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Abstract In this work we study how information provided
by foveated images sampled according to the log-polar
transformation can be integrated over time in order to build
accurate world representations and accomplish visual search
tasks in an efficient manner. We focus on a specific visual
informationmodality depth and on how to store it in a flexible
memory structure. We propose a probabilistic observational
model for a stereo system that relies on the Unscented Trans-
form in order to propagate uncertainty in stereo matching,
due to spatial quantization in the retina, to the 3D Cartesian
domain. Probabilistic depth measurements are integrated in
a novel Sensory Ego-Sphere whose topology can be biased
with foveal-like distributions, according to the autonomous
agent short-term tasks and goals. Furthermore,we investigate
an Upper Confidence Bound algorithm for the task of simul-
taneously finding the closest object to the observer (visual
search) and learning the surrounding environment 3D map
(mapping). The performance of task execution is assessed
both with a foveated log-polar sensor and a classical uniform
one. The advantage of foveal vision and custom ego-sphere
representations are illustrated in a series of experiments with
a realistic simulator.
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1 Introduction

The spatial organization of the photo-receptors in the human
retina is not uniform. Visual acuity is highest at the fovea
and declines monotonically to the periphery with increas-
ing eccentricity. This space-variant resolution perception
phenomenon—named foveation—is a hardwiredmechanism
and a natural way of reducing the amount of informa-
tion streamed to the brain, in order to cope with neuronal
transmission bandwidth limitations and the brain machinery
processing capacity. However this compression phenomenon
introduces a space variant uncertainty either in low-level
visual processes as 3D reconstruction, or in higher-level
object classification and recognition tasks. In order to effi-
ciently explore and understand the surrounding environment
(Posner 2012), humans have developed a set of visual
attention and oculo-motor mechanisms that allow them
to actively direct the eyes towards different locations in
the surrounding environment, thus cleverly compensating
for the aforementioned sensory and computational limita-
tions.

Likewise, robots deployed in everyday environments, are
faced with increasingly complex scenarios where objects
are arranged in many possible different spatial configura-
tions. Moreover, the problem of deciding which regions in
the visual field are to be attended during the visual search
task is computational demanding. Therefore, like biological
systems, robots should be endowed with a set of mecha-
nisms that allow them to search for objects of interest and
build detailed maps of the scene, while avoiding the poten-
tial computational overload of processing irrelevant sensory
stimuli. Under the assumption that biological systems per-
form quasi-optimally in their environment due to multi-
ple generations of genetic improvement, researchers have
been developing biologically inspired systems (Colombo
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Fig. 1 A snapshot of the RGB-D point clouds (top row) and associ-
ated probabilistic measures (bottom row) obtained with the proposed
Cartesian (left column) and foveal (right column) stereo sensor models.
Blue and purple colors correspond to higher precision measurements. a
RGB-D,bRGB-D, c uncertainty and d uncertainty (Color figure online)

et al. 1996) equipped with smart multi-resolution sen-
sor topologies and provided with computational models of
selective attention (Vijayakumar et al. 2001). These imple-
mentations not only mimic the mechanisms observed in
humans but also lead to more effective behaviours with
constrained resources (computational, energetic), which is
one of the main goals to pursue of today’s cognitive
robotics.

In this work we propose a probabilistic selective atten-
tional framework for artificial systems providedwith binocu-
lar foveal vision. Our framework relies on visual information
and associated confidence measures (see Fig. 1) that are
used to autonomously drive the agent’s gaze direction dur-
ing search tasks. Our contributions are the following. First,
we model the stereo reconstruction uncertainty that arises as
a result of spatial quantization phenomena inherent in the
retina. Our approach considers Gaussian Receptive Fields1

(RFs) distributed in space following two different tessella-
tions: (i) a classical uniform (Cartesian) arrangement and

1 Receptive fields are the fundamental visual processing units. Each
corresponds to a specific region in the retina (image) and is represented
by the average value of the photo-receptors (pixels) within it (e.g. aver-
age color). For more details, we refer the interested reader to Edelman
(1995).

(ii) a log-polar one that mimics the human retina. The
RFs in the latter present a space-variant spatial distribu-
tion and support radius (Pamplona and Bernardino 2009).
The Unscented Transform (UT) (Julier and Uhlmann 2004)
is used to propagate belief from the 2D retina domain to
3D via stereo reconstruction. When compared with previ-
ous approaches that also assumeGaussian quantization noise
and that rely on first order linearizations to approximate
the non-linear transformations involved in 3D reconstruc-
tion (Kriegman et al. 1989), our method based on UT
is more precise and hence improves 3D estimation qual-
ity. Second, the probabilistic sensory measurements are
integrated in a novel versatile randomized Sensory Ego-
Sphere (SES) whose topology can be biased according to
the autonomous agent short-term tasks and goals. The pro-
posed SES, helps achieving the task, by allocating the limited
resources to important surrounding regions according to the
task. Finally, a decision-making process, framed within a
multi-armed bandit setting (Auer et al. 2002), acts as a medi-
ating cognitive attentional process that seeks to maximize
expected task-related rewards. The proposed decision algo-
rithm relies on statistical measures to decide where to look
next by selecting the most promising regions to attend. We
investigate a simple Upper Confidence Bound (UCB) algo-
rithm (Agrawal 1995) for the task of finding the closest object
to the observer. TheUCBalgorithm controls the exploration–
exploitation trade-off typical of decision under uncertainty
algorithms: to accomplish the task it is necessary to explore
the world, but too much exploration will delay the task exe-
cution.

The remainder of this paper is organized as follows. In
Sect. 2 we conduct a brief overview of the attentional frame-
works available in the literature with a strong emphasis on
probabilistic-based methodologies. In Sect. 4, we outline the
proposed sensor observationmodel and the uncertainty prop-
agation model from the retinal domain to 3D. In Sect. 5,
we introduce a novel biologically inspired short-term mem-
ory structure which is egocentric, compact, and convenient
for fast and efficient information update and retrieval. In
Sect. 6, we endow our system with a decision-making pro-
cess that actively drives the agent’s gaze direction, through
sequential saccadic eye movements. Finally, in Sect. 7,
we experimentally validate our model and compare a con-
ventional Cartesian camera against a space-variant vision
system. The obtained results demonstrate that a wider field of
view at the cost of less peripheral resolution is advantageous
in visual-search tasks. We show that with our methodolo-
gies different gaze patterns emerge depending on the sensor
characteristics and decisions on confidence bounds. Further-
more, we demonstrate that spatial memory biases, reflecting
prior knowledge about the world structure and the task at
hand, allow large performance improvements in visual search
tasks.
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2 Related work

Probabilistic based active vision requires not only the char-
acterization of the sensory-motor uncertainties, but also the
definition of memory structures that facilitate continuous
recall and temporal fusion of probabilistic sensory data.
Therefore, we organize the present section in two distinct
parts. At first we overview the state-of-the-art in active vision
with an emphasis on probabilistic models of overt attention.
Afterward, we analyse the memory data structures proposed
in the literature suitable for applications related to attention.

2.1 Overt attention and active vision

The first studies on visual attention date back to the mid
nineteenth century, pioneered by von Helmholtz and König
(1896) and motivated by the willingness to understand how
humans attended stimuli at the periphery of the visual field.
Nowadays, the literature on selective attention is vast, and
covers a wide range of scientific fields, including cognitive
neuroscience (Carrasco 2011) and computer science (Borji
and Itti 2013), playing an important role in computer vision
and robotics applications (Begum and Karray 2011). In this
workwe focus on a particular aspect of attention: active sens-
ing which is tightly coupled to the concept of overt attention.
The goal of active vision systems is to direct the eyes towards
locations such that:

• the information about the surrounding environment is
increased over time (exploration);

• the desired region is centered in the eyes and thus
observed by the retinal zone of maximum visual acuity
(exploitation).

Early work on computational modeling of overt atten-
tion (Koch and Ullman 1987) suggests that saccadic eye
movements are attracted in a bottom-up manner to salient
stimuli, i.e. to areas of the the visual field that differ from
the neighborhood in different feature modalities and spa-
tial scales, in a center surround fashion. Arguably, the most
influential work on saliency modeling was proposed in Itti
et al. (1998) where the authors introduced a unique spatial
saliency map which encoded the prominent locations over
the entire visual scene, to be attended after and analyzed
in detail in order of decreasing conspicuity. A major draw-
back of the saliency models is that the classical sequencing
mechanism (inhibition of return) only considers spatial infor-
mation (location) and not of the information provided by
the stimuli. Therefore, they do not not leverage information
from previous steps to improve information on unexplored
areas.Ongoing sensory data gatheringwhile attending salient
regions should continuously affect reasoning and influence
decisions of where to look next. This decision process

requires not only a continuous evaluation of new stimuli aris-
ing frompreviously not visible regions, aswell as reassessing
previously attended locations as a result of the newly acquired
information.

More sophisticatedmodels are framedwithin probabilistic
paradigms that account both for sensori-motor uncertainties
as well as the world intrinsic stochasticity and unpre-
dictability. A common idea behind these models is that
statistical objectives are the fundamental driving elements
behind visual attention. From a Bayesian standpoint, atten-
tion seeks to actively infer the future actions that maximize
the expected information gain given the spatio-temporal con-
text. Therefore informational gain is itself the inner goal
behind attention (Friston et al. 2012).

The probabilistic-based saliency model proposed in Itti
and Baldi (2006) suggests that surprising events or stim-
uli attract attention. The Kullback–Leibler (KL) divergence
between prior and posterior beliefs is by convention used
as a measure of surprise. However, surprise models are
purely exogenous by nature since they react to observed
stimuli. Active vision models based on optimal stochastic
control principles pose the action selection problem within
Bayes risk minimization framework, and differ on the cho-
sen policies. On one hand, infomax algorithms (Butko and
Movellan 2010) seek to maximize the expected accumulated
future informational gain in fixed time-horizon. On the other
hand greedy MAP policies consider only a one-step look
ahead time window (Najemnik and Geisler 2005) and self-
knowledge about the retinal acuity map to decide the best
location to attend. A recent work on active sensing accounted
also for behavioral costs (Ahmad and Yu 2013), such as the
energy and temporal costs incurred in choosing a givenmotor
action.

Despite the demonstrated applicability of the previously
mentioned approaches on target search tasks in monocular
images, there are no works studying depth cues inferred
by stereo vision, and the influence of foveal vision in the
search strategies on binocular setups. The stereo reconstruc-
tion problemusing foveated images has been addressed in the
literature, namely in Bernardino and Santos-Victor (2002),
where the authors have shown that it is possible to compute
dense disparity maps from log-polar images. Nevertheless,
with foveal images, stereomatching accuracy degrades in the
image periphery. This motivates the need for modeling depth
uncertainty in stereo reconstruction, due to space-variant dis-
cretization in foveated images and use this uncertainty to
decidewhere to look next. In this paper we analyze the ability
of active foveal stereo systems to accuratelymap the environ-
ment and efficiently execute visual search tasks. Some visual
tasks are more naturally represented in 3D, for instance the
search for nearby objects, as illustrated in this work. There-
fore, the main contribution of the paper is the formulation
of visual search tasks in 3D and a the development of novel
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methods for uncertainty propagation and spatial representa-
tions required for this purpose.We show that adequate retinal
topologies and 3D spatial representation play a role in the
speed of execution and accuracy of localization of targets in
3D search tasks.

2.2 Spatial memory data structures

Memory plays a key role and is a core component of any cog-
nitive architecture. In real-time decision-making problems
involving perception, autonomous agents rely on memory
structures to store and query continuously obtained informa-
tion in a robust and efficient manner.

The Sensory Ego-Sphere (SES) is an egocentric, short-
term memory structure (Peters Ii et al. 2009) that is conve-
nient for sensory data fusion and that has been extensively
used in robotics applications involving attention (Ruesch
et al. 2008; Fleming et al. 2006). In the attention domain and
from a practical point of view, egocentric spherical repre-
sentations offer several advantages in applications involving
humanoid robots when compared to typical Cartesian rep-
resentations such as regular occupancy grids, point clouds
or octrees (Hornung et al. 2013). Spherical representations
based on egocentric polar coordinate systems, are typically
more compact (low memory requirements) and avoid the
requirement of computationally expensive ray-casting tech-
niques when dealing with visibility issues.

Different representations and data structures for the SES
have been proposed in the literature (see Fig. 4). Typically,
2D array type structures based on spherical coordinate sys-
tems are used to represent the spherical surface (Ruesch
et al. 2008). These can be accessed in O (1) time and thus
are appropriate for real-time applications. Yet, they are non-
isotropic and therefore data is not stored uniformly over the
surface (i.e. the resolution is higher near the poles). On the
other hand, the geodesic dome type data structure (Peters Ii
et al. 2009) is isotropic and therefore can better approximate
3D shape. However, indexing becomes less trivial and less
efficient due to its non-regular topology. To tackle this issue
Hirose et al. (2002) proposed a hierarchical geodesic struc-
ture that can significantly speed-up access times. In another
work Ferreira et al. (2008) proposed an egocentric log-
spherical grid named Bayesian Volumetric map occupancy
spherical grid, that was proven suitable for probabilistic
multi-modal sensor fusion.

Nevertheless, none of the previous mentioned structures
are easily reconfigurable for the implementation of task-
dependent cognitive biases that either enhance or impair
the storage and recall of information in short-term spatial
memory (Crawford et al. 2014). This fact motivates the need
for more sophisticated, task-biased, versatile memory struc-
tures. In Sect. 5 we propose a novel memory representation
that tackles this problem. Typical tessellations of the sphere

include quasi-uniform icosahedral tessellations, less uniform
spherical polyhedra or non-uniform latitude/longitude grids.
All these forms are highly regular and structured, which lim-
its their flexibility to implement arbitrary shapes. Themethod
proposed in this paper is based on projecting in the sphere
randomly generated points according to a mixture of 3D
gaussian distributed points with an arbitrary number of com-
ponents, focal points (means) and dispersions (covariances).
This generates an irregular grid but we can define more
freely areas on the sphere with varying degrees of density
and dispersion. Our sampling scheme is easy to implement
and allows for the fast creation of task-biased sensory ego-
spheres. As opposed to the previously proposed deterministic
counterparts, our SES relies on an easy to implement random
sampling scheme that allows for the fast creation and real-
time access of arbitrary reconfigurable topologies.

3 Problem statement and system overview

In the proposed problem, the observer’s goal is to select
the oculomotor actions that maximize task related rewards.
On one hand we rely on a recursive Bayesian filter that
sequentially accumulates sensory inputs and extracts valu-
able information about the agent and the environment state,
given noisy observations. On the other hand, a decision-
making algorithm predicts the best future locations to gather
information, according to some statistical or behavioral cri-
teria.

The environment structure, i.e. 3D map, is a projection
of the world structure W ⊂ R

3 in the agent’s egocentric
reference frame E , internally represented by a discrete set
of points, each associated to a specific observation direction
(see Sect. 4). Let us denote the set of environment sample
points by

Xt =
{

xit ∈ R
3, i = 1, . . . , Nx

}
(1)

where Nx is the total number of considered observation
directions. These points are modeled as Gaussian random
variables, initialized with mean and covariance selected
according to a priori knowledge about the type of environ-
ment in which the robot operates. The egocentric reference
frame E is head-centered, has three translational degrees of
freedom and fixed orientationwith respect to theworld frame
of reference (see Fig. 2).

In order to execute visual search tasks, the proposed
cognitive architecture is equipped with two sensory-motor
modalities:

• proprioception provided by odometric and oculocephalic
joint encoders;

• stereo vision provided by a stereo camera system.
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Fig. 2 The various coordinate systems used by our system (best seen
in color): the inertial world frame (W) in which the environment is
represented; the base frame (B) which is rigidly attached to the mobile
robot base, and permits determining the robot pose in the world, given
the odometric readings; the neck frame (N ) which allows representing
pan and tilt cephalic movements; the egocentric frame (E) in which spa-
tial memory is embodied and sensor fusion is performed; the cyclopean
frame (C) in which stereo observations are represented; the conver-
gent, non-parallel pair of cameras frames (Cl , Cr ), in which monocular
images are obtained (Color figure online)

The observer is allowed to change its state, i.e. the observa-
tion view point, through base and oculocephalic movements
(please see Fig. 1). At each time instant, the propriocep-
tive modality reports the robot base location and its internal
kinematic state. More specifically, the robot position and ori-
entation P ∈ R

6 in the inertial frame of reference W , the
agent’s eyes horizontal vergence (θvt ∈ R) and the head pan
and tilt joint angles (θpt , θ tt ∈ R). Let us denote the joint set
of odometric and oculocephalic measured/controlled joint
positions by

Ut = {
Pt , θ

v
t , θ

p
t , θ tt

}
(2)

We assume that the proprioceptive modality provides noise-
free observations. In other words, we consider that the
measurement errors are negligible with respect to the visual
sensor errors and therefore that the robot location and kine-
matics, and thus, the transformations between the various
reference frames involved in our system (see Fig. 2), can
be deterministically determined from Ut . Furthermore, we
assume that the environment W is static for the duration of
the search task and is not affected by the robot motor actions
Ut (the base location and the posture of the robot’s head).

The preceding assumptions yield the following probabilistic
simplification

p(Xt |W,Ut ) = p
(ERWW + E tW

)
= p(Xt ) (3)

where ERW ∈ R
3×3 and E tW ∈ R

3×1 are an orthog-
onal rotation matrix and a translation vector, respectively,
obtained by combining deterministic proprioceptive joint
angle measurements with known forward kinematics.

The stereo sensor computes a list of 3D point estimates
defined in a cyclopean reference frame C, with origin at the
midpoint of the stereo baseline, from noisy point correspon-
dences observed in the left and right retinal domain. Let us
denote the set of 3D points by

Zt =
{

zot ∈ R
3, o = 1, . . . , Nv,t

}
(4)

where Nv,t is the total number of observed independent and
identically distributed (iid) measurements by the stereo sen-
sor at time t . The observation model described in Sect. 5
explains how measurements Zt are generated according to
the environment 3D structure, egocentric projection Xt :

Zt ∼ p(Zt |Xt ) (5)

4 Stereo sensor model

In stereo vision, a general stereo matching algorithm com-
putes a set of one-to-one point correspondences between
two images (Tippetts et al. 2016). However the precision
of the measurements is finite and constrained by the fun-
damental image-sensing units size and spacing. In order to
model reconstruction uncertainty due to the limited sens-
ing precision at the retinal level we consider a probabilistic
observationmodel for our stereoscopic sensor (Perrollaz et al.
2010).

4.1 Nonparallel stereo system

Let us suppose that our stereoscopic system is composed by
a convergent, non-parallel pair of pinhole cameras Cl , Cr ,
allowed to rotate around their y optical-axis by θ l = θv

2 and

θr = − θv

2 , respectively, and are separated by a fixed baseline
b. Furthermore, let us assume that the stereo system is cali-
brated, and thus, the intrinsic Kl , Kr and extrinsic Ry (θv),
T (b), camera parameters are always known.

4.2 Gaussian stereoscopic retinal observation model

Let us consider that the cameras image planes Il , Ir ⊂ R
2

comprise a finite set of RFs denoted by Sl ,Sr ⊂ R
2. We
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Fig. 3 Gaussian receptive fields with support plotted for 3 standard
deviations, a Cartesian and b log-polar

assume that each RF has a non-uniform stimuli response,
modeled by a two dimensional Gaussian profile (Pamplona
and Bernardino 2009), with the support regions depicted in
Fig. 3. The mean μ = (

μx , μy
)
defines the coordinates of

the center of the RF in the retinal plane, where response is
maximal, and the standard deviation σ represents its support
radius.

Thus, observing a correspondence at a given RF pair si ∈
Sl × Sr follows a conditional Gaussian distribution:

si ∼ N (
μsi ,�si

)
(6)

where

μsi =

⎡
⎢⎢⎢⎣

μ
l,i
x

μ
l,i
y

μ
r,i
x

μ
r,i
y

⎤
⎥⎥⎥⎦ , �si = diag

(
σ l,i 2, σ l,i 2, σ r,i 2, σ r,i 2

)
(7)

4.3 Stereoscopic reconstruction

Given a point pair correspondence si found in the retinal
domain, we determine the corresponding 3D position in the
cyclopean reference frame via stereo analysis. Since point
pair correspondences are inherently corrupted with precision
errors, their projection lines may no longer satisfy the epipo-
lar constraint and therefore not intersect in 3D space. Hence,
one should rely on a triangulation method, denoted by τ , in
order to compute a 3DCartesian point estimate ẑ from a point
correspondence in image coordinates si :

τ : Il × Ir −→ R
3 (8)

Due to its simplicity and relatively low computational com-
plexity, we use the mid-point method (for details please refer
to Wang and Liu 2007).

4.4 Uncertainty back-propagation via the unscented
transform

Since the transformation (8) involved in 3D reconstruction
is non-linear, we employ the Unscented transform (Julier
and Uhlmann 2004) to compute the propagated mean and
covariance up to the third order (by Taylor’s expansion).
This is achieved by approximating a multivariate Gaussian
distributed variable with a set of meaningful and determinis-
tically chosen set of samples (usually named sigma points).
For each receptive field pair si ∈ Sl × Sr we associate a set
of sigma points

U i =
{
X (i, j) ∈ I × I ′ : j = 0, . . . , 2Ns

}
(9)

where Ns is the number of sigma points, which are pre-
computed according to the following expressions

X (i,0) = μsi (10)

X (i, j) = μsi +
(√

(Ns + λ)�si

)
j

for j = 1, . . . , Ns

(11)

X (i, j) = μsi −
(√

(Ns + λ)�si

)
j

for j = Ns + 1, . . . , 2Ns (12)

where (·) j denotes the j-th row of a matrix. Furthermore, we
consider a set of weights

W =
{
w

( j)
c , w

( j)
m ∈ R : j = 0, . . . , 2Ns

}
(13)

which are computed as follows

w(0)
m = λ

L + λ
(14)

w(0)
c = λ

L + λ
+

(
1 − α2 + β

)
(15)

w
( j)
m =w

( j)
c = 1

2 (L + λ)
for j = 1, . . . , 2Ns (16)

where λ = α2(L + K )− L is a scaling factor, α controls the
spread of the sigma points around themean, K is a secondary
scaling parameter, and β is used to incorporate prior knowl-
edge about the distribution of s (for Gaussian distributions
β = 2 is optimal). Then, for a given point correspondence in
retinal domain, we first apply the non-linear transformation
τ to the sigma points associated with the corresponding RF
pair, Z(i, j) = τ(X (i, j)), and then re-estimate the mean and
covariance in the 3D domain, according to

μ̂zi =
2Ns∑
j=0

w
( j)
m Z(i, j) (17)
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Fig. 4 Different sensory ego-spheres, resulting from different tessel-
lations: top row illustrates highly regular, deterministic structures. The
bottom row depicts our novel randomized structure for different task-

dependent biases. a 2Darray,b geodesic dome, c truncated icosahedron,
d unbiased, e equator-biased (M = 1) and f antipodal (M ≥ 1)

�̂zi =
2Ns∑
j=0

w
( j)
c

(
Z(i, j) − μ̂zi

) (
Z(i, j) − μ̂zi

)T
(18)

The sigma points in retinal domain are computed offline
and stored in a linear array in order to speed up on-line uncer-
tainty propagation.

5 Randomized sensory ego-sphere

In the proposed framework theSESplays an intermediate role
between the stereo sensor and the decision planning process.
Probabilistic data arriving from the sensory stream is contin-
uously fused and integrated over time in the SES, by means
of recursive Bayesian filter. At the same time the available
information is used to predict and redirect gaze to the best
expected location, in the light of new observations.

5.1 Definition

The proposed SES is composed of a set of cells P lying on a
unit sphere, whose center corresponds to a certain absolute
orientation , and a map that assigns to each cell the 3D coor-
dinates of the points observed by the robot at that orientation

M : R3 −→ P (19)

The proposed cell grid structure is analogous to a Voronoi
diagram defined on a spherical 2-manifold S2 in 3D space, as
depicted in Fig. 4. In practice the proposed SES comprises a
set of 3DCartesian sample pointswith unit normandcentered
in the observer egocentric reference frame E ,

P =
{

pi ∈ R
3, i, . . . , Nx : ‖pi‖ = 1

}
(20)

which are i.i.d. and randomly generated from a three dimen-
sional Gaussian Mixture Model (GMM) distribution

pi = vi

‖vi‖ where vi ∼ p (θ) =
M∑

m=1

φmN
(
μm

p ,�m
p

)

(21)

where M is the number of mixture components and where
each pi ∈ P represents an orientation, allowing for efficient
data-alignment with observed 3D points, using inner prod-
ucts (Eq. 23). Each SES cell, represented by pi ∈ P , stores
one environment sample point estimate xi ∈ X .

The statistics of the Gaussian Mixture Model distribution
are chosen according to the observer goals. On one hand, in
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order to produce uniform and unbiased memory structures,
the surface should be sampled from a rotationally symmetric
distribution, i.e. from a single Gaussian with zero mean and
variance equal in all dimensions (Muller 1959) (Fig. 4d). On
the other hand, non-uniform, task-dependent memory bias-
ing can be achieved by manipulating the Gaussian Mixture
Model parameters. The proposed randomized representation
offers a convenient mechanism for encoding task and world
prior knowledge. Memory biasing should lead to more effi-
cient, flexible and adaptable memory allocation and to more
effective behaviours during task execution.

Hypothetical topologies that may be suitable for differ-
ent tasks are depicted in Fig. 4: If for instance the task is
to look for people, one should privilege areas at the equator
rather than the poles. In this case, varying the Gaussian mean
is not sufficient. One could sample from a single-component
zero mean GMMwith larger variance in the horizontal direc-
tions (Fig. 4e). While crossing a street, the observer should
prioritize attentional resources to antipodal, lateral regions
(Fig. 4f). This can be achieved by sampling from a single-
component Gaussian with a larger variance in the lateral
component, or from a two-component GMM with opposite
lateral means. More complex tasks can benefit from irregu-
lar topologies with multiple foci, obtained from GMMs with
many components (Fig. 4g).

5.2 Data alignment

For each observed world point estimate provided by our
stereo observation model at time t , zot , we need to find the
associated memory cell in order to perform probabilistic data
fusion. The association process goes as follows. First, the
observed random variable is transformed from the cyclopean
to the egocentric reference frame, according to the linear
transformation Z ′ : R3 −→ R

3 of the form

Z ′ = ERCZ + E tC (22)

where ERC ∈ R
3×3 is an orthogonal rotation matrix and

E tC ∈ R
3×1 a translation vector, obtained by combining pro-

prioceptive joint angle measurements with known forward
kinematics.

Second, for each observation z′o
t we find the associ-

ated memory cell co, which is the one that minimizes the
Euclidean distance, according to the mapping function M,
here defined as follows

co = M
(
μ̂z′o

t

)
= argmin

j
< p j ,

μ̂z′o
t

‖μ̂z′o
t ‖

> (23)

After finding the associated cell we update its respective
estimate according to Eq. (33). Moreover, we assume that

the transformed observations are conditionally independent,
given Xt , and thus

p(Z ′
t |Xt ) =

Nv∏
o=1

p
(

z′o
t |xc

o

t

)
(24)

Finally, the resulting probabilistic observation model
p(z′o

t |xcot ) follows a Gaussian distribution

z′o
t |xc

o

t ∼ N
(
μ̂z′o

t
, �̂z′o

t

)
(25)

with statistics computed as follows

μ̂z′o
t

= ERCμ̂zot + E tC (26)

�̂z′o
t

= ERC�̂zot RT
C (27)

5.3 Probabilistic sensor fusion

In the sensor fusion perspective, the goal of the optimal
Bayesian estimator is to determine the posterior probability
distribution over X , given the accumulated visual sensory
observations and the robot proprioceptive state measure-
ments up to time t ∈ N. Sequential Bayesian filtering allows
us to accumulate sensor inputs and update the likelihood of
X , at each time instant.

The posterior probability distribution at time t , of the set
of internal environment sample points Xt given the current
and past visual and proprioceptive observations, is given by

p(Xt |Z1:t ,U1:t ) = p(Xt |Zt , Z1:t−1,U1:t ) (28)

Furthermore, since we assume that the proprioceptive mea-
surements are deterministic, then

p
(
Z ′
t |Zt ,Ut

) = p
(ERCZt + E tC

)
= p(Z ′

t ) (29)

and Eq. (28) becomes

p
(
Xt |Z ′

1:t
) = p

(
Xt |Z ′

t , Z
′
1:t−1

)
(30)

Since the world is static, at each iteration, the solution to
the filter involves only one update step: in the measurement
update step observations are used to update the current belief
by applying the Bayes rule to the right hand side of Eq. (30)
and using the observation model (5) we get

p
(
Xt |Z ′

1:t
) = ηp

(
Zt |X, Z ′

1:t−1

)
p

(
X |Z ′

1:t−1

)
(31)

where η is a normalizing constant. Since the current obser-
vations Z ′

t are conditionally independent of the past observa-
tions Z ′

t :t−1 given the current environment projection in the
egocentric frame, Xt , the previous equation becomes
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p
(
Xt |Z ′

1:t
) = ηp

(
Z ′
t |Xt

)
p

(
Xt |Z ′

1:t−1

)
(32)

The a posteriori is independently determined for each cell,
according to

p
(

xc
o

t |z′o
1:t

)
= ηp

(
z′o
t |xc

o

t

)
p

(
xc

o

t |z′o
1:t−1

)
(33)

and follows a Gaussian distribution, with statistics given by

�̂xc
o
t

=
(
�̂

−1
xc

o
t−1

+ �̂
−1
z′o
t

)−1
(34)

μ̂xc
o
t

= �̂xc
o
t

(
�̂

−1
xc

o
t−1

μ̂xc
o
t−1

+ �̂
−1
z′o
t
μ̂z′o

t

)
(35)

Each point estimate is initialized with large mean and covari-
ance to reflect the high uncertainty due to non-existent world
prior knowledge.

6 Active sensing: sequential stochastic decision
making

In the proposed framework, the decision making is respon-
sible for sensory-motor coordination. Based on probabilistic
information stored in memory, the decision process selects
where to look next and the associated desired motor com-
mands. Like other approaches that use uncertainty and
task-related rewards to guide decision making we frame our
approach within the reinforcement learning domain (Sutton
and Barto 1998). As such, the agent selects the action that
maximizes expected task related cumulative rewards.

The underlying framework for decision making under
uncertainty, which assumes non-deterministic noisy state
observations, is known as Partially Observable Markov
Decision Process (POMDP). In our particular problem for-
mulation we have continuous states and observations, as well
as large discrete action spaces (i.e. each SES cell repre-
sents an action), which renders intractable the computation
of optimal policies. Even approximate methods for solving
POMDPs would take considerable time (e.g. hours or days).
Moreover, if the environment changes the observer needs to
recompute the full policy.Hence, state-of-the-artmethods for
solving POMDPs are unsuitable for large problems, which
require real-time on-line decision making. Therefore, rather
than framing our problem as a POMDP, we rely on sim-
pler and less costly tools from Bayesian Optimization, for
reinforcement learning. More concretely, from multi-armed
bandit problems (MAB) (Robbins 1952).

6.1 Saccadic planning as a multi-armed bandit problem

In MAB problems, at each time instant the agent selects an
action and collects a reward. The rewards are drawn from a

posterior probability distribution whose statistics are contin-
uously updated over time. Typically, the goal of the agent is
to maximize the sum of collected rewards or, equivalently,
minimize cumulative regret.

In this work the selected task was to find the closest object
to the observer as fast (i.e. with minimum fixations) and pre-
cisely (i.e.withminimumuncertainty) as possible.Within the
MAB framework, this is commonly referred to as the best-
arm identification problem (Audibert and Bubeck 2010).

In our particular setting, each world sample point repre-
sented in memory is a bandit whose statistics are not known
in advance. The agent chooses actions, i.e. a fixation point,
from the set of alternatives a ∈ {1, . . . , Nx } and collects pay-
offs from a reward distribution r(xa). Considering the task at
hand, we define the reward obtained when choosing a given
action a as a function of the distance to the ego-frame

r(xa) = −‖xa‖2 (36)

Since xa follows a Gaussian distribution, then we consider
a first order approximation for the reward distribution such
that

r(xa) ∼ N (
μr (xa), σr (xa)

)
(37)

where μr (xa) and σr (xa) are computed as follows

μr (xa) = E
[−‖xa‖2

] = −‖μ̂xa‖2 (38)

σr (xa) = Var
[−‖xa‖2

] ≈ JT �̂xaJ (39)

where E [·] and Var [·] denote the expectation and variance
operators, respectively, and J is a Jacobian matrix, defined
as follows

J = ∂r(x)

∂x

∣∣∣∣
μ̂xa

=
[

xμ̂xa

‖μ̂xa‖2
yμ̂xa

‖μ̂xa‖2
zμ̂xa

‖μ̂xa‖2
]T

(40)

6.2 Acquisition functions

In the Bayesian optimization framework, acquisition func-
tions are responsible for defining the strategywhen searching
for the optimum. The literature on acquisition functions
used to guide stochastic optimization is vast and includes
many different heuristics that deal with the exploration–
exploitation dilemma. On one hand, Probability of Improve-
ment (PI) (Kushner 1964) methods select the action that
maximizes the probability of improving the current instanta-
neous reward. On the other hand, Expected Improvement
(EI) (Mockus 1974) seeks for the action that maximizes
the expected improvement magnitude. More recently, the
idea of using Upper Confidence Bounds (UCB) (Lai and
Robbins 1985) to deal with exploration–exploitation trade-
offs in machine learning problems has proven successful
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in robotics applications (Lizotte et al. 2007), exhibiting
increased preference for exploration when compared to the
former approaches. Since the best performing acquisition
function is highly dependent on the objective at hand, the
authors in Hoffman et al. (2011) propose combining single
acquisition functions in mixed portfolio strategies.

In this work we compared three different action selection
strategies:

1. a simple yet powerful UCB algorithm named “Sequen-
tial Design for Optimization” (Cox and John 1992) that
is easy to implement and elegantly handles the trade-
off between exploration (minimizing uncertainty) and
exploitation (maximizing rewards) that emerges in deci-
sion making under uncertainty (Agrawal 1995). At each
time instant, the observer selects the alternativewithmax-
imal upper confidence bound on the expected reward,
given the past observations, according to the following
expression

at = argmax
a∈{1,...,Nx }

μr
(
xat

) + ασr
(
xat

)
(41)

where α is a user selected parameter that controls the
width of the confidence bound and thus the exploration
behaviour during task execution.

2. The probability of improvement, which at each time
instant, selects the actionwith highest probability of lead-
ing to an improvement upon the current best (x∗

t ), as
follows

at = argmax
a∈{1,...,Nx }

P
(
r
(
xat

)
> r

(
x∗
t

))
(42)

3. The expected improvement, which tries to maximize the
expected magnitude of the improvement upon the so far
best, according to

at = argmax
a∈{1,...,Nx }

E
(
r
(
xat

) − r
(
x∗
t

))
(43)

Finally, the motor-action Ut corresponding to xatt is com-
puted from known forward kinematics.

7 Results

In order to demonstrate the applicability of the proposed
framework and compare the performance of different visual
sensor topologies, we performed a set of experiments in
simulation. In all of the experiments we constrained the num-
ber of RFs - and hence the computational resources - to be
always fixed and equal in the Cartesian and log-polar cases

(please refer to Pamplona and Bernardino 2009 for mathe-
matical details on the log-polar distribution). We considered
Nr f = 200 × 200 images in both cases.

The remainder of this section is organized as follows.
We begin by characterizing and assessing the ability of the
different sensors to map the environment with low uncer-
tainty. Then, we proceed to evaluating the performance of
the complete active task-oriented stereo sensing framework,
in a realistic simulated environment.

7.1 Sensor characterization

To characterize the proposed sensor model, we assessed
the average uncertainty in 3D reconstruction as a function
of depth, vergence angle and sensor type in the following
manner: First, we generated a set of fronto-parallel planar
surfaces, with varying distance d ∈ [0, 1] from the binocu-
lar system. Depth is constant for all points lying within the
same planar-surface. Then, for each planar surface we varied
the vergence angle, in the interval θv ∈ [

0, π
2

]
and com-

puted the corresponding 3D reconstructions with associated
uncertainties. Note that in this experiment we are not charac-
terizing a full environment but just single snapshots taken by
the observer. Furthermore, we assumed that an object can be
approximated by a planar surface occupying the observing
agent field of view. This allows for comparing both sensors,
under the same conditions.

Let us consider the log-determinant of the inverse covari-
ance matrix (also known as precision matrix) to quantify
pointwise information:

I (�) = − log(|�|) (44)

Here we rely on the average information gathered with a
single depth image to assess the quality of the sensors, which
is defined as folllows

T I = 1

Nr f

Nr f∑
i=1

I
(
�̂

i
)

(45)

As depicted in Fig. 5, the foveal outperforms the Cartesian
sensor, in terms of gathered information which is maximal
if the fixation point coincides with the planar surface. Fur-
thermore, the Cartesian sensor information reliability does
not depend on the vergence angle and decays monotonically
with increasing depth, while the foveal sensor performance
critically depends on the careful selection of the vergence
angle. These results are directly in line and support previous
findings (Weiman 1995) that suggest that foveal distributions
facilitate stereo vision in convergent systems. In foveated sys-
tems gaze acts like a focus of attention, which when directed
to the point of interest, improves dramatically the depth res-
olution around the fixation point. Instead, optical vergence
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Fig. 5 Numerical
characterization of the sensor
model for the Cartesian (dashed
lines) and the log-polar (solid
lines) sensors, as a function of
distance and vergence. a
Varying distance for diferent
vergence angles curves and b
varying vergence for different
planar distance curves
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movements in Cartesian systems provide no gains in 3D res-
olution, resulting only in unnecessary energetic costs.

7.2 Active vision

With the view of investigating how our methodology per-
forms in simultaneous target searching and mapping, we
performed a set of experiments in the Gazebo simulator with
the Vizzy robot (Moreno et al. 2015) head (see Fig. 6). For
the sake of the experiments simplicity, the robot was fixed
to the ground floor and hence the motion was restricted to
oculocephalic movements. However, note that ourmethodol-
ogy is also applicable to scenarios inwhich the robot platform
can move. This would imply updating the 3D point estimates
stored inmemory taking into account the uncertainty in robot
base movements (odometry), and implementing a z-buffer

technique to determine which point to store in each cell, due
to possible occlusions occurring after translations.

We created a static scenario with multiple objects
(coke cans) displaced at arbitrary depths, over a highly
textured background, in order to facilitate stereo reconstruc-
tion, which is highly dependent on the environment texture
richness. The Gazebo simulator generates pinhole camera
images, with uniform resolution. Hence, for the log-polar
sensor, we generated foveated images from uniform reso-
lution images by first applying the log-polar transformation
and then converting back to Cartesian domain via the inverse
transformation. This operation has the effect of blurring the
image in the periphery while maintaining high resolution
in the center. Finally, disparity maps were computed using
a state-of-the-art dense stereo matching algorithm named
Semi-Global BlockMatching (SGBM) (Hirschmuller 2008).
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Fig. 6 The simulation scenario created for evaluating the proposed
active vision framework. The task to perform was to find the nearest
object from the robot ego frame. The evaluation scenario contained a
non-trivial global optimum which could only be attended if enough

exploration was promoted. a The simulation scenario created for eval-
uating the proposed active vision framework and b the global optimum
was placed at a non-trivial location which could only be attended with
either sufficient exploration or a wide field of view

As previously pointed out, the task at hand was to find the
nearest world point to the observer. Points on the ground floor
are easily excluded by thresholding the zw coordinate. In all
experiments we fixed the number of memory sample points
to Nx = 20, 000. In each experiment we let the observer
perform T = 50 saccadic movements, with initial (t = 1)
pan, tilt and vergence angles equal to zero. Each experiment
was repeated 20 times in order to average out variability in
different real-time simulations. Non-repeatability was influ-
enced by multiple factors including separate threads for
Gazebo’s physics and sensor generation, as well as stochastic
delays involved in higher level inter-process communica-
tion. Furthermore, in order to deal with motion blur and
visuo-proprioceptive delays that arise during saccadic eye
movements, we used the visual suppression mechanism pro-
posed in Avelino et al. (2016), which temporarily blinds the
observer during saccades.

7.2.1 Evaluation metrics

In order to quantitatively assess the performance of our
methodologies we considered the following evaluation met-
rics:

• the gap reduction metric (Huang et al. 2006) which is a
quality measure that evaluates how effectively the algo-
rithm is at finding the global maximum:

gt = μr (x+) − μr (x̂
a1
1 )

μr (x∗) − μr (x̂
a1
1 )

(46)

where μr (x∗) is the true global maximum

μr (x∗) = max
i

μr (xi ) (47)

and μr (x+) is the best obtained reward up to time t

μr (x+) = max
t

μr (x̂
at
t ) (48)

The gap is defined between 0, meaning no improvement
over the initial fixation, and 1 for the optimal improve-
ment. In order to measure the speed for task completion
and thus performance efficiency we also assess the aver-
age gap reduction per saccadewhich implicitly represents
the average progress towards the optimum per saccade:

G/S = 1

T

T∑
t=1

gt (49)

• the cumulative regret which is a standard metric, here
suitable to evaluate the convergence behaviour during
the search for the optimum:

Rt = μr (x∗) − 1

t

t∑
k=1

μr (x̂
ak
k ) (50)

Notice that here we are not interested in minimizing the
total regret, i.e. the incurred losses during exploration,
but instead on finding the global optimum.When normal-
ized by the number of saccades it represents the temporal
cumulative regret gain per saccade:

R/S = 1

T

T∑
t=1

Rt (51)

• the average global gathered information which is a
quality performance measure of the global knowledge
gathered about the world up to time t (exploratory
behaviour):
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Table 1 Memory biasing parameters

Bias μp � p

x y z xx yy zz

Unbiased 0 0 0 0.5 0.5 0.5

Top 0 0 1 0.5 0.5 0.5

Down 0 0 −1 0.5 0.5 0.5

Target 0.61 0.43 −0.67 0.05 0.05 0.05

GIt = 1

Nx

Nx∑
i=1

I
(
�̂

i
t

)
(52)

When normalized by the number of saccades it repre-
sents the temporal average global information gain per
saccade:

GI/S = 1

T

T∑
t=1

GIt (53)

• the nearest object gathered information, which is a target
reconstruction quality measure that benefits high preci-
sion (i.e. low uncertainty) in target reconstruction:

L It = I
(
�̂

i
t

)
∀i :‖μ̂x∗

t
−μ̂

xit
‖<RNN (54)

where �̂
∗
t is the true known global maximum estimated

covariance at time t and RNN is a user-selected nearest-
neighbor radius. We considered RNN = 0.1m in all the
experiments described below.
When normalized by the number of saccades it represents
the temporal average local information gain per saccade:

L I/S = 1

T

T∑
t=1

L It (55)

7.2.2 Foveal versus Cartesian

Our first aim was to compare the behaviour of the foveal
against the Cartesian sensor during task execution, for
different upper confidence bound parameter values α ∈
{0, 0.01, 1, 100,∞} and different sensing field of views

fov ∈ {90, 135}. The sensor field of views were selected
such that in one of the cases (fov = 90) the global optimum
was not in the field of view of the observer at t = 1. The SES
cells were generated from a unbiased, zero mean Gaussian
distribution at initialization (see Table 1).

A global analysis of the results depicted in Fig. 8 shows
that the foveal sensor outperforms the Cartesian both in
terms of the quality of the gathered information, as well
as the task execution speed and effectiveness, as demon-
strated by the gap reduction plot. We hypothesize that the
best performance of the foveal sensor is due to the fact that
the uncertainty in the periphery implicitly promotes more
peripheral (lateral) exploration whereas the Cartesian pro-
motes longitudinal (depth) search. This statement is clearly
supported by the cumulative regret plots which exhibit lower
losses for the Cartesian sensor, and thus a greedier behaviour.
Moreover, for the foveal sensor case, a larger FOV allows the
agent to attend the target more quickly at the cost of reduced
information gain. A wider FOV, despite having less periph-
eral resolution, is advantageous in the speed of execution
during visual search tasks (Fig. 7).

In Fig. 8a we assess the performance of our method for
the different acquisition functions referred in Sect. 6. On one
hand, in the UCB case, a larger confidence bound parameter
α increases exploration and, on average, improves perfor-
mance in the particular task of finding the nearest object.
However, too much exploration incurs in large cumulative
regrets, and thus in high energy costs due to large oculo-
cephalic movements when attending objects further from
the observer. Nevertheless, purely exploratory behaviours
(α = ∞) lead to better results in the average reconstruc-
tion quality as shown by the information metrics, since on
average more memory sample locations are fixated. On the
other hand, the tested improvement-based policies (PI and
EI) seek to improve on the current best and have the advan-
tage of being parameter free. For our particular setting, and
similarly to UCB with α = 0, PI tends to be excessively
greedy and get trapped in local minima. On the contrary,
EI deals well with the exploration–exploitation trade-off, as
demonstrated by the average gap reduction and cumulative
regret per saccade metrics due to the fact that it implicitly
accounts for the improvement magnitude of each saccadic
action, which allows for choosing distant, with high vari-
ance, fixation points.

Fig. 7 SES sample point distribution according to different topological memory biases and kinematic constraints. a Uniform, b top bias, c bottom
bias and d target bias
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Fig. 8 Performance results for the assessed sensor topologies, field of views and upper confidence bound parameter. a Average per saccade
performance plots and b time evolution plots

An in-depth analysis of the temporal evolution metrics
(Fig. 8b) for a fixed α = 100, allows us to assess conver-
gence times for a fairly exploratory behaviour. The temporal

evolution of the gap reduction metric shows that, in all cases,
no more than 20 saccades are necessary to perform the task
of finding the nearest object for both sensor types. Howbeit,
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Fig. 9 Performance results for the assessed memory biases. a Average per saccade performance plots α = 100 and b time evolution plots
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as indicated by the accumulated regret temporal evolution,
convergence is only achieved after no less then 30 saccades.
We further note that, after convergence, the cumulative regret
is on average higher for the foveal case, as a consequence of
having a more exploratory nature. The gathered information
exhibits an asymptotically convergence behaviour and has a
faster transient time for the Cartesian sensor, again, support-
ing the idea that the Cartesian sensor is more greedy, myopic,
and thus more prone to get trapped in local minima.

7.2.3 Memory biases

Here our goal was to investigate the effect of different spatial
memory topological biases imposed from a priori knowledge
regarding the environment structure and the task at hand.
At the present, experiments were performed with the foveal
sensor with a fov = 135, and for the UCB with α = 100.
We intended to demonstrate that a careful displacement of
the memory patches considering prior knowledge about the
surrounding environment and the task at hand should incur
in large performance gains. Therefore, we considered four
different prior belief distributions with parameters defined in
Table 1 and resulting SES topologies depicted in Fig. 7:

• a “neutral” (unbiased) distribution reflecting the absence
of a priori knowledge about the target location.

• a “bad” (top) prior belief distribution based on the wrong
assumption that the object is above the observer.

• a “good” (down) prior belief distribution that assumes
that the object is on the ground

• a “very good” (target) prior belief considering the true
location of the target object.

In the Fig. 9 we can observe that the “target” case had
the best performance and the “top” the worst performance
according to all metrics. In fact, as demonstrated by the gap
reduction and the accumulated regret time evolution plots,
the method was successful in finding the global optimum
and converged with only 2 saccades. All the other cases were
still able to find the optimum with less than 10 saccades and
converge to the optimum within the first 20 saccades.

As expected, the gathered average local information met-
ric indicates that increasing the memory sample density
around the object of interest improves the target’s gathered
information. These experiments demonstrate that translating
task-related priors in clever memory allocation to regions of
higher reward yields faster task execution times and faster
convergence rates. This results in an increase in the time
spent on reducing the uncertainty on the target and there-
fore in improved reconstruction quality. On the one hand,
promoting higher resolution in spatial memory to the most
important surrounding regions according to the task, allows
for more accurate target reconstruction. On the other hand,

less fixations are needed to find the target, since less memory
cells, and thus possible fixations, will reside outside of the
target vicinity.

8 Conclusion

In this work we investigated the impact of uncertainty due
to quantization phenomena in the retina and on how to take
advantage of it to guide gaze shifts for two distinct retinal
topologies: Cartesian and log-polar.With our approaches dif-
ferent gaze patterns emerge dependingon the sensor topology
and field of view and on exploration–exploitation confi-
dence bounds parameters. The obtained results demonstrate
that a wider field of view, despite less peripheral resolu-
tion is advantageous in visual search tasks execution speed.
Furthermore, we showed that a task-biased SES allows for
simultaneously coping with limited memory resources (i.e.
limited number of memory cells) while improving perfor-
mance, both in terms of target reconstruction quality and
task execution speed.

The proposed framework can be further enhanced with
other ideas from the attentional stereopsis literature, namely
with (Agarwal and Blake 2010) which improves reconstruc-
tion quality and efficiency by restricting stereo matching to
biologically plausible volumes of interest. Moreover, one
could improve the proposed SES run-time performance by
relying on a nearest neighbour data alignment scheme. A kd-
tree could be built during initialization time and be used for
storing the ego-sphere cells (P). Then, for each observed 3D
point, searching for the closest cell on the sphere would be
performed in O(log Nx ), instead of O(Nx ). Future work will
include developing adaptive re-sampling techniques for on-
line memory biasing, capable of coping with dynamic tasks
and environments.
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