covariance matrices. Figure 19 illustrates the differences in
density of the covariance matrices of the GP models by plot-
ting the cumulative distribution of values in the matrices in
each scenario. The smaller the values, the more information
the matrices contain (the more the samples are considered
independent). It is clear that optimizing the information gain
utility has a direct effect on the density of the matrix: when
we plot the distance of the other distributions to the one of
the “No information” scenario, there is up to 10% more val-
ues smaller than 10−2 in the “All” scenario, and 20% for the
“No energy” one. In other words, the “No energy” scenario
has half of the values in the covariance matrix under 10−2

whereas the “No information” one has only thirty percent,
which is about a 65% relative increase. This result is also
interesting to speed up the GP regression. Indeed if one were
to use compact support kernels, the resulting matrices would
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Fig. 19 TopCumulative distributions of values in the covariancematri-
ces of all three scenarios between 50 and 100 s, in percents. Bottom
distances between the cumulative distributions of values in the covari-
ance matrices of the ‘no information’ and the other scenarios. Values
smaller than 10−2 represent respectively 10 and 20% more space in the
covariance matrices of ‘All’ and ‘No energy’ scenarios than the in the
‘No information’ scenario (note the abscissas have a logarithmic scale)

become sparser with the information gathering utility, thus
potentially speeding up the linear algebra computations.

5 Discussion

5.1 Summary

Wehave presented an approach to drive a fleet of information
gathering UAVs to optimize the acquisition of information
in a given area, while minimizing the energy expenses. The
approach generates flight patterns that properly exploit the
updrafts and generate accurate wind maps.

In particular, we have shown how a GPR framework can
be used online to faithfully map wind fields correspond-
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ing to realistic cloud simulations. The resulting predictions
are accurate enough to drive the team of UAVs during the
course of the mission. A careful inspection of the resulting
GP model, in particular of its hyperparameters, has shown
its strengths and weaknesses. The predictive error of the GP
model is quite low during the mission, resulting in negli-
gible positional errors after the execution of the planned
trajectories, and regardless of failures to estimate properly
the underlying hyperparameters of the process. The pro-
posed simulations exploit realistic wind and aircraft models,
address the main task that atmosphere scientists expect from
a fleet of UAVs, and exhibit the properties of the approach.

5.2 Future work

Numerous improvements remain to be addressed in order to
define an efficient operational system.

Themapping frameworkwould certainly benefit frombet-
ter priors. A prior on themean could in particular be provided
by a macroscopic model of the cumulus cloud, which relates
high level variables such as mean updraft as a function of the
cloud base diameter for instance. The macroscopic model
could also exhibit various regions in the cloud, within which
priors on the hyperparameters could help to learn them more
rapidly and more precisely. Furthermore, one should be able
to explicit and exploit the correlations between the various
atmosphere variables that the UAVs can measure, correla-
tions that are pretty well known by atmosphere scientists
(e.g. between the liquid water content and the vertical wind).
One would need to resort to multi-task GPR for this purpose
(Chai 2010). Finally the temporal dimension should be more
carefully accounted for, either by using a more appropriate
kernel or as a parameter of a separate meta-model.

We have seen that the hyperparameter estimation can suf-
fer from lack of observability. Deriving a utility measure
aiming at maximizing information gain for their estimation
would certainly improve the accuracy of the model. Another
way to stabilize the hyperparameters would have the UAVs
performpredefined synchronizedmeasurements, for instance
at different altitude levels, when the system detects a too
important variability of the parameters.

As for trajectory planning, using more complex utility
measure definition than a simple linear combination would
allow the UAVs to achieve more complex tasks and to take
into account specific preferences defined by the user. Addi-
tional criteria and constraints (such as anti-collision) should
also be considered. Finally, there remain various free param-
eters in the system (planning horizon, planning resolution,
sampling rate…), that have been manually set: they could be
learned online during the mission.

Finally, an overall integrated system architecture is yet
to be defined. We foresee an approach that casts the prob-
lem in a hierarchy of two modeling and decision stages. A

macroscopic parametrized model of the cloud, updated from
the gathered data, would provide to the ground operator a
coarse description akin to Fig. 1. He would then tasks the
fleet with information gathering goals such as “map the top
of the cloud”, “assess updraft currents over the whole cloud
height”, “quantify the convection flux at the cloud base”,
“monitor the liquidwater contentwithin a given area and time
lapse”, etc. Given the required tasks and the current fleet sit-
uation (the UAVs positions, their on-board energy level, and
their sensing capacities), a high-level decision process allo-
cates UAVs to each task. This two tier approach would break
the overall complexity of the problem, and allows the oper-
ator to task the fleet with high level goals, which are then
achieved autonomously and independently by sub-teams of
UAVs, using themapping and trajectory planning approaches
proposed in this paper.

We believe that deploying such a fleet within a distributed
architecture remains far-fetched, and that a centralized archi-
tecture would provide more benefits than drawbacks. GP
regression and hyperparameter learning are intensive com-
puting tasks, that can for now hardly be embedded on-board
lightweight UAVs. An approach in which all the gathered
data are sent down to a powerful ground station that executes
both the mapping and fleet control processes is a realis-
tic option: only a very low bandwidth data link would be
required for both the data reception and command transmis-
sion. Furthermore, the overall system would benefit from
the use of a ground atmosphere radar, that would provide
real-time estimations of some global cloud parameters such
as its geometry, which directly conditions the amplitude
of updrafts for instance. Such a system would also allow
to update the position of the cloud: indeed most cumulus
clouds develop in conditions with significant advective (lat-
eral) wind.6 The cloud simulations we exploited have been
generated in the absence of such advective wind, and the
cloud map is built in a geo-referenced frame, whereas in real
flights one should map the cloud in a cloud relative reference
frame, which evolution would be provided by the radar.

Acknowledgements This work is made in the context of the SkyScan-
ner project, supported by the STAE foundation.

Appendix 1: Aircraft model

In this Appendix, we provide the details of the flight dynam-
ics model adopted for this work. We consider a simplified
aircraft model to enable fast trajectory computations, but
still able to capture the essential characteristics of the flight
mechanics for a realistic trajectory optimization simulation.

6 Except in tropical areas where cumulus can hover over the same posi-
tion during their whole lifespan.
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Table 1 General aerodynamic and geometrical specifications of the
Mako aircraft

Description Symbol Value Unit

Wing span Bref 1.288 [m]

Wing surface area Sre f 0.27 [m2]

Wing aspect ratio AR 6.14 [–]

Cruise flight speed Vcruise 15.0 [m/s]

Minimum flight speed Vmin 12.0 [m/s]

Maximum flight speed Vmax 25.0 [m/s]

Propulsion efficiency ηp ≈ 0.45 [–]

Max lift coefficient CLmax 0.4 [–]

Profile drag coefficient CD0 0.0233 [–]

Oswald efficiency number e 0.93 [–]

Total mass m 0.9 [kg]

W

L

F

Lv

Lh
c

W

L

D
T

Fig. 20 Forces applied during the steady banked turn phase (left) dur-
ing the steady climb phase (right)

The key parameters and coefficients used for the analyti-
cal calculations are estimated from a modified vortex-lattice
analysis (Bronz et al. 2013) of the aircraft.

In particular, we consider the Mako aircraft shown in
Fig. 7, which will be employed for future experiments within
the SkyScanner project. Table 1 shows its general aerody-
namic and geometrical specifications.

The trajectory computation is based on two control inputs:
the power input Pin and the turn radius R. The airspeed V
is considered constant, therefore the angle of attack is kept
fixed for simplification. The trajectory optimization mainly
requires the drag force evaluation, which has to be compen-
sated by the input power. Note the air density is kept constant
during the simulations, again for the sake of simplicity.

In order to calculate the performance within the flight
envelope, the flight phases are isolated as steady banked
turn and constant climb. The climb calculations derived from
energy equations, the pull-up and down transition phases are
approximated according to themaximum lift capability limit.

Steady banked turn phase

During the steady banked turn phase, the vertical component
of the lift force Lv is equal to the weight of the aircraft and
its lateral component Lh compensates the centrifugal force
as shown in Fig. 20.

∑
Fz = 0 ⇒ W = Lv = L cosφ (16)

For a given bank angle φ, the load factor n, given by

n = Lv

W
= L

L cosφ
= 1

cosφ
, (17)

has to be accounted for in the lift force, which can then be
expressed as:

L = 1

2
ρV 2Sre f (nCL) [CLmax > nCL ], (18)

with drag coefficient and resultant drag force being

CD = CD0 + k(nCL)2 where k = 1

π ARe
(19)

D = 1

2
V 2Sre f CD (20)

in oder to take into account the additional drag contribution
coming from the induced lift force.

Rate of Climb (ROC) and power consumption

To maintain level flight, the required aerodynamic power is

Paero = DV (21)

Incorporating the thrust, we can calculate the climb rate of
the aircraft as:

ROC = Vclimb = V
(T − D)

W
= Pprop − Paero

W
(22)

The maximum propulsive power is limited according to
the specifications of the propulsion system used, whose effi-
ciency ηp results in a higher power drawn from battery:
Pprop = ηp Pin , where Pin is the input power drawn from
the battery. The resulting Vclimb is then:

Vclimb = ηp × Pin − Paero
W

. (23)

The total propulsion system efficiency varies, as it is
related to the flight speed and generated thrust force: a fine
modeling of these variations would be required for a pre-
cise propulsionmodel. However, comparing electrical power
input Pin versus aerodynamic power output Paero shows that
a linear relation is a fairly accurate model for the considered
flight speeds range, as shown in Fig. 21. This fact is exploited
to define the total propulsion efficiency ηp in our simulation
model.
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Fig. 21 Resultant propeller aerodynamic power from battery input
power for three different flight speeds

Pull-up and pull-down

The transition from level flight to steady climb is achieved by
a short pull-up flight maneuver. Likewise, a pull-down flight
maneuver is used to transition from level flight to steady
descend phase. In our simplified aircraft model, as the flight
angle of attack is assumed constant at all times, the distinction
between climb and descent transitions is defined by the given
power input Pin : if Pin × ηp is higher than the required level
flight aerodynamic power Paero, then the aircraft climbs.

The pitch turn radius can be calculated as:

Rup = V 2

g(n − 1)
, Rdown = V 2

g(n + 1)
(24)

where the contribution of the total aircraft weight is in the
(n − 1) and (n + 1) terms. As the angle of attack is constant,
the pitch rate γ̇ is given by:

γ̇ = ± V

Rup/down
(25)

Appendix 3: Trajectory computation

Assuming a fixed airspeed V , a steady turn radius R and input
power Pin , the trajectory canbe computedby separating it in a
pull-up (or pull-down) phase and a steady phase. Pull-up and
pull-down phases are executed assuming a maximal allowed
bank angle, thus assuring that the maximal allowable load
factor will not be exceeded. First we compute the maximum
allowed load factor nmax :

CL = 2 ∗ W

ρV 2Sre f
(26)

nmax = CLmax

CL
(27)

UsingEq. (23), Vclimb can be obtained from Paero and Pin .
This value represents the target value for vertical velocity for
given Pin and R. The climb rate γ (t) can then be computed
as:

Δγ = arcsin(Vclimb/V ) − γ (0) (28)

u = sign(Δγ ) (29)

Rup/down = V 2

g ∗ (nmax − u)
(30)

γ̇ = uV

Rup/down
(31)

Δtpull(t) = min(t,
Δγ

γ̇
) (32)

γ (t) = γ (0) + γ̇ Δtpull(t) (33)

where Δtpull(t) represents the duration of the pull up or pull
down phase. Finally we can compute the projection on the z
axis of the path on the Rup/down circle during the pull phase,
and assume a constant vertical velocity during the remaining
time:

Δzpull(t) = uRup/down(cos γ (0) − cos γ (Δtpull(t))) (34)

z(t) = Δzpull(t) + Vclimb(t − Δtpull(t)) (35)

Knowing the vertical velocity, and assuming a constant
total velocity V and turn radius R, we finally compute x(t)
and y(t) using the change in the heading ψ to project the
position on a circle of radius R tangent to the horizontal
velocity vector. We first compute the heading ψ(t):

ψ̇(t) = VH (t)

R
(36)

= V

R
cos γ (t) (37)

Δψ(t) =
∫ t

0
ψ̇(x)dx (38)

= V

R
(sin γ (Δtpull) − sin γ (0)) + γ (Δt )(t − Δtpull)

(39)

ψ(t) = ψ0 + Δψ(t) (40)

Using ψ(t) we deduce the xy position of the aircraft:

(
x
y

)
(t) =

(
x0
y0

)
+ R

(− sin(ψ0) + sin(ψ(t))
+ cos(ψ0) − cos(ψ(t))

)
(41)
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Finally, the remaining capacity of the battery J (t) (in joules)
is:

J (t) = J (0) −
∫ t

0
Pin(x)dx = J (0) − Pint. (42)
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