
Auton Robot (2018) 42:329–351
https://doi.org/10.1007/s10514-017-9616-2

Near-optimal probabilistic search using spatial Fourier sparse set

Kuo-Shih Tseng1 · Bérénice Mettler2

Received: 29 February 2016 / Accepted: 11 January 2017 / Published online: 6 February 2017
© Springer Science+Business Media New York 2017

Abstract Autonomous search is an essential research topic
for rescue and other robotic applications. However, searching
for targets efficiently is still an unsolved problem. To achieve
this objective, a robot needs to simultaneously maximize
environmental coverage, maximize probability of detection
(PD) and minimize motion cost. The problems associated
with these objectives are NP-hard. This research reformu-
lates the three objective functions as a maximum cumulative
PDproblemwithmotion cost. Since the PD function depends
on the environment, the robot needs to both learn the PD
function and the cost-to-go (CTG) function. This research
proposes a reinforcement learning algorithm to learn the PD
and CTG functions simultaneously. Since the PD function is
sparse in the Fourier domain under certain subgoal patterns,
spatial Fourier sparse set is proposed to learn PD functions
based on the compressed sensing technique. The learned PD
andCTG functions can then be used to generate subgoals that
achieve (1− 1/e) of the optimum due to the submodularity.
Experiments conducted with this algorithm demonstrate that

This is one of several papers published in Autonomous Robots
comprising the Special Issue on Active Perception.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s10514-017-9616-2) contains
supplementary material, which is available to authorized users.

B Bérénice Mettler
mettler@umn.edu

Kuo-Shih Tseng
kuoshih@cs.umn.edu

1 Department of Computer Science and Engineering, College
of Science and Engineering, University of Minnesota,
Minneapolis, MN, USA

2 Department of Aerospace Engineering and Mechanics,
College of Science and Engineering, University of Minnesota,
Minneapolis, MN, USA

the robot can search for the target faster than prior learning
approaches (e.g., PMAC and FSS) and the benchmark model
(e.g., PD).

Keywords Probabilistic search · Submodularity ·
Compressed sensing · Q-learning · Sparse learning

1 Introduction

Optimal search is concerned with simultaneously maximiz-
ing environment coverage, maximizing the probability of
target detection and minimizing motion cost. However, each
one of the three objective functions is NP-hard. Most of the
related work focuses on only one of the objective functions.
If the map is preprocessed as a graphical model or polygonal
model, the robot can search for the target with theoretical
bounds of time or probability (Hollinger et al. 2010; Gerkey
et al. 2006; Lau et al. 2008, 2006). However, those algo-
rithms do not consider sensing coverage, sensing uncertainty,
and motion constraints simultaneously. In Tseng and Met-
tler (2015), the proposed algorithm considers three objective
functions. Although it can give theoretical guarantees for two
objective functions, it cannot give the overall search perfor-
mance guarantee. To achieve overall performance guarantee,
a unified objective function is necessary.

The coverage problem and probabilistic search in a graph-
ical model can be solved by greedy algorithms (Nemhauser
et al. 1978; Hollinger and Singh 2008). Since the objective
functions of coverage and probabilistic search are sub-
modular (see Definition S1 and S2), greedy algorithms
give near-optimal guarantees (Nemhauser et al. 1978; Feige
1998). If the coverage problem can be reformulated as a
probabilistic search problem, the objectives are reduce to
maximize probability of detection (PD) andminimizemotion

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9616-2&domain=pdf
https://doi.org/10.1007/s10514-017-9616-2

330 Auton Robot (2018) 42:329–351

cost. Then further consider the motion cost, maximizing PD
with motion cost is a unified objective function. The prob-
lem definition and approach overview are in the following
two sections.

Definition S1: (Submodularity) Given a finite set
S={1,2,...,N}, a submodular function is a set function F :
2N → R which satisfies the diminishing return property.
For every SA, SB ⊆ S with SA ⊆ SB and every s ⊆ S,
F(SA ∪ s) − F(SA) ≥ F(SB ∪ s) − F(SB) holds.

Definition S2: (Greedy algorithm) Given a finite set
S={1,2,...,N} and coverage function F , the greedy algo-
rithm starts with the empty set SG,0 = ∅ and choose
SG,i+1 = SG,i ∪{argmaxs∈S\SG,i F(SG,i ∪{s})}, where SG,i

represents the 1st to i-th chosen elements by the greedy algo-
rithm and and s is an added new element.

1.1 Problem definition

The efficient search problem can be defined as follows:Given
a grid map, a mobile robot with velocity and accelation con-
straints ([v, ω, a, α]max), a kinect sensor with a conditional
probability table1 of target detection, the objective is to find
velocity commands [v, ω]0:T such that T is minimal, where
0:T denotes the time from the beginning to the time when
P(A) > 90%, where A denotes High probability area (H-
area2).

Figure 1 illustrates an efficient search scenario for a sin-
gle robot, with position described by a grid map, that has to
generate a search path to find a target. Since the detection
outcome is with uncertainty, a Bayes filter is applied to esti-
mate the probability of target detection in each cell. Once
the P(A) > 90%, the search is terminated. In this paper,
the research focuses on determining a search path given as a
sequence of subgoals. The robot is controlled via speed and
turn rate (v, ω) commands which are generated based on the
current subgoal and robot position using receding horizon
control (Mettler et al. 2010; Tseng and Mettler 2015).

1.2 Approach overview

The general approach illustrated in Fig. 2a, b, is that search
with a mobile robot platform can be decomposed into sub-
problems that are represented by finite subgoals. the subgoal

1 The conditional probability table is computed based on the detection
outcome. There are four cases: true positive, false negative, false posi-
tive, and true negative. For example, if the target is there and the sensor
cannot detect, this is called false negative.
2 The H-area is defined as the 20 × 20cm2 area around the highest
probability cell. If the target is in the H-area and P(A) > 90%, it is a
positive decision.

Fig. 1 Illustration of efficient search. a The blue circle represents the
robot position, red lines are the sensing range, black areas are obstacles
andwhite areas are unoccupied grids. bThe yellow circle represents the
robot position, the black areas represents low probability, green areas
represents high probability and the red square is H-area

Fig. 2 Illustration of the subgoal concept. a The blue circle represents
the current robot position, the orange arrow is search path, the blue
area is covered area. The triangle represents the current coverage and
polygon areas represent the coverage along the search path. bThe black
circles represent subgoal positions and blue areas are corresponding
covered areas of each subgoal. c The blue circle represents the robot
position, black circles are subgoal positions, green areas represents high
probability, the blue arrow is the lowest cost path toward the subgoal

concept confers two main advantages. First, finding K sub-
goals with maximum coverage is a discrete optimization
problem, which has solutions with theoretical guarantees
(Nemhauser et al. 1978). Second, since the subgoals are the
subset of the continuous motion, the covered area of con-

123

Auton Robot (2018) 42:329–351 331

tinuous motion is always greater than the covered area of
the subgoals (see the polygon area in Fig. 2a is bigger than
the three triangles area in Fig. 2b). Hence, the covered area
based on discrete subgoals is a lower bound of the covered
area of the continuous motion. A key question then is, can
such subgoals be learned? If the robot can learn the subgoals
from information gathered through environment sensing, it
can then sequentially visit the subgoals to cover the environ-
ment efficiently.

The goal of this research is to enable a mobile robot to
learn the subgoals and then utilize those subgoals to search
for the target (see Fig. 2c). At the motion control level, the
robot learns the cost-to-go (CTG) function using Q-learning.
The learned CTG function guides the robot to the lowest cost
path toward the current subgoal. At the subgoal level, the
robot learns the PD function through spatial Fourier sparse
set (SFSS) learning. Since the search objective function is
submodular, the subgoal selection based on a greedy pol-
icy is near-optimal with lower bound (1 − 1/e)OPT . After
generating subgoals, the robot sequentially visits the learned
subgoals to search for the target efficiently.

The contributions of this paper are as follows: First, a uni-
fied objective function considering coverage, probability of
detection and motion cost is proposed. To the best of our
knowledge, this is the first unified objective function consid-
ering these three objectives. Second, the proposed SFSS is
able to learn a submodular function with m samples, where
m ≤ O(klog(b)), b is the Fourier basis number and k is
the number of nonzero Fourier coefficients. To the best of
our knowledge, the sparsity in the Fourier domain for learn-
ing submodular functions have not been investigated. The
SFSS is the first algorithm exploiting this concept to dramat-
ically reduce the computation. Third, the learned subgoals
are shown to be within (1 − 1/e) of the optimum with high
probability. Finally, experimental demonstrations show that
the robot can search for the target faster than prior learning
approaches (e.g., PMAC and FSS) and the benchmark model
(e.g., PD).

The paper is organized as follows. Section 2 describes the
related work. Section 3 introduces the problem formulation.
Sections 4 and 5 describe how the PD and CTG functions
are learned and detail the proposed algorithm. Section 6 out-
lines the extensions of the proposed algorithms and the future
work. Section 7 describes the experiments used to demon-
strate its performance. Finally, Sect. 8 concludes the paper
with a summary of the work.

2 Relevant work

The following discusses the three problems that make up
optimal search problem: coverage, probabilistic search and
path planning.

2.1 Coverage problem

For surveillance applications, a typical goal is to cover the
whole room using the fewest sensors, or cover the most
space using a fixed number of sensors. Both problems are
NP-hard (ORourke and Supowit 1983). This problem is also
called the “art gallery problem” (Aggarwal 1984). There are
two major approaches to compute approximate solutions.
First, the environment is modeled as a polygon, the range
of the sensors and field of view are assumed to be infinite.
Approximate algorithms solve the problem based on the set-
covering concept. Second, real-time sensor data from the
robots are collected for learning. Based on the learned cover-
age function, the robots move to the locations that maximize
coverage. This procedure allows to find an approximate solu-
tion.

A polygonal environment is divided into several subsets.
Choosing the least covered set provides a simple way to
find a solution. Such greedy algorithms generate solutions
with O(log N)-approximation, where N is the number of
sets. ε-net finder provides an O(log log OPT)-approximate
algorithm for guarding a simple polygon with guards on the
perimeter (King and Kirkpatrick 2011), where OPT is the
minimal number of guards. To further consider the sensor
can observe all orientations of the object, �(

√
n) is neces-

sary to cover a simple polygon with n vertices (Tokekar and
Isler 2014). However, those theoretical bounds are based on
highly simplified sensor and/or environmental models.

Cognitive-based adaptive optimization (CAO) is proposed
for the optimization problems where the objective function
is unknown but measurements are available (Kosmatopou-
los 2009; Renzaglia et al. 2011). It is applied to maximize
the coverage using a fixed number of robots equipped with
sensors in 3D environments (Renzaglia et al. 2012). Given
no prior information about a specific objective function and
environments, theCAOframework has two advantages. First,
the robots learn the objective function from real-time sens-
ing data. Second, the CAO algorithm still works, even if the
environment is non-convex. However, this approach cannot
give a theoretical guarantee of coverage.

2.2 Coverage control

The technological advances in sensors and networking have
transformed robots into mobile sensing networks. They can
sample the environment more dynamically in space and time
than static sensors. To do this successfully, robots must cover
the environment and distribute control via communications.
Lloyd algorithms achieve these objectives by finding solu-
tions of Voronoi diagrams based on given constraints (Lloyd
1982). In Cortes et al. (2004), Lloyd descent algorithms can
coordinate a mobile sensor network. In Pimenta et al. (2009),
the proposed approach allows robot networks to simultane-

123

332 Auton Robot (2018) 42:329–351

ously cover and track moving targets. In Schwager et al.
(2009), UAVs with downward facing cameras are used to
monitor an environment through a a distributed control algo-
rithm. These applications and algorithms demonstrate the
vast potential of mobile sensing networks.

2.3 Probabilistic search

Bayesian search is divided into two components, perception
and decision-making. Perception is to compute the probabil-
ity distribution of the target. Recursive Bayesian estimation
techniques enable robot(s) to estimate the target using real-
time motion and measurement data (Bourgault et al. 2003).
To further considermultiscale search, probabilistic quadtrees
are proposed for a UAV flying at different elevations (Chung
and Carpin 2011). Decision-making is to compute the opti-
mal actions toward the target. However, finding the optimal
decisions in a probabilistic environment is NP-hard.

The decision-making problem was reformulated as Par-
tially Observable Markov Decision Processes (POMDPs)
(Eagle 1984; Kadane and Simon 1977), which is NP-hard.
To allow larger horizons, maximizing the cumulative prob-
ability of detection (PD) was proposed (Stone 1975). There
are two major assumptions in PD model. First, there is no
false detections and no detection of the target along the
search path. Second, the sensing coverage at each position
is nonoverlapping and independent of one another. Based
on these assumptions, the probability of detection is easily
propagated for larger horizons through Bayes filter. Even if
the propagationmodel is simplified, maximizing the cumula-
tive PD is an NP-complete problem (Trummel andWeisinger
1986).

Maximizing cumulative PD within finite horizons pro-
vides a way to find suboptimal actions. There are two major
methods to find suboptimal paths. First, the maximization of
the PD problem is formulated as a mixed-integer linear pro-
gramming (MILP). The robots are able to find suboptimal
search paths (Lo et al. 2012). Second, branch and bound
(BNB) is used to reduce the computation. The principle
of branch and bound is to generate the possible branches
and prune the branches if the cost values exceed some pre-
specified costs. This concept enables a robot(s) to search
for a moving target in indoor environments based on the PD
model (Lau et al. 2008, 2006). Therefore, by choosing a suit-
able bound or horizon, suboptimal solutions of search paths
can be obtained with an affordable computation.

2.4 Minimum-time trajectory planning

Minimum-time trajectory planning is NP-hard problem,
which means that computational complexity grows expo-
nentially with the order of the searcher’s dynamics and
the size of the map. Hence, the key challenge to solving

this problem is finding the trade-off between reducing the
computational load and increasing performance. There are
two major approaches to compute approximate paths for a
robot(s). The rapidly-exploring random tree (RRT) (LaValle
andKuffner 1999)works by randomly generating nodes from
the free space once the connection between two nodes is
obstacles-free. The robot’s approximate path from start to
goal is found by graph search.

Another approach, which was introduced in aerospace for
UAVguidance, is receding horizon (RH) trajectory optimiza-
tion with a cost-to-go (CTG) function (Bellingham et al.
2002). The CTG function is an approximation of the cost
to reach a prespecified goal in the global environment. The
Receding horizon solves a constraint optimal control prob-
lemover a finite horizon, subject to the terminal cost obtained
by the CTG evaluated for the state value attained at the end of
that horizon (Mettler et al. 2010). The state that minimizes
the composite cost, i.e. the cost to reach the intermediate
state (cost-to-come, CTC) and the cost from that state to the
global goal (CTG). That states define the active waypoint
(AWP). The AWP is decided based on the CTG function
and the horizons of receding horizon control. For example,
when the number of horizons is larger, the robot can choose
farer AWP. With this approach, the original infinite-horizon
optimization problem is divided into a sequence of smaller
trajectory planning problems.More details on guidance tech-
niques can be found in Goerzen et al. (2010) and Bellingham
et al. (2002).

2.5 Informative path planning (IPP)

In the past 10years, the robotics community has adopted the
concept of informative path planing (IPP) (Singh et al. 2007)
and submodular functions (Nemhauser et al. 1978; Krause
et al. 2008; Singh et al. 2009). Instead of finding minimum-
time trajectory, the goal of IPP is to find an optimal path
which maximizes the amount of sensed information (Bin-
ney and Sukhatme 2012). IPP is a novel approach for active
perception. It includes three relevant questions. First, where
to place the sensors/robots so that most information can be
collected? Second, how to construct a path satisfying certain
objective functions with limited bounds? Third, what theo-
retical guarantee can be given about the performance of the
approximated solutions?

The first problem is related to “adaptive sampling and fea-
ture selection” (Binney and Sukhatme 2012) and is based
on machine learning techniques, such as Gaussian Pro-
cesses (GP). This problem is to study where to place the
sensor to maximize/minimize a quantity (e.g., PD, informa-
tion gain and mutual information). The second problem is
related to “path planning and probabilistic search” (Binney
and Sukhatme 2012). Path planning is to find a path to a
known goal. Probabilistic search is to find the target given

123

Auton Robot (2018) 42:329–351 333

the target distribution and motion model. The third prob-
lem is related to submodularity. If the objective function is
submodular, greedy approaches give (1 − 1/e) OPT guar-
antee (Nemhauser et al. 1978). Moreover, no polynomial
time algorithms are strictly better than greedy approaches
unless P = N P (Feige 1998). Example applications include
finding paths that enable robots to collect maximal mutual
information (Singh et al. 2007), maximal variance reduc-
tion of Gaussian processes (Binney and Sukhatme 2012)
and minimal distortion from wireless stations (Hollinger and
Sukhatme 2013; Hollinger et al. 2013).

3 Problem reformulation

The successful applications of IPP and submodularity inspire
a reformulation of the search problems. Section 3.1 describes
the three objective functions associated with robotic search
problems. Section 3.2, then introduces the near-optimal
approach for the coverage problem. Section 3.3 proves that
the probabilistic search objective function is submodular and
that the coverage problem is a special case of probabilistic
search. And, finally, Sect. 3.4 shows that if the objective func-
tion is maximizing cumulative PD with motion costs, greedy
approaches generate near-optimal solutions.

3.1 Three objective functions of search problem

Definition 1 (Optimal search with three objectives) The
ground set of subgoals is S = {1, 2, ..., N } in a grid map.
The objective is to choose K subgoals (Sg) which satisfy:

(Objective 1: maximum coverage): max
Sg⊆S

fC (Sg)

(Objective 2: maximum probability): max
Sg⊆S

fP (Sg)

(Objective 3: minimum motion cost): min
Sg⊆S

T (Sg)

where fC is the coverage function, fP is the PD function and
T is the CTG function.

To illustrate the three functions and subgoals, assume there
are four subgoals S = {1, 2, 3, 4} (see Fig. 3a). Sg1 = {1, 2}
represents the two chosen subgoals. Figure 3b shows two
subgoals cover 30% so fC (Sg1) = 30%. Figure 3c shows
two subgoals cover 20% probability so fP (Sg1) = 20%.
Figure 3d shows the motion cost of two subgoals is 8 s
so T (Sg1) = 8. Definition 2 describes how to compute fC ,
Definition 6 describe hows to compute fP and Definition 8
describes how to compute T .

The three objectives are in general coupled. For exam-
ple, choosing 3 subgoals with the least motion cost could
have small coverage. Even if Objective 1 and 2 are sub-
modular (Tseng and Mettler 2015), it is difficult to give a

Fig. 3 Illustration of three functions. a The dash circles represent the
ground set of 4 subgoals. b The black circles represent chosen the two
subgoals and blue areas are the corresponding covered areas of sub-
goals. c The green areas represents high probability and black areas
represent low probability. d The blue arrow is the lowest cost path
toward the subgoal

Fig. 4 Illustration of the coverage problem. a The blue circle repre-
sents the current robot position and the blue area is the corresponding
covered area. b The numbers represent the subgoal index, black circles
are subgoal positions, orange arrows are paths, blue areas are corre-
sponding covered area of each subgoal and black areas are obstacles

performance guarantee for the overall search performance,
therefore, to be able to provide a performance guarantee, a
reformulation is necessary.

3.2 Coverage problem

Definition 2 (Coverage) As Fig. 4a shows, the robot locates
at XR and gets the sensing measurements z = {ri , θi }, where
i = 1, ..., Nz . r is the range, θ is the angle and Nz is the
number of sensor scans. Assume there are Ng unoccupied

123

334 Auton Robot (2018) 42:329–351

cells in a grid map. The robot’s sensor covers Nc cells. The
coverage C(XR) is defined as Nc/Ng .

Both ray-tracing and grid mapping techniques can com-
pute the coverage efficiently (Charrow et al. 2015; Renzaglia
et al. 2010; Konolige 1997). According to XR and z, the cov-
ered area is computed. For example, there are 25 cells and 8
cells are covered by the robot (see Fig. 4a). Hence, C(XR)

is 32%.

Definition 3 (Maximum coverage problem) As Fig. 4b
shows, the ground set of subgoals is S = {1, 2, ..., N }. The
objective is to choose K subgoals (Sg) such that max

Sg⊆S
fC (Sg).

As Fig. 4b shows, there are 25 cells and the heading res-
olution of the robot is 45◦. So, the size of the ground set is
200 (25×8). If the robot tries to find 3 subgoals such that the
coverage of subgoals is maximal, it needs to compute 2003

combinatorial solutions and then choose the subgoal set with
maximal coverage. Then, the robot visits the chosen subgoals
to cover the environment. The computational complexity for
this problem is O(Nk). In fact, this is a NP-hard problem.
Therefore, approximate solutions are needed.

Since the coverage function is submodular (see Lemmas
1 and 2), greedy approaches give (1 − 1/e) OPT guaran-
tee (Nemhauser et al. 1978). Moreover, no polynomial time
algorithms are strictly better than greedy approaches unless
P = N P (Feige 1998). Hence, a greedy algorithm generates
(1 − 1/e)OPT solution for objective 1. As Fig. 4b shows,
the robot chooses the first subgoal with maximal coverage
from 200 candidates. Then, the robot repeats the same greedy
approach for the next two subgoals. Finally, the robot only
needs to compute 200 × 3 solutions.

Lemma 1 ((1 − 1/e)-Approximation (Nemhauser et al.
1978)) Let F be a monotone submodular set function over
a finite set S with F(∅) = 0. Let AG be the set of the
first k elements chosen by the greedy algorithm and let
OPT=maxA⊂S,|A|=k F(A). The lower bound of the greedy
algorithm is F(AG) ≥ (1 − 1/e)OPT .

Lemma 2 (Near-optimal guarantee (Feige 1998)) The result
of Lemma 1 is tight and there is no polynomial time algorithm
can do strictly better than greedy algorithm if P �= N P.

3.3 Probabilistic search

Computing optimal decisions for probabilistic search is a
partially observable Markov decision processes (POMDPs)
problem, which is NP-hard. Hence, a probability of detection
(PD) model is proposed that can be propagated for larger
horizons.

Definition 4 (Probability of detection (PD)) As Fig. 5a
shows, the robot locates at XR and gets the measurements z.

Fig. 5 Illustration of PD and EPD model. a The blue areas represent
the covered area and green areas represent high probability. b The
blue circle represents the robot position and green areas represent high
probability

The assumptions about the robot’s motion and sensing are as
follows:

(i) there is no target detection along the path,
(ii) the robot only senses in its local cell and there is no sens-

ing coverageoverlapbetweendifferent subgoal positions,
(iii) the robot only moves to the neighbor cells.

Based on these assumptions, the probability of detection
(PD) is defined as P(XR) · g, where P(i) is the probability
of the i-th cell, g is glimpse function3 and 0 ≤ g ≤ 1.

The PD was originally proposed for airplanes and ships
operating in large-scale environments (Stone 1975; McCue
1990). Hence, the 2nd and 3rd assumptions in Definition 4
are reasonable. However, they do not consider two criti-
cal factors. First, the sensing areas at different positions
could overlap, and second, the robot can move to any cell
in this environment. To make the PD model more realistic,
an extended PD (EPD) model is proposed as follows:

Definition 5 (Extended PD (EPD)model) As Fig. 5b shows,
the robot is located at XR and gets the measurements z. The
assumptions about the robot’smotion and sensing is that there
is no detection of the target along the path. Based on this
assumption, the probability of detection (PD) is defined as
P(XR) · g , where P(XR) is covered probability in XR posi-
tion.

According to Definition 5, EPD model deletes assump-
tion (ii) and (iii) in PD model. Hence, EPD model supports
sensing overlap and do not consider path constraints.

3 The value of glimpse function can be decided from the conditional
probability table of the given detector. g = q−pq

1−pq , where p denotes the
probability of detected area. q denotes the probability of that the robot
detects the target if the target is at the detected area. The derivation of
glimpse function can be found in the appendix of Tseng and Mettler
(2015).

123

Auton Robot (2018) 42:329–351 335

Definition 6 (Maximum cumulative PD) As Fig. 4b shows,
the ground set of subgoals is S = {1, 2, ..., N }. The cumu-
lative probability of detection is defined as: fP (Sg) =
∑T

i=1 P(Sg,i) · g, where fP is the cumulative PD along the
path and P(Sg,i) is the probability of covered cells at the i th
subgoal. The objective is to choose K subgoals from S such
that the cumulative probability of detection (fP) is maximal.

Theorem 1 (Submodularity of probabilistic search (Tseng
and Mettler 2015)) Probabilistic search is submodular if
there are no detections along the search path.

As Lemma 1 and 2 show, the greedy approach generates
near-optimal solutions for submodular function. InTseng and
Mettler (2015), the authors already proved Theorem 1. How-
ever, they did not find the relationship between the coverage
problem and probabilistic search, so the two problems are
solved individually. The relationship between the two prob-
lems is as follows:

Theorem 2 (Special case of probabilistic search) Maximum
coverage is a special case of maximum cumulative PD under
EPD model if the following conditions hold:

(i) the target probability distribution is uniform,
(ii) g = 1.

Proof The cumulative PD is fP (Sg) = ∑T
i=1 P(Sg,i) · g.

The coverage is fC (Sg) = ∑T
i=1 C(Sg,i). There are two

major difference between PD and coverage. First, the weight
of each cell in the coverage problem is the same. Second,
the g in PD model is between 0 and 1. Thus, if the target
distribution is uniform and g equals 1, the objective 1 and 2
are the same.

Since coverage is a special case of probabilistic search
under EPD model, achieving objective 2 also satisfies objec-
tive 1. According to Lemmas 1, 2 and Theorem 1, greedy
approaches give near-optimal solutions for objective 2.
The three objective functions are reduced to two objective
functions– maximum probability and minimummotion cost.
The incorporation of objective 2 and 3 are described next.

3.4 Probabilistic search with motion costs

Considering only objective 2would be insufficient for robotic
applications, since the robot’s motion cost to visit those sub-
goals sequentially could be excessive. As Fig. 4b shows, the
total motion time is T1 + T2 + T3. Hence, considering both
probability and motion cost is necessary to achieve an effi-
cient search. The unified objective function is reformulated
as follows:

max
Sg⊆S

fP (Sg)

s.t. T (Sg) ≤ Tth,
(1)

where Tth is an assignedmotion cost threshold. This problem
can be seen as a submodular maximization problem with
different item costs, which is also NP-hard (Khuller et al.
1999). Fortunately, a near-optimal solution of Eq. 1 can be
found taking advantage of submodularity.

Lemma 3 (Submodularity with non-uniform item costs
(Khuller et al. 1999)) Given a submodular function F :
2N → R, a finite set S={1,2,...,N} and the corresponding
item cost τ(s) ∈ R, the greedy algorithm is SG,i+1 = SG,i ∪
{argmaxs∈S\SG,i

F(SG,i∪{s})−F(SG,i)

τ (s) }. The greedy algorithms
using a partial enumeration technique give (1 − 1/e)OPT
guarantee.

Lemma 3 is similar to Lemma 1 but each item has a differ-
ent cost. Even if each item cost is different, the submodularity
holds and greedy approaches generate near-optimal solu-
tions (Khuller et al. 1999).

However, Lemma 3 cannot apply to motion costs because
the τ(s) depends on the given set SA or SB . As Fig. 4b shows,
assume SA = {1}, SB = {1, 2} and s = {3}. τ(s|A) denotes
the motion cost adding subgoal s from the subgoal set SA.
Ti, j denotes themotion cost from i-th subgoal to j-th subgoal.
In this example, τ(s|A) is the motion cost when the robot at
subgoal 1 moves to subgoal 3. τ(s|A) is T1,3 and τ(s|B) is
T2,3. Hence, τ(s|A) �= τ(s|B). To prove the submodular-
ity with motion costs, a probabilistic bound is introduced as
follows:

Theorem 3 (Optimality ofmaximizingPDwithmotion costs
(Tseng andMettler 2015)) Given a set of subgoals SG chosen
from a ground set of subgoals S by a greedy algorithm, the
following equation holds: fP (SG) ≥ (1−1/e) fP (Sopt)with
high probability.

where Sopt represents the optimal subgoals chosen
from S.

Theorem 3 shows that the greedy approach for maximiz-
ing PD with motion costs (Eq. 1) generates the near-optimal
solution with high probability. The approximation factor is

(1 − 1/e
T (Sg)

Tth). If T (Sg) = Tth , the approximation factor is
1−1/e. Since the motion cost is always over than 1 s and the
coverage/probability is always less than 1, the motion cost
dominates parts of decisions. In Tseng and Mettler (2015),
the proof shows that the T (Sg) is very close to Tth with high
probability. Hence, the performance of the selected subgoals
is close to 1 − 1/e with high probability.

This search problem consists of two levels: motion control
and subgoal determination (see Fig. 2c). If the robot knows
fP and T through precomputation, it can find near-optimal
solutions with high probability. fP can be computed online
through ray-tracing techniques if the number of subgoals (N)
is smaller than 100 and a map is provided. T can be com-
puted online through the Dijkstra algorithm if the number of

123

336 Auton Robot (2018) 42:329–351

subgoals (N) is smaller than 100 and the grid size is smaller
than 10,000. However, if these conditions are not satisfied,
the robot must learn the two functions as the agent interacts
with the environment. The following section explains moti-
vations for learning two functions.

3.5 Motivations for learning PD and CTG functions

Motivations for learning the PD function are as follows:
First, when a map is not provided or does not include accu-
rate data (e.g., some pieces of furniture are moved), the
robot must learn to search in unknown environments. In
such scenarios, the robot cannot use ray-tracing techniques
to compute fP directly and it needs to explore the cover-
age values of each subgoal. Then, the robot can learn the
fP based on what it observed. Furthermore, the experiments
show that simultaneous exploration and coverage approach
outperforms exploration-only approaches by utilizing the
submodularity of coverage problems (Heng et al. 2015). Sec-
ond, exploring the invariant property of search problems is
also important. A robot should be able to reuse informa-
tion gained from previously searching an environment when
later searching a new environment. The robot could utilize
reused information to reduce the search computation in var-
ious environments. Third, the learning approach could be
more computationally efficient than ray-tracing techniques.
Although ray-tracing techniques can compute coverage effi-
ciently in 2D environments, computing PD requires the
application of Bayes rule to each grid cell. Hence, batching
some data for learning is an efficient way to approximate PD
functions. In Heng et al. (2015), the authors also indicated
that ray-tracing techniques in 3D environments are infeasible
for real-time motion planning of UAVs.

Fourth, data storage and communication are important
for multi-agent search. For example, if two robots search
cooperatively, they can share their submodular functions.
The number of submodular values is 2N , which is infeasi-
ble for communication. Therefore, compression techniques
must be used. The compressed sensing techniques already
execute sensing and compression simultaneously (Hayashi
et al. 2013). Moreover, they can simultaneously reconstruct
the submodular function via distributed compressed sens-
ing (Chen et al. 2011). Finally, submodular functions can
be applied to many domains. For example, combinatorial
auctions for coalition formation (Vig and Adams 2007),
feature selection problems in graphical model (Krause and
Guestrin 2005) and clustering problems (Narasimhan and
Bilmes 2007) are popular in various robotic applications.
The objective functions of these problems are submodular.
Hence, learning submodular functions can also apply to these
problems.

Receding horizon (RH) trajectory optimization with a
CTG function is proposed to solve guidance problems for

a UAV (Mettler et al. 2010). In the precomputation stage,
the CTG function is computed based on Dijkstra algorithm
and motion primitive automaton (MPA). In the motion plan-
ning stage, the robot computes velocity commands using
nonlinear programming to achieve minimum-time trajec-
tory planning. However, there is only one goal in guidance
problems while there are N subgoals in search problems.
The amount of precomputation is therefore much heav-
ier for search tasks. For example, if the map is 10m ×
10m and CTG resolution is 10cm× 10cm×45◦, comput-
ing a CTG takes about 1 min. If N = 100, computing
all CTG functions will take over 1 h. Hence, the motiva-
tion of learning the CTG function is as follows: Learning
from motion data is a way to efficiently approximate CTG
functions. If a small set of simple features can approximate
CTG functions, the robot can learn CTG functions using
reinforcement learning approaches. This can save hours of
precomputation.

If the robot learns both the CTG function at the motion
control level and the PD function at the subgoal level, then
the robot will greedily chooses the subgoals according to the
learned functions until arriving at the K th subgoal or finding
the target. Hence, learning the two functions is the key to
solving efficient search. The definition of the two learning
problems and the collection of the training data are intro-
duced in the two following sections.

4 Learning PD function

Learning a submodular function is a challenging problem
since there are 2N values based on different discrete sets.
In Balcan and Harvey (2011), approximating a submodu-
lar function over

√
N/ log(N) bound can be simplified as

a classification problem. The authors proposed probably
mostly approximately correct (PMAC) learning. However,
approximating a submodular function within

√
N/ log(N)

bound requires an exponential number of samples. In Stobbe
and Krause (2012), the author proposed Fourier sparse set
functions (FSS) to learn submodular functions using com-
pressed sensing techniques. This approach requires fewer
samples. However, it needs more computation. Section 4.1
introduces the FSS concept. Since FSS only works for a
small number of samples (N < 100) due to the time
complexity O(N 4), exploring the sparisty in the Fourier
domain could reduce the unnecessary computation. Sec-
tion 4.2 explores the sparsity in the Fourier domain that
can be exploited to reduce the number of bases. Sec-
tion 4.2.2 introduces the proposed Spatial Fourier Sparse
Set (SFSS) for learning PD function. Before introducing
how to learn a submodular function, this section details
the learning PD function problem and how to collect
samples.

123

Auton Robot (2018) 42:329–351 337

Fig. 6 Illustration of the PD learning problem. The numbers represent
the feasible subgoals, black circles are subgoal positions, green areas
represent hight probability and black areas represent low probability.
There are five feasible subgoals (n = 5). If the subgoals are at the 2nd
and 4th cells (XS1={0,1,0,1,0}), the corresponding PD (PS1) is 0.2

Definition 7 (Learning PD functions) The ground set of
subgoals is S = {1, ..., N }. Given subgoal-PD data Xs =
{X (Si), PSi }, where X (Si) ∈ {0, 1}N represents selected
subgoals, PSi is the corresponding PD and 1 ≤ i ≤ m, where
m is the sample size. The objective is to find an approximate
PD function fP : {0, 1}N → R+.

Figure 6 illustrates the number of subgoal ground sets
is five. The measurements z2 and z4 at 2nd and 4th cells
are assumed to be known. Given this information the sub-
goal set S1 = {2, 4} and corresponding PD (PS1) are
computed. The subgoal-PD data is Xs = {X (S1), PS1} =
{{0, 1, 0, 1, 0}, {0.2}}. As the robot collects enough subgoal-
PD data, fP can be approximated.

The approach to collect the subgoal-PD data is the fol-
lowing: First, once the robot visits the i th-cell, it saves the
zi into the database. Second, the robot randomly chooses
{n1, n2, ..., nks } from the database, where 1 ≤ ks ≤ Ks

and Ks denotes the maximal number of sampled subgoals.
According to Si = {n1, .., nks } and zn1:ks , the robot computes
the corresponding probability PSi . Third, the robot saves the
subgoal-PD data (XSi , PSi) into Xs . After repeating the three
steps, the robot has a batch of subgoal-PD data. The follow-
ing subsection describes how to utilize subgoal-PD data to
learn a PD function.

4.1 Fourier sparse set (FSS)

As described in Stobbe and Krause (2012), the compressed
sensing technique can be used to learn submodular func-
tions using fewer samples. As Fig. 7a shows, the robot first
acquires a signal X(n,1) via a sensing matrix �(m,n) and col-
lect fM := f(m,1) for learning, where m << n and X(n,1) is
the submodular function. The robot has to recover the signal
X (see Fig. 7b). Notice that this is an ill conditioned linear
inverse problem. However, if the signal is sparse in certain
domains, the robot can recover X using sparse regression. As

Fig. 7 Illustration of the compressed sensing concept. a f(m,1) is col-
lected by the robot after taking measurements from a signal X(n,1). The
color cells represent real values and black/white cells represent binary
values (0 and 1 in � while 1 and −1 in 	.) b The robot has f(m,1) and
tries to recover X(n,1). c The signal X is sparse in the Fourier domain.
In this example, m is 8, n is 16 and k is 4. Given �m,n and f(m,1), it’s
impossible to recover X(n,1) (m < n). But, given Ψ(m,n) and f(m,1),
fB(n, 1) can be recovered (k < m)

Fig. 7c shows, X is the inner product of the transform matrix
	(n,n) and coefficient fB(n,1). fB(n,1) has only k nonzero
values (so called k-sparsity). Since 	 and � are known, the
reconstruction matrixΨ can be computed. Although directly
recovering X is impossible, the robot can recover fB(n,1) if
k < m, and then recover X . The signal recovery formulation
is given as:

f̂ B = argmin
fB

1

2
|| fM − Ψ fB ||2 + λ|| fB ||1 (2)

where fB is the submodular function in the Fourier doman,
fM is a measurement vector of the submodular function, Ψ
is a reconstruction matrix, Ψ = �	, � is a sensing matrix
and 	 is a transform matrix.

The key assumption is that the signal is sparse in certain
domains. Hence, it is necessary to find a Fourier domain
where the coefficients of submodular functions are sparse.
In Stobbe andKrause (2012), the submodular function is rep-
resented as a pseudo-Boolean function. Since basis vectors
are composed of binary numbers (e.g., +1 and−1), this trans-
form is a special kind of Fourier transform called Hadamard
transform.

The problem of learning submodular functions can be
formulated as follows: Given the measurement sets A, the
corresponding submodular values fM and basis sets B, the
goal is to recover the coefficients f̂ B in the Fourier domain.
Once f̂ B is known, the submodular function can be recon-

123

338 Auton Robot (2018) 42:329–351

structed from any input set S. The steps of FSS learning are
as follows:

(1) Compute reconstruction matrix:

Ψ [i, j] = ψBj (Ai) = (−1)|Ai∩Bj |

(2) Recover Fourier coefficients:

f̂ B = argmin
fB

1

2
|| fM − Ψ fB ||2 + λ|| fB ||1

(3) Recover submodular functions:

f (S) =
∑

B∈2n
f̂BψB(S)

Time and sample complexity are important for learn-
ing. The major computation takes place at step 2, which is
solved by an accelerated gradient descent approach (Beck
and Teboulle 2009). Thus, the time complexity of FSS is
O(I b2), where I is the iteration number and b is the num-
ber of bases. According to the Restricted Isometry Property
(RIP), the sample complexity is m = O(klog(b)), where k
is the number of nonzero Fourier coefficients (Candes et al.
2006).

The size of b is
∑d

l=0

(n
l

)
, which is exponentially increas-

ing in presence of higher-order coefficients in the pseudo-
Boolean function. In Stobbe and Krause (2012), the authors
found that second-order pseudo-Boolean functions can
approximate submodular functions. Thus, the size of b is∑2

l=0

(n
l

)
. However, since the number of second-order bases

is b = O(N 2) and the time complexity is O(I b2), the time
complexity is O(I N 4), which is infeasible for online learn-
ing. Hence, this approach only works for N < 100. For
example, if N = 100, b = 5101, it cannot be applied to
online learning. In Stobbe and Krause (2012), the authors do
not address the relationship between sparsity in spatial and
Fourier domains, which could be useful to reduce the num-
ber of bases. The relationship is described in the following
section.

4.2 Sparsity in the Fourier domain

To explore the sparsity in the Fourier domains, the cov-
erage of 4 subgoals is transferred to the Fourier domain for
observations (see Fig. 8). Notice that the covered area for the
1st, 2nd and 3rd subgoals is highly overlapping. But, there
is no overlap between the covered area of 4th subgoals and
the other 3 subgoals. The total number of possible subgoal
sets is 16. Next, the coverage (fM) for the 16 subgoal sets
is computed. The associated basis table is shown in Table 1.
fB can be computed by Ψ −1 fM and as shown in Fig. 8b,
the 6th, 7th, 9th, 13rd, 14th, 15th and 16th coefficients are

(a) Subgoals (b) Fourier coefficients

Fig. 8 Illustration of sparsity in the Fourier domain. a The black dash
circles represent the subgoal positions and the blue area represents the
covered area by subgoal #1. b The Fourier coefficients shows that the
6th, 7th, 9th, 13rd, 14th, 15th and 16th coefficients are close to zero

Table 1 Basis Table. For example, the 7th basis represents choosing
the 2nd and 4th subgoals. The table also indicates the order of the bases.
i − th order means choosing i subgoals

Index B1 B2 B3 B4

0th order 1 0 0 0 0

1st order 2 0 0 0 1

3 0 0 1 0

4 0 1 0 0

5 1 0 0 0

2nd order 6 0 0 1 1

7 0 1 0 1

8 0 1 1 0

9 1 0 0 1

10 1 0 1 0

11 1 1 0 0

3rd order 12 1 1 1 0

13 1 1 0 1

14 1 0 1 1

15 0 1 1 1

4th order 16 1 1 1 1

zero. The common characteristics of these bases is that The
B4 values of these bases are 1 (see Table 1). In other words,
4th subgoal is one of these bases’ choosing subgoals.

Based on this example, the relationship between sparsity
in the spatial and Fourier domains is as follows: First, if the
subgoals result in no overlap, the Fourier coefficients of the
corresponding bases is zero. Second, the coefficient values of
higher-order is close to zerowith high probability. According
to this finding, if these 7 basis vectors are removed from B, fB
still can predict fM accurately. In other words, unnecessary
basis vectors can be removed before processing with sparse
regression. Based on the sparsity in the Fourier domains,
the invariant property and interaction patterns in the Fourier
domain are introduced in the following subsections.

123

Auton Robot (2018) 42:329–351 339

Fig. 9 Illustration of nonoverlapping coverage.aTheoverlapping cov-
erage of two subgoals is zero due to the subgoal configuration. b The
overlapping coverage of two subgoals is zero due to the obstacle

4.2.1 Invariant property in the Fourier domain

According to the sparsity in the Fourier domain, skipping
two nonoverlapping subgoals can reduce the number of the
second-order bases.However, there are two cases of nonover-
lapping subgoals. They correspond to the scenarios with and
without obstacles between subgoals. These two cases are
illustrated in Fig. 9. The 2nd case is difficult to compute
since it depends on the subgoal and map configuration. The
1st case is easy to compute since it only involves two sub-
goal positions and is environment-independent. Thus, before
learning, the bases for all subgoals that fall in the 1st case
can be discarded. After learning, the basis coefficients of the
2nd case are close to zero.

To illustrate the invariant property, Figure 10a, b demon-
strate that two different maps share the same four subgoals.
Their 16 coverage values (XM1 and XM2) are vary in spatial
domain. After the Fourier transformation, their 1st, 2nd, 3rd,
4th, 5th and 8th values in the Fourier domain are different,
while the other values are zero. In other words, they have the
same sparsity even in different environments.

Since only one area will be covered by two subgoals, the
coefficient of 2nd order term (the 8th value) is non-zero. If an
obstacle occludes the visibility of a subgoal (see Fig. 10c),
there is no overlap between two subgoals, therefore the 8th
value in the Fourier domain becomes zero. In other words,
the 1st case is environment-independent while the 2nd case
is dependent on the environment.

4.2.2 Interaction patterns in the Fourier domain

Search is the interaction among the searcher(s), target(s) and
environment(s). Their interaction patterns affect the learn-
ability of submodular functions. According to compressed
sensing theory, the robot needs O(klogb) samples to recover
the submodular functions. The interaction patterns in learn-
ing are as follows:

Fig. 10 Illustration of sparsity in different maps. The white color rep-
resents zero value and the other colors represent different values in
X and fB . There are the same 4 subgoals in two maps. After Fourier
transform, the zero values appear in the same positions

Searcher: The subgoal patterns will affect the number of
b. The less overlap between subgoals’ coverage generates
more sparse coefficients of bases and more basis vectors can
be removed. Environment: The number of k is decided by the
subgoal and map configuration. If there is overlap between
two subgoals’ coverage and there is an obstacle blocking the
overlap areas (see Fig. 10c), this coefficient of basis is zero.
Target: The target’s motion and prior distribution affect the
coefficient values in fB . If the target distribution is 99% in
a certain area, this distribution will generate more sparsity
in fB . According to these findings in the Fourier domain,
Spatial Fourier Sparse Set (SFSS) is introduced next.

4.3 Spatial Fourier sparse set (SFSS)

Themajor difference between FSS and SFSS is the reduction
of the basis number achieved by exploiting the sparsity rela-

123

340 Auton Robot (2018) 42:329–351

tionship between the spatial and Fourier domains. The steps
to generate a basis matrix (B) are as follows:

(1) 0 order basis: assign a zero vector.
(2) 1st order bases: pick

(N
1

)
1st order bases.

(3) 2nd order bases: pick
(N
2

)
2nd order bases.

(4) Reduce bases: compute nonoverlapping subgoals and
remove them from 2nd order bases.

Steps 1 and 2 take
(N
0

) + (N
1

)
terms. Step 3 and 4 takes β

(N
2

)

terms, where 0 ≤ β ≤ 1, which depends on the subgoal
patterns. Hence, the size of b is O(βN 2). This approach can
be extended to nth order basis. The advantages of the SFSS
are as follows:

– Reduced basis number: The FSS needs
∑2

l=0

(N
l

)
bases

while SFSS only needs
∑1

l=0

(N
l

) + β
(N
2

)
.

– Reduced computation: The computational complexity of
fB is O(I b2), where I is the number of iterations and b
is the number of bases. Thus, the complexity of FSS and
SFSS are O(I b2) and O(I b2β2), where β ≤ 1.

– Reduced number of samples: The sample complexity of
FSS and SFSS are O(klog(b)) and O(klog(βb)).

– Computational efficiency: Since the elements in Ψ con-
sist of +1/ − 1 and f (S) = Ψ fB , computing a
submodular value is the summation of elements in fB .

– Data storage and communication efficiency: To save and
transfer 2N submodular values is infeasible. Due to the
sparsity, the number of fB coefficients is only b. The
robot only needs to save fB and send it to the other robots.
In otherwords, this approach already compressed the data
into a sparse format.

– Invariant property: If the subgoal ground set is the same,
the learned fB can be reapplied to the other environments.
The robot only needs to update the nonzero values in fB
instead of 2N values in the spatial domain.

5 Learning CTG function

Section 5.1 introduces the Q-learning. Section 5.2 introduces
the proposed reinforcement learning algorithm for search.

Definition 8 (Learning CTG functions) Given the current
motion cost Δt , the robot position (XR) at time k, and the
subgoal position (XG), the objective is to find an approximate
CTG function T (XR, XG).

As shown in the scenario described in Fig. 11a, the robot
has five possible actions and chooses the third action. After
arriving at the cell, the robot gets the motion cost (Δt). The
CTG function is approximated through the sequential actions
and motion costs using Q-learning.

Fig. 11 Illustration of CTG learning problem and selected features.
a The blue circles represent the current robot position, orange circles
are next possible actions, the black circle is subgoal position, the red
arrow is the optimal action. The robot has five possible actions, (1)
upper left, (2) upper, (3) upper right, (4) turn left and (5) turn right. It
chooses the 3rd actionwith lowest motion cost (Δt). bThe black circles
are subgoals, the blue circleis robot position and the black line is the
distance between the robot and subgoal. The dash curve represents the
heading difference and the solid curve represents the direction angle. c
The subgoal is behind. d The subgoal is not behind

5.1 Q-learning

For the guidance problem, the goal is known, therefore the
CTG map for simple motion primitives is usually solved
offline via Dijkstra’s algorithm (Bellingham et al. 2002;
Mettler and Kong 2008). For search problems, there are N
subgoals. It is infeasible to compute all CTG functions. The
robot has to learn CTG functions online. In Richards and
Boyle (2010), the author adopted reinforcement learning for
CTG function based on a tubular Q-function, which repre-
sents the function values by a table. This approach required
hundreds of episodes4 to achieve a good solution. In the
present research, a linear Q-function composed of four fea-
tures is proposed to reduce the number of episodes.

TheCTG function is Q̂ = T (XR, XG) = ∑
i wi fi , where

fi is the i th feature function, w is the weighting vector,
XR is the robot position and XG is the subgoal position.
If XG is fixed, the CTG function is a 3D function. Given any
robot position (XR = {x, y, θ}), themotion cost is computed
through the CTG function. The four features are as follows:

4 The number of episodes means the number of trials in reinforcement
learning.

123

Auton Robot (2018) 42:329–351 341

(a) (b)

Fig. 12 Illustration of the learning CTG function process. a The blue
and black circles represent the robot trajectories and goal position. b
The red lines and color cells represent the optimal direction and cost
of CTG function for each cell. The robot is at (1, 1, 45◦) and the goal
position is (5, 5, 90◦). TheCTGvalue in goal cell (5, 5, 90◦) isminimal.
The red line in this cell shows the optimal direction

Distance (d): As Fig. 11b shows, the distance between
the robot and the goal is an important feature in computing
the motion cost. d is computed by the robot position XR and
subgoal position XG .

Heading difference (Δθ): As Fig. 11b shows, the heading
differencebetween the robot and thegoal is another important
feature.

Direction angle (φ): As Fig. 11b shows, the angle
between robot heading and the vector

−−−−→
XRXG is defined as

direction angle. If the robot is heading to the subgoal, the
motion cost should be less. Hence, φ is also an important
feature.

Behind: If the subgoal is behind (see Fig. 11c), the robot
needs to turn and move toward subgoal. It will take more
motion cost. In this case, this feature value is 1. If the subgoal
is behind (see Fig. 11d), the robot only needs to move toward
to subgoal. It will take less motion cost. In this case, this
feature value is 0.

Figure 12a shows, the robot in a 10 × 10 grid with 45◦
heading resolution. The number of feasible states is 800.
The robot chooses the optimal actions (at) with the mini-
mal motion cost according to the initial CTG function (Q̂).
Upon arrival at the next cell (st+1), it gets the motion cost
(Δt) as a reward R and uses it to update the weighting vec-
tor of CTG through equation 3. After 5 steps, it arrives at
the goal. The learned CTG function is used to compute the
motion cost for the 800 states. This 3D cell map is called
CTG map. It gives the direction with minimal motion cost
for each cell (see Fig. 12b). After 3–5 episodes, the CTG
function is approximated by Q-learning.

at = min
at

Q̂(st , at)

ΔR = [R(st , at) + γ min
at+1

Q̂(st+1, at+1) − Q̂(st , at)] fi
w ← w + α1ΔR (3)

where st is the state, at is action at time t , γ is the discount
factor, R is the reward and α1 is the learning rate.

5.2 Reinforcement learning algorithm

1: while not arriving K th subgoal (SG,K)
or not finding the target do

2: if not arriving current subgoal (SG,k) then
3: at = min

at
Q̂(st , at)

4: execute an action using receding horizon control
5: R(st , at) = Δt
6: ΔR = [R(st , at) + γ min

at+1
Q̂(st+1, at+1) − Q̂(st , at)] fi

7: w ← w + α1ΔR
8: if the cell is not visited then
9: save zi to database.
10: end if
11: generate subgoal-PD data Xs,i
12: batch Xs,i into Xs
13: else
14: randomly choose a subgoal with ε probability.
15: SG,k+1=SFSS_subgoal(Xs , SG,k , w) with 1 − ε

probability.
16: end if
17: end while

Algorithm 1: Reinforcement learning for subgoals

Algorithm1 shows one episode of theRL algorithm. Lines
3–7 show the Q-learning for the CTG function. The CTG
function Q̂ is composed of four features and one constant
term. The CTG weighting vector (w) is updated at each step.
Lines 8–10 show the robot saving the measurement zi into
the database if this cell is not visited. Lines 11–12 show
the subgoal-PD data randomly generated from the database.
Lines 14–15 show determination of the next subgoal once the
robot arrives at the subgoal, the robot chooses the subgoal by
SFSS_subgoal algorithm with 1− ε probability or randomly
chooses the subgoal with ε probability for exploration. ε is
a multiplicative inverse of the number of visited subgoals.
When the robot has not explored any subgoals, ε = 1. After
arriving at the K th subgoal, the robot completes this episode
and saves (w, fB) for next episode.

Algorithm 2 shows how to compute near-optimal sub-
goals through SFSS. Lines 2–3 show the subgoal-PD data
are assigned to A and fM for sparse regression. Lines 5–9
show the computation of Ψ based on A and B. Lines 12–13
show the computation of fB using fast iterative soft-threshold
algorithm (FISTA) (Beck and Teboulle 2009), where α2 is
the step size of gradient descent, which is decided by a line
search algorithm. Lines 17–19 show the computation of the
submodular values fP and motion cost T using a greedy
algorithm. Line 20 shows the greedy selection of subgoals
based on fP and T . Once the set with maximum cumulative
PD is chosen, it is set as the next subgoal.

123

342 Auton Robot (2018) 42:329–351

1: Xsg,k+1=SFSS_subgoal(Xs , SG,k , w)

2: A(m,1:n) = Xs(m,1:n)

3: fM(m,1) = Xs(m,n:n+1)
4: // Compute basis matrix
5: for i=1,..,m do
6: for j=1,..,b do
7: Ψi, j = (−1)Ai∩Bj

8: end for
9: end for
10: // Reconstruct fB
11: while not converge do
12: fB,k+1 = τλ(fB,k − 2α2Ψ

T (Ψ fB − fM))

13: where τλ(fB) = max(| fB | − λ, 0)sign(fB)

14: end while
15: // Reconstruct a submodular function
16: for j=1,..,n do
17: S ← s j ∪ SG,k

18: f̂ P (S) = ∑
B fB(B)ψB(S)

19: T̂ (XR, Xs j) = ∑
i wi fi (XR, Xs j)

20: sG ← argmax
s

f̂ P (S) − f̂ P (SG,k)

T̂ (s j)
21: end for
22: SG,k+1 ← sG ∪ SG,k
23: return SG,k+1

Algorithm 2: SFSS learning for subgoals

Fig. 13 The data flow of the search system

The data flow of the search system is illustrated in Fig. 13.
The system consists of sensing, perception, decision and
execution. The robot perceives RGBD and odometer data.
In the sensing stage, the RGB data is used to compute and
batch subgoal-PD data (Xs). The odometer is used to com-
pute the robot position (x, y, θ). In the perception stage,
(Xs) is used to approximate a submodular function using
SFSS. The motion time Δt is used to approximate a CTG
function using Q-learning. In the decision stage, a greedy
algorithm computes the next near-optimal subgoal SG,k+1

according to Eq. 1. Once the next subgoal is known, the
robot computes a CTG map for receding horizon control.

In the execution stage, MINLP computes (v, ω) commands
according to active waypoint (XAW P) and subgoal (SG,k+1)

and the current robot position (x, y, θ).

6 Experiments

To verify the proposed algorithms, three experiments with
different objective functions were conducted (see Table. 2).
In Sect. 6.2, the experiments only consider maximum cov-
erage. The experiment is terminated when 12 subgoals are
found. At that point, the coverage computed with the greedy,
PMAC, FSS and SFSS algorithms are compared. In Sect. 6.3,
the experiments consider maximum coverage with motion
cost. In this case, the experiment is terminatedwhen the robot
finds 20 subgoals.5 The coverage of PMAC+Q and SFSS+Q
are compared, where PMAC+Q presents that the submodular
function is approximated by PMAC while CTG is approxi-
mated by Q-learning. In Sect. 6.4, the experiments consider
maximizing cumulative PD with motion cost. In this case,
the experiment is terminated when the probability of a H-
area is over 90%. The search time of PD and SFSS+Q are
compared. In Sect. 6.5, the complexity and accuracy of learn-
ing approaches are discussed (e.g., PMAC, FSS and SFSS).
In Sect. 6.6, the performance of non-learning models are dis-
cussed (e.g., PD and EPD). The setup is described in the
following section.

6.1 Experimental setup

The experiments were conducted at the University of Min-
nesota’s Interactive Guidance and Control Lab (IGCL) hall-
way (see Fig. 14). The computational platform is a Lenovo
X230 with 2.6 GHZ CPU and 8 GB RAM. The mobile robot
is a Pioneer P3DX equipped with a Microsoft Kinect. The
non-holonomic platform is controlled via the speed (v) and
turn rate (ω). The robot gets the odometer from the encoders
and RGBD data from Kinect. The odometer data is used for
computing the robot position. The horizontal field of view
and maximal range of Kinect are 57◦ and 4 (m), resepc-
tively. The 3D RGBD data is projected to a 2D grid map for
computing the sensing coverage and probability. The target
is an orange soccer ball. It is detected through Hough circle
transform in HSV spaces. The target probability distribution
is updated based on Bayes filter (Tseng and Mettler 2015).

At the subgoal level, the greedy, FSS, SFSS and PMAC
approaches generate subgoals for the motion control level.
b2FSS denotes FSS takes 2nd order basis. In the EX1, b2FSS
is

(104
0

) + (104
1

) + (104
2

) = 5461. Since the parts of 2nd order

5 In EX1, 12 subgoals can cover the environments over 80%. In EX2,
since the motion cost is considered, the robot needs more subgoals to
cover over 80%.

123

Auton Robot (2018) 42:329–351 343

Table 2 Objective functions of
three experiments

Section 6.2 Section 6.3 Section 6.4
Objective EX1 Objective EX2 Objective EX3

max
Sg⊆S

fC (Sg) max
Sg⊆S

fC (Sg) max
Sg⊆S

fP (Sg)

s.t. T (Sg) ≤ Tth s.t. T (Sg) ≤ Tth

Terminal condition |SG | = 12 |SG | = 20 P(A) ≥ 0.9

Parameters Tth = 150 Tth = 150

g = 1

Fig. 14 IGCL hallway environment. a IGCL hallway picture. b The green circles represent the subgoal positions, lines are heading directions and
numbers indicate the target locations. The target is not beyond the dashed lines

bases are discarded, the b2SFSS is 1491. In the EX2 and EX3,
b3FSS is

(104
0

)+(104
1

)+(104
2

)+(104
2

)+(104
3

) = 187, 565,which
is infeasible for online learning. Hence, FSS approaches is
only feasible at 2nd order basis. Since the parts of 2nd and
3rd order bases are discarded, the b3SFSS is 3566. PMAC
is solved using the perceptron learning algorithm. FSS and
SFSS are solved using FISTA algorithms (Beck and Teboulle
2009). The number of iterations for perceptron and FISTA
algorithms is 500.

At the motion control level, given the current robot
position and AWP, the mixed-integer nonlinear program
(MINLP) computes the optimal velocity commands (v, ω)

to reach AWP. The horizon (H) of MINLP has 8 steps. The
neighbor cells around the robot are candidates for AWP. The
robot chooses the cell with the lowest cost as AWP accord-
ing to the learned CTG function. If the distance between
the obstacle and robot is smaller than 0.5m, the robot needs
to avoid it. The robot will choose a safe AWP based on
VFH (Vector FieldHistogram) (Borenstein andKoren 1991).

The velocity commands are updated at 1Hz and sensor data
is updated 4Hz. Once the robot arrives at the current sub-
goal, the robot will move toward the next subgoal until the
robot visits all subgoals or finds the target. More details
aboutMINLP formulation can be found in Tseng andMettler
(2015).

The map parameters reviewed in Table 3 are as follows:
The gridmap of IGCL is built using FastSLAM (Montemerlo
et al. 2003). The map is discretized using 5 by 5 cm cells.
The CTG map resolution is related to the minimal planning
length of a horizon. Based on the velocity constraints, 10cm
is a feasible resolution. The grid map resolution is decided
by the environmental size (10 × 10 m2) and the grid map
size (300×300). The subgoal resolution decides the number
of subgoal ground set (N). If the resolution is higher, N is
larger. Consideration of computation, the 1.5m× 1.5m×45◦
is feasible. There are 13 subgoal locations and each one has
8 heading directions. Hence, the number of feasible subgoal
(N) is 104 (see Fig. 14b).

123

344 Auton Robot (2018) 42:329–351

Table 3 Map parameters

IGCL hallway map size 10m× 10 m

CTG map resolution 10 cm× 10 cm

Grid map resolution 5 cm× 5 cm

Subgoal resolution 1.5 m × 1.5 m ×45◦

Table 4 Experiment parameters

N γ α1 λ Ks

104 0.9 0.01 5 × 10−4 12

H Vmax ωmax amax αmax

8 20 (cm/s) 22 (◦/s) 5(cm/s2) 11 (◦/s2)
b2FSS b2SFSS b3SFSS
5461 1491 3566

The experiment parameters in Table 4 are as follows: γ

is the discount factor of a MDP model. It is the trade-off
between myopic and nonmyopic behavior when pursuing
rewards. When γ = 0, the robot is myopic to current
rewards. When γ = 1, the robot considers receiving long-
term rewards. Hence γ is set as 0.9. α1 is the learning rate of
Q-learning. Higher λ values decide the sparisty of fB . Ks is
the maximal number of sampling subgoals. Ks cannot be too
small (< 2) or too high (> 40). If Ks is too high, the coverage
values are close to 1. If Ks is too low, the coverage values are
close to 0. In both cases, the sampling data is not useful for
learning. H = 8 is decided based on the computation cost
of MINLP (< 0.2 s). The maximal velocity and accelera-
tion (Vmax , ωmax , amax , αmax) are the trade-off between the
speed and detection rate. For example, higher speeds lead to
image blur, which decreases the detection rate.

6.2 EX1: Coverage experiments

The greedy algorithm generates 12 near-optimal (NOPT)
subgoals offline. These results are used as benchmark. Ten
subgoal-coverage data are collected for evaluation. The cov-
erage obtained with greedy, PMAC, FSS and SFSS are
compared using different numbers of samples (m = 500–
5000). The coverage is computed based on the subgoals
chosen by the learned submodular functions of PMAC, FSS,
and SFSS. Figure 15a shows that when m = 1000, the
SFSS outperforms FSS and PMAC. Since FSS have 5461
unknown variables in fB , 1000 samples are not enough to
achieve convergence. PMAC needs large samples to conver-
gence as claimed in Balcan and Harvey (2011). Figure 15b
shows that when m = 5000, the SFSS and FSS outperform
PMAC. Since FSS and SFSS have enough samples, their
performance is close to the NOPT. Figure 15c shows that the
predicted error of SFSS and FSS is less than 10% while that

(a) (b)

(c) (d)

(e) (f)

Fig. 15 Coverage and approximate coverage of NOPT, PMAC, FSS
and SFSS approaches. a The greedy coverage based on PMAC, FSS
and SFSS estimation versus subgoal number K when m=1000. b The
greedy coverage based on PMAC, FSS and SFSS estimation versus
subgoal number K when m=5000. c Approximate coverage of PMAC,
FSS and SFSS versus sample number (m=500–5000) at K = 12. d–f
The measurements are with Gaussian noise

of PMAC is around 10–50%. Since these approaches choose
subgoals based on relatively largest coverage values, better
approximation does not guarantee better a subgoal selection.
For example, the approximation of FSS is closer than that of
SFSS (see Fig. 15c). However, Fig. 16a, b show that SFSS
coverage is higher than FSS and PMAC coverage.

To evaluate the performance under noisy measurements,
the measurement model is as follows:

fc = fC (Sg) + η, η ∼ N (0, σ 2) (4)

where, fc is noisy coverage measurement, fC (Sg) is the
ground true coverage given subgoal set Sg , η is a Gaussian
noise with 3%6 standard deviation (σ).

Figure 15d shows that the approximate coverage of SFSS
and FSS are affected by the noisy data while the approxi-

6 3% is a noisymeasurement since themaximal coverage of one subgoal
is less than 15%.

123

Auton Robot (2018) 42:329–351 345

Fig. 16 Coverage and subgoals of greedy, PMAC, FSS and SFSS
approaches (m = 5000, K = 12). The green circles represent the cho-
sen subgoals, blue areas are corresponding covered area, white areas
are uncovered area, black areas are obstacles and numbers represent
the order of subgoals

mate coverage of PMAC does not be affected. Figure 15e, f
show that the noisy data does not significantly affect cover-
age of the three approaches. Hence they are robust to noisy
measurements. Since FSS and SFSS are solved based on
FISTA, which is a least square method, they are robust to
noisy data. PMAC method involves projecting submodular
data to upper/lower bounds, then use a classifier to approx-
imate a submodular function. This explains why the noise
resistance of PMAC is good (see Fig. 15d). However, it also
implies that its performance will not be improved even if
accurate data is provided.

EX1 shows that the coverage and mean predicted error of
FSS and SFSS outperform that of PMAC using the same size
of samples. Since SFSS discards parts of 2nd order bases, it
converges faster than FSS. Since PMAC chooses the relative
maximal coverage from subgoal ground set even if its pre-
diction is not accurate, the result shows that PMAC coverage
still can generate subgoalswith 77%coverage.AlthoughFSS
and SFSS have similar coverage performance, SFSS compu-
tation is 10 times faster than FSS (see Sect. 6.5).

6.3 EX2: Coverage with motion cost experiments

To further consider the motion cost, the objective func-
tion EX2 shown in Table 2 is used. The experiments are
terminated when the robot visits 20 subgoals. Since the com-
putation of FSS is too high for online learning, the PMAC+Q
andSFSS+Qcoverage are compared and both approaches are
executed for 20 episodes. The learning algorithms are shown
in Algorithm 1 and 2. In the first episode, the robot only

(a) (b)

Fig. 17 Coverage and coverage time of PMAC+Q and SFSS+Q
approaches

Fig. 18 Comparison of coverage and subgoal configuration for
PMAC+Q and SFSS+Q approaches at 8th and 20th episodes

knows the subgoal-coverage data in the starting point and
needs to explore new subgoals. The robot chooses the nearest
unexplored subgoal for the explorationmode and chooses the
next subgoal based on learned functions for the exploitation
mode.The probability of exploration decreases as the number
of the episodes increases. After 10 episodes, the PMAC+Q
and SFSS+Q already explored all subgoals.

During episodes 1–10, since the robot explores new sub-
goals with high probability, the PMAC+Q and SFSS+Q
coverage increase as the number of episodes increases (see
Fig. 17a). Since the SFSS approximation is more accurate
than PMAC, it chooses better subgoals than PMAC+Qwhen
in exploitation mode. Figure 18a, c show that SFSS+Q cov-
erage is higher than PMAC+Q coverage at 8th episode.

During episodes 11-20, since the robot is always in
exploitation mode, the subgoal selection is based on learned
functions. SFSS approximation is accurate, therefore its cov-
erage is over 85% after 10 episodes (see Fig. 17a). Since
PMAC approximation is not accurate, and has lower values
than true coverage (see Fig. 15c), the motion cost dominates
the subgoal selection procedure. Hence, PMAC+Q chooses

123

346 Auton Robot (2018) 42:329–351

Table 5 Overview of the algorithms tested in the EX3

Approaches The ways to compute fP and T

PD fP is computed through ray-tracing techniques
offline and T is computed through Q-learning
offline PD model considers the maximal PD within
4 steps

CQ fP is computed through ray-tracing techniques
offline and T is computed through Q-learning
offline

SFSS#10 fP is computed through SFSS online and T is
computed through Q-learning online

SFSS#20 fP is computed through SFSS online and T is
computed through Q-learning online

lowmotion cost subgoals (see Fig. 18b), as a result the cover-
age rate of PMAC+Q is around 0.3 while that of SFSS+Q is
around 0.5 (see Fig. 17b. The coverage of PMAC+Q selected
subgoals is lower than 60% (see Fig. 17a).

This experiment shows that the inaccurate approximation
leads PMAC+Q to choose neighbor subgoals, which could
result in low coverage (see Fig. 18b). In other words, PMAC
approximation accuracy does not affect coverage when the
motion cost is discarded but it seriously affects coverage
when motion cost is accounted for.

6.4 EX3: Search with motion cost experiments

To further consider the sensing uncertainty, the objective
function EX3 shown in Table 2 is used. Non-learning
approaches (e.g., PD and CQ) and learning approaches (e.g.,
SFSS#10 and SFSS#20) are compared (see Table 5). Non-
learning approaches utilize map information to compute fP .
Learning approaches do not utilize the map information to
compute fP . The PD method considers the maximal PD
values within 4 steps and only move to the 8 neighbor
subgoals (see Definition 4). The coverage+Q (CQ) method
adopts the proposed objective function (see Eq. 1). The
SFSS#10 and SFSS#20 are the SFSS+Q approaches at 10th
and 20th episodes. To evaluate the search performance of
four approaches, the search time and successful rate are com-
pared. For each approach, the robot searches for the target
100 times. The target is put at different locations for each
time. If the robot cannot find the target before Tth , the search
time is Tth .

Figure 20a–d show that the PD approach reaches maximal
coverage within 4 steps. Due to the motion constraints of the
PDmodel (e.g., moving to neighbor subgoals), the robot does
not cover the upper left side of the room, therefore, it cannot
detect the target at 5th, 6th and 9th locations, and the success
rate is 70% (see Fig. 19b). Figure 20e–h show that the CQ’s
behavior involves turning on the spot of original position,
and then searches the left and right side of the room. The

(a) (b)

Fig. 19 Search time and success rate of PD, CQ, SFSS#10 and
SFSS#20 approaches

robot can cover over 90% area using only 15 subgoals (see
Fig. 20c). Figure 19 shows that for non-learning approaches,
the CQ’s search time is almost 2 times faster than that of PD.

For learning approaches, Figure 20i–l show that the
SFSS#10’s behavior is to turn on the spot at the original
position, move forward and then search the right side of the
room. Since the fP is not accurate enough, the robot cannot
detect the target at 5th and 9th locations and the success rate is
80% (see Fig. 19b). Figure 20m–p show that the SFSS#20’s
behavior is to turn on the spot at the original position, then
search the left and right sides of the room. Figure 19 shows
that for learning approaches, the search time of SFSS#20 is
faster than that of SFSS#10, since the fP is more accurate.

The CQ demonstration for target at location 7 is illustrated
in Fig. 21. At time 13 (s), the robot visits the 5th subgoal (see
Fig. 21a, e, i). Since the robot already searched for most area
from the original position, moving to another position will
give more coverage. At time 47 (s), the robot explores most
space on the left side and starts to search the new space on the
right side (see Fig. 21b, f, j). At time 66 (s), the robot visits
the 8th subgoal and explores the space on the right side (see
Fig. 21c, g, k). Since the target is beyond the Kinect sensing
range (< 4m), the target cannot be detected. At time 73 (s),
the robot detects the target at location 7 several times before
arriving at 10th subgoal (see Fig. 21d, f, l). The probability
of H-area is over 90%. Based on these results, the robot has
been able to successfully find the target.

These experiments demonstrate that for non-learning
approaches, CQ outperforms PD. Meanwhile, learning
approaches SFSS#10 and SFSS#20 outperform PD even if
the map information is not utilized. SFSS#20 shows that the
robot can search for the target by selecting near-optimal sub-
goals based on approximated fP and T , and it can converge
within 10+ episodes.7

7 SFSS can converge within 2000–3000 samples but it needs to explore
the environment. Hence, it takes 10+ episodes.

123

Auton Robot (2018) 42:329–351 347

(a) K=1∼4 (b) K=1∼9 (c) K=1∼15 (d) K=1∼20

(e) K=1∼5 (f) K=1∼8 (g) K=1∼15 (h) K=1∼20

(i) K=1∼5 (j) K=1∼11 (k) K=1∼15 (l) K=1∼20

(m) K=1∼4 (n) K=1∼8 (o) K=1∼14 (p) K=1∼20

Fig. 20 Subgoals coverage of PD, CQ, SFSS#10 and SFSS#20. a–d PD. e–h CQ. i–l SFSS#10. m–p SFSS#20. The blue area is the covered area,
green circles are subgoals positions, and the number is the index of subgoals

6.5 Complexity and accuracy analysis

Table 6 shows the time and sample complexity of PMAC,
FSS, and SFSS. In the EX1, N is 104, b is 5461, β is 0.27, k
is 1400, ε is 0.1 and δ is 0.1. The time complexity of the three
approaches is as follows: Since b = O(N 2), b is bigger than
N. Based on time complexity, PMAC is faster than SFSS and
FSS. Since β < 1 holds, SFSS is faster than FSS.

The sample complexity of three approaches is as follows:
As Table 6 shows, given these parameters, the needed sample
number for PMAC, FSS and SFSS are about 248166, 5232
and 4442, respectively. As EX1 shows that PMAC needs
large amount of samples to converge while SFSS and FSS

only need a few thousand. Since the number of bases used
by SFSS is fewer than for FSS, its convergence is faster.

In summary, the complexity of the three approaches is
as follows: First, PMAC is the most efficient algorithm to
approximate submodular functions since it only uses N + 1
variables to describe them.On the other hand, it is impossible
to describe 2N values using N + 1 variables so its prediction
is not accurate. It also needs large training samples. Second,
SFSS and FSS need O(N 2) bases, hence its time complexity
ismore than PMACcomplexity. But the two approaches need
fewer samples to approximate submodular functions. More-
over, at the same sample number, the prediction achieved
with FSS and SFSS are more accurate than that of PMAC.

123

348 Auton Robot (2018) 42:329–351

(a) t=13 (b) t=47 (c) t=66 (d) t=73

(e) t=13 (f) t=47 (g) t=66 (h) t=73

(i) t=13 (j) t=47 (k) t=66 (l) t=73

Fig. 21 Search using CQ. a–d RGB image frames at times t=13, 47,
66 and 73s.Pink circles represent the detection of the target. e–hCover-
age humanmachine interface (HMI) and i–l PDHMI at selected frames.
The green area and black area represent higher and lower probability
in the logarithmic form. The red rectangle represents the H-area, the
yellow rectangle is detected area, red line is the field of view (FOV), the

yellow circle is robot position. The image frames show: t=13: the robot
arrives at 5th subgoal; t =47: the robot arrives at 8th subgoal; t =66: the
robot arrives at 9th subgoal but the target is too far to detection; and
finally at t=73: the robot detects the target and the probability of H-area
is over 90% before arriving at 10th subgoal

Table 6 Complexity of PMAC, FSS and SFSS

PMAC FSS SFSS

Computational complexity O(MN 2) O(Mb2) O(Mβ2b2)

Sample complexity O(48N
ε

log 9N
δε

) O(Klogb) O(Klog(βb))

Notation M : the number of iterations b: the number of bases β: reduction rate

N : the number of subgoals K : the number of nonzero coefficients

δ: the probability of that the

Sample is not correctly classified

ε: the probability of that

The estimated submodular value is

Not within
√
N/ log(N) bound

123

Auton Robot (2018) 42:329–351 349

Finally, since SFSS requires fewer bases than that FSS, the
time and sample complexity of SFSS is less than that of FSS.
In the EX1, SFSS only needs 85% of the samples needed by
FSS, and SFSS’s computation is 13 times faster than FSS.
Hence, considering accuracy, sample number and compu-
tation, SFSS is the best approach for learning submodular
functions. The results of three experiments also support this
complexity analysis.

6.6 PD and EPD model

The proposed objective function in Eq. 1 adopts EPD model
(see Definition 5). The major difference between the orig-
inal PD model and EPD model is the path constraint. The
PD model only considers neighbor subgoals while the EPD
model considers all subgoals. As Fig. 14 shows, there are
8 directions for each subgoal. If the robot is at the original
subgoal and tries to find 10 steps, such that the PD is max-
imal using branch and bound, the computation is 810. If the
robot adopts greedy algorithms and the path constraints are
skipped, the computation is 104×10. In the EX3, PD takes 1
hour to find 20 subgoalswhile CQusing the EPDmodel takes
5 seconds to find 20 subgoals. Moreover, the EPD approach
gives a near-optimal guarantee. In other words, breaking the
path constraints will generate more branches, but the greedy
approach will give near-optimal solution with linear time
complexity due to the submodularity.

7 Discussion and future Work

7.1 Extensions to different robots and sensors

The proposedmethod is applied to amobile robotwithKinect
in a 2Dgridmap. To apply themethod to different robotswith
different sensors in a 3D environment, some parameters need
to be changed as follows:

First, changing the sensors affects the sensing range and
FOV of the sensors. Since coverage computation is through a
ray-tracing technique, this technique can be applied to 2D or
3D sensors (e.g., UTM-30LX laser scanner, Asus Xtion and
downward facing cameras) (Renzaglia et al. 2012; Charrow
et al. 2015). The covered area is computed based on the range
and FOV of sensors. Hence, the users only need to modify
the range and FOV parameters.

Second, changing the robot affects parameters of MINLP.
CTG and receding horizon control approaches are originally
proposed for aerial robots (Mettler and Kong 2008). The
velocity, acceleration constraints and kinematic models in
MINLP need to be changed according to the new robots’
parameters. The processes of learning PD and CTG func-
tions are still the same. Therefore, the proposed method can
be applied to different robots and sensors.

7.2 Future work

Since search encompasses the interaction between the
searcher, target, and environments, future work will con-
sider the following questions: First, finding better subgoal
patterns can reduce the number of basis and training samples.
One possible way is to analyze human subjects’ subgoal pat-
terns. Their subgoal patterns could inspire new algorithms to
generate subgoal patterns which have sparsity in the Fourier
domain. Second, it would be even better if what is learned
during search could be reused by the robot in a new environ-
ment. Transfer learning technologies could give some clues
about this question. Third, if the target is moving, the PD
function becomes a time-varying submodular function. Ana-
lyzing the PD function in the Fourier domain could find the
invariant properties for dynamic targets. Finally, based on
existing technologies, human recognition ability still out-
performs robots (e.g., detect and classify targets). Forming
efficient human-robot search teams requires integrating them
according to their respective strengths. Thus, how to allocate
subtasks and design user interfaces are potential topics for
cooperative search.

8 Conclusion

This paper presents a learning framework for efficient robotic
search. The core element of the framework is a reformulated
objective function combining maximal cumulative PD with
motion cost. The robot planning is formulated as a sequence
of trajectories segments defined by a finite set of subgoals
with associate cost-to-go (CTG) functions. Since the PD and
CTG functions depend on the environment, the robot has to
learn the two functions. Learning is formulated using SFSS
and Q-learning through sequential actions and perceptions.
The robot chooses near-optimal subgoals based on the two
functions until the target is detected.

The main contributions of this research are as follows:
First, a reinforcement learning algorithm is proposed for
solving search tasks. In other words, the robot can improve
its search performance using data from its past experience.
To the best of our knowledge, this is the first online learn-
ing approach for solving search tasks. Second, the proposed
SFSS approach utilizes the sparse property of Fourier coef-
ficients to reduce the number of bases without decreasing
accuracy. To the best of our knowledge, the sparsity in the
Fourier domain for learning submodular functions have not
been investigated. The SFSS is the first algorithm exploit-
ing this concept. Third, due to the submodularity, the learned
subgoals give (1−1/e) of the optimumwith high probability.
Finally, the experiments show that the proposedmethod (e.g.,
SFSS and CQ) outperforms existing learning approaches by

123

350 Auton Robot (2018) 42:329–351

a significant margin (e.g., PMAC and FSS) and benchmark
models (e.g., PD).

Acknowledgements This research was completed thanks to the finan-
cial support from ONR Grant 1361538 and NSF CAREER CMMI
1254906. Kuo-Shihwould like to thank his daughter, Chin-ChunTseng.
The hide-and-seek game they played inspires the learning concept for
search problems.

References

Aggarwal, A. (1984). The art gallery theorem: Its variations, appli-
cations, and algorithmic aspects,. Ph.D. thesis, Johns Hopkins
University.

Balcan, M. F., & Harvey, N. J. (2011). Learning submodular functions.
In Proceedings of the 43rd annual ACM symposium on theory of
computing.

Beck,A.,&Teboulle,M. (2009).A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM Journal on Imaging
Sciences, 2, 183–202.

Bellingham, J., Richards, A., & How, J. P. (2002). Receding horizon
control of autonomous aerial vehicles. American Control Confer-
ence, 5, 3741–3746.

Binney, J., & Sukhatme, G. S. (2012). Branch and bound for informative
path planning. In IEEE international conference on robotics and
automation (pp. 2147–2154).

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast
obstacle avoidance for mobile robots. IEEE Transactions on
Robotics and Automation, 7(3), 278–288.

Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2003). Coordi-
nated decentralized search for a lost target in a bayesian world. In
IEEE/RSJ international intelligent robots and systems (pp. 979–
1000).

Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete fre-
quency information. IEEE Transaction on Information Theory,
52(2), 489–509.

Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015). Information-
theoretic mapping using Cauchy–Schwarz quadratic mutual infor-
mation. In IEEE international conference on robotics and automa-
tion (pp. 4791–4798).

Chen,W., Rodrigues,M.R.D.,&Wassell, I. J. (2011). Distributed com-
pressive sensing reconstruction via common support discovery. In
IEEE international conference on communications (pp. 1–5).

Chung, T. H., & Carpin, S. (2011). Multiscale search using probabilis-
tic quadtrees. In IEEE international conference on robotics and
automation (pp. 2546–2553).

Cortes, J.,Martinez, S.,Karatas, T.,&Bullo, F. (2004).Coverage control
for mobile sensing networks. In IEEE international conference on
robotics and automation (pp. 243–255).

Eagle, J. N. (1984). The optimal search for a moving target when the
search path is constrained. Operations Research, 32(5), 1107–
1115.

Feige, U. (1998). A threshold of ln n for approximating set cover. Jour-
nal of the ACM, 45(4), 634–652.

Gerkey, B. P., Thrun, S., & Gordon, G. (2006). Visibility-based pursuit-
evasion with limited field of view. The International Journal of
Robotics Research, 25(4), 299–315.

Goerzen, C., Kong, Z., & Mettler, B. (2010). A survey of motion
planning algorithms from the perspective of autonomous UAV
guidance. Journal of Intelligent and Robotic Systems, 57, 65.
doi:10.1007/s10846-009-9383-1.

Hayashi, K., Nagahara, M., & Tanaka, T. (2013). A user’s guide to
compressed sensing for communications systems. In IEICE trans-
actions on communicationsE96-B(3), 685–712.

Heng, L., Gotovos, A., Krause, A., & Pollefeys, M. (2015). Effi-
cient visual exploration and coverage with a micro aerial vehicle
in unknown environments. In IEEE international conference on
robotics and automation (pp. 1071–1078).

Hollinger, G., Choudhuri, C., Mitra, U., & Sukhatme, G. S. (2013).
Squared error distortion metrics for motion planning in robotic
sensor networks. In Proceedings of the international workshop
wireless networking for unmanned autonomous vehicles (pp.
1426–1431).

Hollinger, G., Kehagias, A., & Singh, S. (2010). Gsst: Anytime guar-
anteed search. Autonomous Robots, 29(1), 99–118.

Hollinger, G., & Singh, S. (2008). Proofs and experiments in scalable,
near-optimal search bymultiple robots.Robotics: Science and Sys-
tems,. doi:10.15607/RSS.2008.IV.027.

Hollinger, G., & Sukhatme, G. S. (2013). Sampling-based motion plan-
ning for robotic information gathering. Robotics: Science and
Systems Conference,. doi:10.15607/RSS.2013.IX.051.

Kadane, J. B., & Simon, H. A. (1977). Optimal strategies for a class
of constrained sequential problems. The Annals of Statistics, 5(2),
237–255.

Khuller, S., Moss, A., & Naor, J. (1999). The budgeted maximum cov-
erage problem. Information Processing Letters, 70(1), 39–45.

King, J., & Kirkpatrick, D. (2011). Improved approximation for guard-
ing simple galleries from the perimeter. Journal Discrete and
Computational Geometry, 46(2), 252–269.

Konolige, K. (1997). Improved occupancy grids for map building.
Autonomous Robots, 4, 351–367.

Kosmatopoulos, E. B. (2009). An adaptive optimization scheme with
satisfactory transient performance. Automatica, 45(3), 716–723.

Krause, A., & Guestrin, C. (2005). Near-optimal nonmyopic value of
information in graphical models. In Twenty-First conference on
uncertainty in artificial intelligence (pp. 324–331).

Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and
empirical studies. The Journal of Machine Learning Research, 9,
235–284.

Lau, H., Huang, S., &Dissanayake, G. (2006). Probabilistic search for a
moving target in an indoor environment. In IEEE/RSJ international
conference on intelligent robots and systems (pp. 3393–3398).

Lau, H., Huang, S., & Dissanayake, G. (2008). Discounted mean bound
for the optimal searcher path problem with non-uniform travel
times. European Journal of Operational Research, 190(2), 383–
397.

LaValle, S. M., &Kuffner, J. J. (1999). Randomized kinodynamic plan-
ning. IEEE International Conference on Robotics and Automation,
1, 473–479.

Lloyd, S. P. (1982). Least-squares quantization in pcm. In IEEE trans-
actions on information theory (pp. 129–137).

Lo, N., Berger, J., Noel, M. (2012). Toward optimizing static target
search path planning. In IEEE symposium on computational intel-
ligence for security and defence applications (pp. 1–7).

McCue, B. (1990).U-boats in the bay of biscay: An essay in operations
analysis. Washington: National Defense University Press.

Mettler, B., & Kong, Z. (2008). Receding horizon trajectory optimiza-
tion with a finite-state value function approximation. In American
control conference (pp. 3810–3816)

Mettler, B., Tehrani, N. D., &Kong, Z. (2010). Agile autonomous guid-
ance using spatial value functions. Control Engineering Practice,
18(7), 773–788.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. (2003). Fastslam
2.0: An improved particle filtering algorithm for simultaneous
localization and mapping that provably converges. In Proceed-

123

http://dx.doi.org/10.1007/s10846-009-9383-1
http://dx.doi.org/10.15607/RSS.2008.IV.027
http://dx.doi.org/10.15607/RSS.2013.IX.051

Auton Robot (2018) 42:329–351 351

ings of the sixteenth international joint conference on artificial
intelligence (pp. 1151–1156).

Narasimhan, M., & Bilmes, J. (2007). Local search for balanced sub-
modular clusterings. In Proceedings of the 20th international joint
conference on artifical intelligence (pp. 981–986).

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis
of approximations for maximizing submodular set functions. I.
Mathematical Programming, 14(1), 265–294.

ORourke, J., & Supowit, K. (1983). Some NP-hard polygon decompo-
sition problems. IEEE Transactions on Information Theory, 29(2),
181–190.

Pimenta, L. C. A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D.,
Mesquita, R. C., et al. (2009). Simultaneous coverage and tracking
(scat) of moving targets with robot networks, Algorithmic founda-
tion of robotics VIII (pp. 85–99). Berlin: Springer.

Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E. B.
(2010). Cognitive-based adaptive control for cooperative multi-
robot coverage. In IEEE/RSJ international intelligent robots and
systems (pp. 3314–3320).

Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos, E. B.
(2011). Adaptive-based distributed cooperative multi-robot cov-
erage. In American control conference (pp. 468–473).

Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B.
(2012).Multi-robot three dimensional coverage of unknown areas.
The International Journal of Robotics Research, 31(6), 738–752.

Richards, A., Boyle, P. (2010). Combining planning and learning for
autonomous vehicle navigation. InAIAA guidance, navigation and
control conference.

Schwager, M., Julian, B. J., & Rus, D. (2009). Optimal coverage for
multiple hovering robots with downward facing cameras. In IEEE
international conference on robotics and automation (pp. 3515–
3522).

Singh, A., Krause, A., Guestrin, C., Kaiser, W., & Batalin, M. (2007).
Efficient planning of informative paths for multiple robots. In Pro-
ceedings of the 20th international joint conference on artificial
intelligence (pp. 2204–2211).

Singh, A., Krause, A., & Kaiser, W. (2009). Nonmyopic adaptive infor-
mative path planning for multiple robots. In International joint
conference on artificial intelligence (pp. 1843–1850).

Stobbe, P., & Krause, A. (2012). Learning Fourier sparse set functions.
In Proceedings of the fifteenth international conference on artifi-
cial intelligence and statistics (pp. 1125–1133).

Stone, L. D. (1975). The theory of optimal search. Operations Research
Society of America.

Tokekar, P., & Isler, V. (2014). Polygon guarding with orientation. In
IEEE international conference on robotics and automation (pp.
1014–1019).

Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the
optimal searcher path problem. Operations Research, 34(2), 324–
327.

Tseng,K. S.,&Mettler, B. (2015).Near-optimal probabilistic search via
submodularity and sparse regression.Autonomous Robots,. doi:10.
1007/s10514-015-9521-5.

Vig, L., & Adams, J. A. (2007). Coalition formation: From software
agents to robots. Journal of Intelligent and Robotic Systems, 1,
85–118.

Kuo-Shih Tseng received the
B.S. degree in Mechanical Engi-
neering from Chung Yuan Chris-
tian University, Taiwan, in 2002,
the M.S. degree in Bio-Industrial
Mechatronics Engineering from
National Taiwan University, Tai-
wan, in 2004. From2004 to 2009,
he was an associated researcher
with the Intelligent Robotics
Technology Division, Mechani-
cal and System Research Lab-
oratories, Industrial Technol-
ogy Research Institute (ITRI),
Hsinchu, Taiwan. From 2009 to
2011, he was a researcher with

KYH Co., Ltd., Taiwan. He received his second M.S. degree in the
Computer Science and Engineering from University of Minnesota, in
2013. He is currently a Ph.D. candidate in the Department of Com-
puter Science and Engineering at University of Minnesota. His current
research interests include robotic search, human search behavior anal-
ysis and reinforcement learning.

Bérénice Mettler received the
Diploma in mechanical engi-
neering from ETH, Zurich,
Switzerland, in 1996 and her
Ph.D. degree fromCarnegieMel-
lon University, Pittsburgh, PA,
USA, in 2001. Until 2004, she
was a Postdoctoral Researcher
and then a Research Scientist
at MITs Laboratory for Infor-
mation and Decision Systems.
In 2006, she joined the Depart-
ment of Aerospace Engineering
and Mechanics, the University
of Minnesota, Minneapolis, MN,
USA, where she is currently an

Associate Professor. Her current research interests include guidance
of agile vehicles in challenging tasks and environments. She runs the
Interactive Guidance and Control Lab (IGCL). Some of her current
research projects include benchmarking autonomous systems guidance
performance andmodeling human guidance skills, with an emphasis on
modeling techniques to capture the control and planning mechanisms
used to achieve versatile and adaptive performance. Her interdisci-
plinary approach combines methods from dynamics and controls with
machine learning, along with current perspectives and knowledge from
human factors and cognitive sciences. She has published articles in
the areas of modelling, control design, and autonomous guidance
of autonomous aerial vehicles, including IdentificationModeling and
Characteristics of Small-Scale Rotorcraft (Kluwer, 2003).

123

http://dx.doi.org/10.1007/s10514-015-9521-5
http://dx.doi.org/10.1007/s10514-015-9521-5

	Near-optimal probabilistic search using spatial Fourier sparse set
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Approach overview

	2 Relevant work
	2.1 Coverage problem
	2.2 Coverage control
	2.3 Probabilistic search
	2.4 Minimum-time trajectory planning
	2.5 Informative path planning (IPP)

	3 Problem reformulation
	3.1 Three objective functions of search problem
	3.2 Coverage problem
	3.3 Probabilistic search
	3.4 Probabilistic search with motion costs
	3.5 Motivations for learning PD and CTG functions

	4 Learning PD function
	4.1 Fourier sparse set (FSS)
	4.2 Sparsity in the Fourier domain
	4.2.1 Invariant property in the Fourier domain
	4.2.2 Interaction patterns in the Fourier domain

	4.3 Spatial Fourier sparse set (SFSS)

	5 Learning CTG function
	5.1 Q-learning
	5.2 Reinforcement learning algorithm

	6 Experiments
	6.1 Experimental setup
	6.2 EX1: Coverage experiments
	6.3 EX2: Coverage with motion cost experiments
	6.4 EX3: Search with motion cost experiments
	6.5 Complexity and accuracy analysis
	6.6 PD and EPD model

	7 Discussion and future Work
	7.1 Extensions to different robots and sensors
	7.2 Future work

	8 Conclusion
	Acknowledgements
	References

