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Abstract Despite the recent successes in robotics, artificial
intelligence and computer vision, a complete artificial agent
necessarily must include active perception. A multitude of
ideas and methods for how to accomplish this have already
appeared in the past, their broader utility perhaps impeded by
insufficient computational power or costly hardware.Thehis-
tory of these ideas, perhaps selective due to our perspectives,
is presentedwith the goal of organizing the past literature and
highlighting the seminal contributions. We argue that those
contributions are as relevant today as they were decades ago
and, with the state of modern computational tools, are poised
to find new life in the robotic perception systems of the next
decade.

Keywords Sensing · Perception · Attention · Control

1 Introduction

Some evening, long ago, our ancestors looked up at the night
sky, just as they had done for thousands of years. But this
time, it was different. For the first time, human eyes noticed
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patterns in the stars. They saw caricatures of living things and
as they scanned the heavensmore appeared. Thesewere even-
tually named, once language permitted, and we now know
them as constellations of stars. This perhaps represents the
first instance of connecting the dots, in a literal as well as
figurative manner. How did this come about?What is needed
to enable it? That one needs the ability to find a dot, and
link one dot to another creating a group, is clear. Underlying
this, however, is the critical ability to hypothesize a pattern:
that group of stars looks like something I know—let me see
if I can find other stars to complete the pattern. This is the
essence of active perception—to set up a goal based on some
current belief about theworld and to put inmotion the actions
that may achieve it.

Through the years, the topic of perception, and particu-
larly vision, has been a great source of wonder and study
by philosophers and scientists alike. This history cannot be
reviewed here and the interested reader should see Pastore
(1971) andWade andWade (2000), among others. This paper
presents the history of the computational perspective on the
problem of active perception, with an emphasis on visual per-
ception, but broadly applicable to other sensing modalities.
Those interested in a biological perspective on active percep-
tion should see Findlay and Gilchrist (2003) and Poletti and
Rucci (2013). What follows is a brief and selective history
of the birth of the computational active perception paradigm.
However, there is one source of motivation for the topic that
deservesmention. The earlywork ofGibson (1950) proposed
that perception is due to the combination of the environment
in which an agent exists and how that agent interacts with the
environment. He was primarily interested in optic flow that
is generated on the retina when moving through the envi-
ronment (as when flying) realizing that it was the path of
motion itself that enabled the perception of specific elements,
while dis-enabling others. That path of motion was under the
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control of the agent and thus the agent chooses how it per-
ceives its world andwhat is perceivedwithin it. He coined the
term affordance, which refers to the opportunities for action
provided by a particular object or environment. These moti-
vations play a role in an overall view of active perception, but
as we will show, there is more to it as well. Gibson’s notions
pervade our computational perspective; it is useful to note
however, that Gibson in later works (1979) became a propo-
nent of direct perception, distinctly against an information
processing view, in antithesis to what we present here.

Active Perception is a term that represents quite a broad
spectrum of concepts. The SHAKEY robot, developed at
the Artificial Intelligence Center of the Stanford Research
Institute between 1966 and 1972, made history as the first
general-purpose mobile robot to be able to reason about its
actions (Nilsson 1969). Employing cameras, range-finders
and bumpers as sensors, it could be given a task and then
plan how to deploy its resources, specifically in our context,
its sensing resources, to complete that task. From within this
team, emerged perhaps the earliest Doctoral Dissertation on
active perception by Tenenbaum (1970), where he writes:

The author describes an evolving computer vision
system in which the parameters of the camera are
controlled by the computer. It is distinguished from
conventional picture processing systems by the fact
that sensor accommodation is automatic and treated
as an integral part of the recognition process. Accom-
modation improves the reliability and efficiency of
machine perception by matching the information pro-
vided by the sensor with that required by specific
perceptual functions. The advantages of accommo-
dation are demonstrated in the context of five key
functions in computer vision: acquisition, contour fol-
lowing, verifying the presence of an expected edge,
range-finding, and color recognition.

Barrow and Popplestone (1971) also acknowledged that
vision is active by writing:

. . .consider the object recognition program in its proper
perspective, as a part of an integrated cognitive system.
One of the simplestways that such a systemmight inter-
actwith the environment is simply to shift its viewpoint,
to walk round an object. In this way, more information
may be gathered and ambiguities resolved. A further,
more rewarding operation is to prod the object, thus
measuring its range, detecting holes and concavities.
Such activities involve planning, inductive generaliza-
tion, and indeed, most of the capacities required by an
intelligent machine.

They did not accompany this with any strategy or method
that would enable such abilities and the community let these

words fade. Directions towards an embodiment would wait
for quite a few more years until Bajcsy (1988)1 wrote:

Active sensing is the problem of intelligent control
strategies applied to the data acquisition process which
will depend on the current state of data interpretation
including recognition.

She went on in that seminal paper to point out that this is not
simply control theory. The feedback is performed not only
on sensory data but on processed sensory data, and further,
feedback is dependent on a priori knowledge, on models of
the world in which the perceiving agent is operating. She
summarizes the process nicely by saying:

. . .we have defined active perception as a problem of
an intelligent data acquisition process. For that, one
needs to define andmeasure parameters and errors from
the scene which in turn can be fed back to control
the data acquisition process. This is a difficult though
important problem. Why? The difficulty is in the fact
that many of the feedback parameters are context and
scene dependent. The precise definition of these param-
eters depends on thorough understanding of the data
acquisition devices (camera parameters, illumination
and reflectance parameters), algorithms (edge detec-
tors, region growers, 3D recovery procedures) as well
as the goal of the visual processing. The importance
however of this understanding is that one does not
spend time on processing and artificially improving
imperfect data but rather on accepting imperfect, noisy
data as a matter of fact and incorporating it into the
overall processing strategy.

Aloimonos et al. (1988) add further structure to the concept:

An observer is called activewhen engaged in some kind
of activity whose purpose is to control the geometric
parameters of the sensory apparatus. The purpose of the
activity is to manipulate the constraints underlying the
observed phenomena in order to improve the quality of
the perceptual results.

These perspectives naturally lead to a definition of active
perception. Considering the wealth of insight gained from
decades of research since these early papers, frommany per-
spectives, the following emerges that will form the skeleton
for this paper:

An agent is an active perceiver if it knowswhy it wishes
to sense, and then chooses what to perceive, and deter-
mines how, when and where to achieve that perception.

Virtually any intelligent agent that has been developed to
date satisfies at least one component of the active pen-

1 An earlier version of this perspective appeared in Bajcsy (1985).
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Table 1 The five main
constituents of an actively
perceiving agent are defined

Active perception Definition

Why The current state of the agent determines what its next actions might be based on the
expectations that its state generates. These are termed Expectation-Action tuples.
This would rely on any form of inductive inference (inductive generalization,
Bayesian inference, analogical reasoning, prediction, etc.) because inductive
reasoning takes specific information (premises) and makes a broader generalization
(conclusion) that is considered probable. The only way to know is to test the
conclusion. A fixed, pre-specified, control loop is not within this definition

What Each expectation applies to a specific subset of the world that can be sensed (visual
field, tactile field, etc.) and any subsequent action would be executed within that
field. We may call this Scene Selection

How A variety of actions must precede the execution of a sensing or perceiving action. The
agent must be placed appropriately within the sensory field (Mechanical Alignment).
The sensing geometry must be set to enable the best sensing action for the agent’s
expectations (Sensor Alignment, including components internal to a sensor such as
focus, light levels, etc.). Finally, the agent’s perception mechanism must be adapted
to be most receptive for interpretation of sensing results, both specific to current
agent expectations as well as more general world knowledge (Priming)

When An agent expectation requires Temporal Selection, that is, each expectation has a
temporal component that prescribes when is it valid and with what duration

Where The sensory elements of each expectation can only be sensed from a particular
viewpoint and its determination is modality specific. For example, how an agent
determines a viewpoint for a visual scene differs from how it does so for a tactile
surface. The specifics of the sensor and the geometry of its interaction with its
domain combine to accomplish this. This will be termed the Viewpoint Selection
process

tuple why, what, how, when, where and thus without the
further connective constraint—‘and then’—this definition
would not be helpful. The key distinguishing factor is the
why component—the counterpart to hypothesizing a pattern
of stars with the wish to complete it. An actively perceiv-
ing agent is one which dynamically determines the why of
its behavior and then controls at least one of the what, how,
where and when for each behavior. This explicit connection
of sensing to behaviorwas nicely described byBallard (1991)
in his animate vision concept, writing:

An animate vision system with the ability to con-
trol its gaze can make the execution of behaviors
involving vision much simpler. Gaze control confers
several advantages in the use of vision in behavioral
tasks:

1. An animate vision system can move the cameras
in order to get closer to objects, change focus, and
in general use visual search.

2. Animate vision can make programmed camera
movements.

3. Gaze control systems can be used to focus atten-
tion or segment areas of interest in the image
precategorically.

4. The ability to control the camera’s gaze, particu-
larly the ability to fixate targets in the world while
in motion, allows a robot to choose external coor-

dinate frames that are attached to points in the
world.

5. The fixation point reference frame allows visuo-
motor control strategies that servo relative to their
frame.

6. Gaze control leads naturally to the use of object
centered coordinate systems as the basis for spa-
tial memory.

Ballard’s points should be taken in the broader context. That
is, they are not restricted to only vision but rather apply to
other sensory modalities. Further, although the emphasis is
on external or observable gaze, Ballard also hints at inter-
nal or non-observable components, specifically attention and
choice of coordinate systems. Without these the generality
seen in human visual systems cannot be achieved as argued
by Tsotsos (2011). Table 1 presents more detail on these five
basic elements, the active pentuple.

It is important to highlight that selection represents an
integral process of all elements of the active pentuple. As
Tsotsos (1980) wrote:

Since several simultaneous [interpretation] hypotheses
can co-exist, a focus of attention mechanism is neces-
sary in order to limit the number of hypotheses under
consideration.

In addition, resource constraints play an important role not
only because of computer power and memory capacity, but
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Fig. 1 The basic elements of Active Perception broken down into their constituent components. Instances of an embodiment of active perception
would include theWhy component and at least one of the remaining elements whereas a complete active agent would include at least one component
from each

also because in practice, the number of sensors (and other
physical components of an agent) is limited as well. Thus,
choices must be made. In vision, the history of studies of
visual attention covers centuries of thought and cannot be
summarized here (see Tsotsos et al. 2005). Within computa-
tional vision, attention has played a role since the mid-1970s
(e.g., Williams et al. 1977), with early proponents of the
explicit link between computational and biological visual
attentionbeing found inKoch andUllman (1985), Fukushima
(1986), Tsotsos (1987), and Burt (1988).

Each element of the active perception definition can
be further decomposed into the set of computations and
actions it comprises, as shown in Fig. 1, noting that this
decomposition is abstract and may be further detailed.
Table 2 presents each of the elements of Fig. 1 along
with some of the seminal works that first addressed those
elements.

The remainder of this paper will present a brief histori-
cal perspective on the methods developed over the past 45+
years that address each element of what it means to be an
active perceiver. The overwhelming conclusion that we draw,
consistent with the seminal (Barrow and Popplestone 1971;
Bajcsy 1988; Aloimonos 1990; Ballard 1991) as well as
modern conceptualizations (Aloimonos 2013; Soatto 2013,
among others), is that the full task of perception requires an
active agent.

2 Why does an agent need to choose what to sense?

The fundamental difference between an active perception
system and other perception systems lies in action, or lack of
it. Whereas both types of systems include decision-making
components, only the active system includes dynamic mod-
ulations to the overall agent’s behavior, both external (via
motors) and internal (via parameter configurations) (Coates
et al. 2008). Let us give an example: consider that we have
trained, using state of the art techniques in machine learn-
ing, a filter to recognize a particular object, like a knife, from
images. Consider further that our filter has a success rate of
90%. This may be a breakthrough result, however, it may not
be so interesting for a behaving robotic system. Indeed, by
using this filter we can search for images—in a database—
containing a knife and out of ten results, nine will be correct.
But this is not sufficient for an active perception-action sys-
tem that needs to act and make changes to the world. With
90% success, 10% of the time the system will be acting on
the wrong objects. A different approach seems needed. In the
best case, this filter could be used as an attention mechanism
(among others) to suggest that a knife maybe in such loca-
tion. This section dissects the components of an active vision
system, as shown in Fig. 1, for specific cases and describes
why would an agent wish to sense a particular scene or scene
element. It does so by also providing some historical per-
spective.
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As mentioned in the introduction, the essence of active
perception is to set up a goal based on some current belief
about the world and to put in motion the actions that may
achieve it. In other words, active perception is purposive
(Aloimonos 1990) as it has to combine perception and action
in synthesizing the pieces that will achieve a goal. In order
then to develop a theory, one would require some framework
for organizing the set of goals, some form of behavioral cal-
culus.

Early efforts to create such models gave rise to finite
state machines and dynamical systems that would model
agents navigating successfully in some environment.Notable
among them are hybrid automata (Košecká and Bajcsy 1994)
which later, in conjunction with Bayesian inference tech-
niques gave rise to a set of techniques broadly referred to
as Simultaneous Localization and Mapping (SLAM) (Thrun
et al. 2000) which have enjoyed much success. Despite this
success, however, the problem of localization and mapping
in the absence of GPS, and when only visual sensing is avail-
able, still remains a challenge (Salas-Moreno et al. 2013), as
we still lack notions of robust spatial representations. Nav-
igation requires perception of course, but myopic vision is
sufficient—or in other words, navigation needs “perception
in the large”. This changes, however, as one needs to inter-
act with the environment: manipulation requires detail and
so it needs “perception in the small”. In the case of naviga-
tion, it was possible to develop the appropriate mathematical
models. But if the agent is involved in actions where it
needs to make decisions, it needs to identify, recognize and
manipulate different objects, it needs to search for particular
categories in the scene, it needs to recognize the effects and
consequences of different actions, and all this while execut-
ing a sequence of motor actions, then it needs details from
the perceptual system and it becomes challenging to manage
this complexity. Where does one start? And which models to
employ?

Referring back to Fig. 1, we are now ready to see its com-
ponents in action. Imagine an active perception agent that is
at a table with the task of making a Greek salad, with all the
ingredients and tools present in a cluttered scene, just like in
a kitchen. The agent has a plan—or knowledge—of what is
needed to produce the salad. Let’s say that the plan calls first
for finding a knife and cutting a cucumber. Thus, the agent
would need to scan the scene in order to locate a knife. This
is a top down attention problemwhere knowledge of a model
of the object is used by the attention mechanism to find the
image region likely to have a knife in it. An example of a
recent approach implementing such a process can be found
in Teo et al. (2013, 2015). Thus theWhat elements of Fig. 1
are engaged, described further in Sect. 3. Butwhat if the agent
could not find the knife? Then, it would have to move, get
another view of the scene or perhaps even affect the scene by
moving objects around. Such actions could uncover the knife,

which happened to be behind the bowl and thus occluded. In
turn, theWhere andHow elements of Fig. 1 get engaged, fur-
ther described in Sects. 4 and 5. Next, after an image region
containing the knife has been identified, attention brings fix-
ation to it for the purpose of segmenting and recognizing the
object. Thus, the When element of Fig. 1 gets engaged in
order to select part of the spatiotemporal data and map it to
symbolic information.

The process of segmentation is as old as the field of com-
puter vision and a large number of techniques have been
developed over the years. The bulk of those techniques work,
usually, with a single image and produce a complete segmen-
tation of everything in the scene. Representatives of such
algorithms can be found in Felzenszwalb and Huttenlocher
(2004), Alpert et al. (2007). Algorithms of this sort perform a
variety of statistical tests by comparing different parts of the
image, but they are rarely real time and they need to be told in
advance the number of pieces that the segmentation should
contain. Clearly, such a segmentation is not appropriate for
an active perception system. Ideally, one would want to seg-
ment the objects where attention is drawn (e.g. the knife,
or the knife and the cucumber in our previous example).
Over the past 10 years there have been a few approaches for
segmenting objects driven by attention (Mishra et al. 2009,
2012; Björkman and Kragic 2010; Bjorkman and Eklundh
2006; Andreopoulos and Tsotsos 2009, Andreopoulos et al.
2011). Recently, the introduction of the Microsoft Kinect
sensor has increased interest to the problem (Mishra et al.
2012b) because it makes it slightly easier, but challenges
still remain. Even from a point cloud it may not be possible
to perform segmentation without taking more visual infor-
mation (or other information) into account. See for example
a current approach on using the symmetry constraint for this
task (Ecins et al. 2016).

For an active camera system, a summary of the many rea-
sons for active control follows:

1. to move to a fixation point/plane or to track motion
- camera saccade, camera pursuit movement, binocular

vergence changes
2. to see a portion of the visual field otherwise hidden due

to occlusion
- manipulation; viewpoint change
3. to see a larger portion of the surrounding visual world
- exploration
4. to compensate for spatial non-uniformity of a process-

ing mechanism
- foveation
5. to increase spatial resolution
- sensor zoom or observer motion
6. to change depth of interest
- stereo vergence
7. to focus
- adjust focal length
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8. to adjust depth of field
- adjust aperture
9. to adapt to light levels
- adjust shutter exposure time
10. to disambiguate or to eliminate degenerate views
- induced motion (kinetic depth); lighting changes (pho-

tometric stereo); viewpoint change
11. to achieve a pathognomonic2 view
- viewpoint change
12. to complete a task
- viewpoint change

3 How does an agent choose what to sense?

The selection of what in a sensory field to examine falls
immediately into the realm of attentive processing. It has
been a common tactic throughout the history of Robotics,
Computer Vision and indeed all of Artificial Intelligence to
deploy methods that limit processing due to limited com-
putational resources, both memory and processing speed.
Attention has been of interest to philosophers, psychologists
and physiologists for a long time (for a history see Tsot-
sos et al. 2005). The number of experiments and theories is
incredibly large and daunting in their complexity and mutual
inconsistency. Nevertheless, the constant that remains is that
humans, and many other animals, exhibit selective behavior
in everyday life and scientists of many disciplines continue
to be motivated by the search for its explanation. It should
be noted that the vast bulk of research has focused on visual
selectivemechanismswith less on auditory attention and then
far less for the other senses. Against this backdrop, several
computer vision systems also included attentional strategies
to limit processing in an attempt to both mimic human visual
behavior as well as to economize on processing in the face of
limited resources. Themagnitude of the problemof resources
was always felt in a practical sense yet it was only formally
proved in 1989 (Tsotsos 1989) when the computational com-
plexity of basic visual matching process was shown to be
NP-Complete.3 It was further proved there that the appli-
cation of domain and task knowledge to guide or predict
processing is a powerful tool for limiting processing cost
turning the otherwise exponential complexity problem into
a linear one. This section will focus on visual selection.

2 Pathognomonic is a term borrowed from medicine, where it means a
sign or symptom specifically characteristic or indicative of a particular
disease or condition, but in our use, means a viewpoint that yields an
image that is characteristic or indicative of a particular object.
3 Also, directly relevant to active control,Ye and Tsotsos (1996, 2001)
prove that the complexity of the Sensor Planning Problem—formulated
as the optimization task of selecting the set of robot actions that max-
imize the probability of finding a target within cost constraints—is
NP-hard.

The first use in a vision system was for oriented line loca-
tion in a face-recognition task (Kelly 1971). Edges in reduced
resolution images were found first and then mapped onto the
full image to provide face outline predictions. These guided
subsequent processing. Bajcsy and Rosenthal (1975) con-
nected visual focussing with visual attention and developed
an algorithm that would focus a camera system to particular
image locations, motivated by human attentive visual behav-
ior. Garvey (1976) extended these notions to include not only
locations in an image but also spatial relationships among
locations, or in other words, scene context. He termed this
indirect search but the general idea has broader implications.
One of those implications is that the computational com-
plexity of processing would increase without an appropriate
control algorithm (the number of spatial relationships among
objects in a scene is represented by an exponential function).
This places further importance on selective behavior.

Perhaps the first large scale vision system was VISIONS,
developed by Hanson and Riseman at the University of
Massachusetts, Amherst. It incorporated image pyramid rep-
resentations, attentional selection and focus of components
of the hypothesis model space (Williams et al. 1977). All
of this was for a single, static image. The time domain was
added to this repertoire of attentional methods by Tsotsos
(1980). The idea was used for temporal window prediction
in amotion recognition task. Positions and poses of segments
of the left ventricle during the left ventricular cycle limited
the region of the X-ray image sequence to search as well
as the time interval during which to search. Left ventricular
motion and shape knowledge was organized hierarchically
and that structure was used to generalize or specialize pre-
dictions. Bajcsy and Rosenthal built upon their earlier work,
in another 1980 contribution, to tie spatial focussing to con-
ceptual focussing in that the conceptual hierarchy was linked
to spatial resolution and as a recognition process progresses,
moving up and down the hierarchy, it could make request of
the perceptual system for images of a particular resolution at
a particular location.

Interestingly, in the early days, computational limits
imposed severe constraints on what practical problems could
be solved. As computers became faster andmemory cheaper,
those constraints shifted leading to a greater range of prob-
lems that could be successfully addressed. Today’s impres-
sive successes inAI are due not in small part to such hardware
advances. But the important question is: does this mean those
problems can be considered as solved? The answer is ‘no’
and the reasonwas laid out in a series of papers that examined
the computational complexity of basic problems in AI (see
review in Tsotsos 2011). As a result, the apparent solution
seen currently to problems such as object recognition is only
an illusion. The problem is not solved; rather, small instances
of it can be solved within some reasonable error bounds. This
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is a long way of saying that attentional mechanisms will have
utility for a long time to come.

In computer vision, the late 1980s seemed to mark this
realization. In 1987, Tsotsos showed that attention can play
an important role to reduce the computational complexity
of visual matching. This was quickly followed in 1988 by
two works, one by Clark and Ferrier (1988) and the other by
Burt (1988) who investigated ways of taking the theoretical
results and using them to build functional active perception
systems. Clark and Ferrier described a control system of a
binocular sensor (the Harvard Head) which allows shifts in
focus of attention. They are accomplished via altering of
feedback gains applied to the feedback paths in the posi-
tion and velocity control loops of the camera system. By
altering these gains, they implemented a feature selection
process motivated by the saliency maps of Koch and Ullman
(1985), which was an attempt to provide a computational
counterpart to the then prominent Feature Integration The-
ory of visual search of Treisman andGelade (1980). This was
the first realization of the saliency idea for attentive selection.
Burt, on the other hand, derived a different sort of motivation
from biological vision. He considered familiar aspects of eye
movement control in human vision: foveation, to examine
selected regions of the visual world at high resolution given
a varying resolution retina; tracking, to stabilize the images
of moving objects within the eye; and high-level interpre-
tation, to anticipate where salient information will occur in
a scene. The result was a high performance visual tracking
system. Important and enduring elements within this work
include the image pyramid and an active hypothesis-and-test
mechanism.

The hypothesis-and-test idea played a role in the work of
Tsotsos (1992) who examined the conditions under which
image interpretation was more efficient using a passive
paradigm (single image) or an active one (dynamic, interpre-
tation guided, image sequence). He proved that even though
more images are analyzed, the active approach used a hypoth-
esis sieve (from an initial broadly encompassing hypothesis,
evidence accumulated image by image, gradually reduces its
breadth and thus amount of processing) to progressively limit
processing through the image sequence so that under cer-
tain conditions, its overall complexity was far less than the
blind, unguided single image case. However, active is not
always more efficient than passive vision but that the con-
straints developed might assist an agent in choosing which
to deploy. It was further shown how active perception is a
subset of attentional processing in general.

The quest for methods for how to choose what to pro-
cess within an image, that is, what to attend to, is now being
addressed by an increasingly larger number of researchers
with significant progress (see the reviews in Borji and
Itti 2013 or Bylinksii et al. 2015). Nevertheless, there are
still many open issues (Bruce et al. 2015). In contrast,

the quest for methods that determine which image to con-
sider, that is, which visual field to sense, is not receiving
much attention at all with preference seemingly given to
blanket sensing of the full environment via sensors such
as LIDAR. As one counterexample, Rasouli and Tsotsos
(2014) show performance improvements with the integra-
tion of active visual viewpoint methods with visual attention
techniques.

4 How does an agent control how sensing occurs?

A variety of actions must precede the execution of a sensing
or perceiving action. The agent must be placed appropriately
within the sensory field, in other words to be mechanically
aligned to its task. The sensing geometrymust be set to enable
the best sensing action for the agent’s expectations. This can
be thought of as sensor alignment, and encompasses the com-
ponents internal to a sensor such as focus, light levels, etc.
Finally, the agent’s perception mechanism must be adapted
or primed to be most receptive for interpretation of sensing
results, both specific to current agent expectations as well as
more general world knowledge.

Historically, we believe that the Stanford Hand-Eye
project provided the earliest instance of amethod formechan-
ical and sensor alignment. Tenenbaum, as part of this 1970
Ph.D. thesis at Stanford University, built an eye/head system
with pan and tilt, focus control, and a neutral density filter
control of a Vidicon camera. In 1973,WABOT-1 was created
at the University of Waseda, which was the world’s first full-
scale anthropomorphic robot (Kato et al. 1973). It was able to
communicate with a human in Japanese and measure the dis-
tance and direction of objects using external receptors such
as artificial ears and eyes. WABOT-1 could perform tasks
by vocal command that integrate sensing with actions of its
hands and feet. This was followed at Stanford by Moravec’s
1980 PhD work where he developed a TV-equipped robot,
remotely controlled by a large computer. The Stanford Cart
included a slider, a mechanical swivel that moved the tele-
vision camera from side to side allowing multiple views to
be obtained without moving the cart, thus to enabling depth
computation. The cart moved in 1-m spurts separated by 10–
15 min pauses for image processing and route planning. In
1979, the cart successfully crossed a chair-filled room with-
out human intervention in about 5h.

Sandini and Tagliasco (1980) demonstrated the compu-
tational benefits of a foveated camera image, borrowing the
characteristics from human vision. Their model includes an
explicit ability to actively scan a scene as the only way of
overcoming the inherent limitations of a space-variant retina.
In 1987, Krotkov as part of his Ph.D. dissertation at the Uni-
versity of Pennsylvania, developed the U Penn Head, with
hardware similar to the previous systems, in that it had pan
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and tilt, focus, vergence control (Krotkov 1988, 1989). His
advance to the previous work was to present solutions to two
problems that arise in the context of automatically focusing a
general-purpose servo-controlled video camera on manually
selected targets: (i) how to best determine the focus motor
position providing the sharpest focus on an object point at
an unknown distance; and (ii) how to compute the distance
to a sharply focused object point. Starting in 1985, Brown
and Ballard led a team that designed and built the Rochester
Head, a high speed binocular camera control system capa-
ble of simulating human eye movements (Soong and Brown
1991). The systemwasmounted on a robotic arm that allowed
it to move at 1 m/s in a 2-m radius workspace. This system
led to an increased understanding of the role of behavior in
vision, in particular that visual computations can be simpler
when interacting in the 3D world. In 1995, Kuniyoshi et al.
developed an active vision system with foveated wide-angle
lenses. Pahlavan andEklund (1992) presented theKTH-head,
an anthropomorphic vision system with a focus on control of
the oculomotor parameters that was inspired by human eye
movements. They demonstrated an impressive, high perfor-
mance,mechanical design that included 3 degrees of freedom
(DOF) independently for each eye, 2 DOF for the neck and
one DOF for the base. Milios et al. (1993) presented the
system called TRISH in order to examine the robotic util-
ity of yet another human eye movement, torsion (rotation
about the optical axis of the eye). They found that control
over torsion permits control over the slant of the vertical
horopter in binocular processing and developed an algorithm
for achieving this. There were several additional robot heads
developed around the same time including those at the Uni-
versity of Oxford (Du et al. 1991), Harvard University (Clark
and Ferrier 1988), University of Surrey (Pretlove and Parker
1993), Institut National Polytechnique de Grenoble (LIFIA)
(Crowley et al. 1992), The NIST head TRICLOPS (Fiala
et al. 1994), The University of Illinois head (Abbott and
Ahuja 1992), and the University of Aalborg head (Chris-
tensen 1993), many of which are presented in detail in the
volume of Christensen et al. (1993). Each of these works
addressed key questions regarding which oculomotor func-
tionalities were useful to robotic perception. However, as
each group learned, the engineering effort to build and main-
tain such systems was very large and this cost limited the
proliferation of these methodologies. However, these early
developments eventually made possible the development of
the now ubiquitous binocular camera heads seen in most
humanoid robots.

Touch can also be deployed in an active manner. From the
beginning (since the 1980s) it was realized that vision is lim-
ited and has to be complemented by tactile perception. This
has been documented by series of papers: Shape from Touch
(Bajcsy 1984), Active Touch (Goldberg and Bajcsy 1984),
and Feeling by Grasping (Bajcsy et al. 1984). Allen (1985)

showed that tactile perception is preferred to vision when an
agent must discriminate different material properties of hard-
ness, demonstrating this on discriminating the hole on the cup
handle vs. the bodyof the cup. Similarly, theyhave shown that
one needs force sensing in addition to vision for exploratory
mobility (Bajcsy and Sinha 1989). Thus, an agent must have
sufficient control mechanisms to match sensor and sensing
strategy to current task. If a robot is equipped with pres-
sure/force sensors then it can determine material properties
(hard, soft, etc.) and Lederman and Klatzky (1990) proposed
exploratory procedures (EP’s), which associate tactile per-
ceptions with certain motions, such as the hardness with
pressing perpendicularly on the surface, tangential motion
on the surface that detects surface texture, lifting that detects
weight. All these capabilities to observe geometric, material
mechanical (kinematics and dynamics) properties permit the
determination of surface functionality. A nice example of this
is Sinha (1991) who developed a hybrid position force con-
trol scheme to guarantee stability of walking. As part of this
effort he had to examine the geometry of the surface as well
as its material properties, such as friction and hardness of
the surface. The important result of this exploratory process
is that it invokes the contextual expectations that will bring
constraints on geometry (for urban straight lines, for jungle
clutter, etc.) or functionality of manipulation such as cutting
and piercing (Bogoni and Bajcsy 1994, 1995).

5 How does an agent determine when and where to
sense?

The ’when’ and ’where’ of our active pentuple is next in our
discussion. An agent can decide from where to sense or view
a scene and to do so it must first, naturally, know where it
is in the context of that environment. In other words, it must
know its body position and orientation with respect to the
ground/gravity. This can be represented by a 6 dimensional
vector (x, y, z, θ1, θ2, θ3) determined with respect to some
arbitrary location as coordinate systemorigin and angleswith
respect to the ground plane. Given the basic coordinate sys-
tem, an agent needs to establish the position and viewing
angles of the head/eye as well as the kinematic chain of the
arms/hands. In addition, we assume that the hands have tac-
tile sensors so that the system can establish contact with the
objects and in general external world. Vision and touch, and
their kinematic relationships are established through a cali-
bration process.

Once these forms of self-information are determined, an
agent can proceed to pursue the completion of its task. With
respect to vision, an agent can control the viewing angle and
distance for each sensing act. After the target of a sensing
action, the ‘what’ described earlier, is set, the agent must
determine in which position to place its sensors to best per-
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ceive the target and its aspects most relevant to the task at
hand. The variables of interest then would be the distance to
the target, r , and the angle of the camera optical axis, which
can be represented using the polar angle ζ and azimuthal
angle φ. In the context of active object recognition, Wilkes
and Tsotsos (1992) showed a simple behavior-based control
algorithm that, depending on the state of recognition, was
able to successfully control these parameters. Dickinson et
al. (1994) showed the utility of aspect graph representations
for encoding the appropriate active changes of sensor view-
point for recognition. No additional variables play a role for
a non-convergent binocular camera system. However, in a
convergent binocular system, vergence, version, and torsion
variables are also important, as shown inMilios et al. (1993),
who describe the only head involving all three. There are sev-
eral binocular heads that permit vergence and version control,
with perhaps the KTH head of Pahlavan and Eklundh (1992)
being the best example.

Gaze control was addressed by Brown and colleagues
(Brown 1990; Coombs and Brown 1990; Rimey and Brown
1991). The 1990 paper has particular interest because Brown
details themany variables that need to be included in a control
structure, using predictive methods, and considered differ-
ent sorts of binocular eye movements including vergence.
He contrasts several control strategies, paving the way for
how the problem could be addressed in general. A solu-
tion to how to combine agent position and pose with sensing
viewpoint was put forward in a series of papers by Ye and
Tsotsos (1995, 1996, 1999, 2001) who began by examining
the computational complexity of this sensor planning prob-
lem in the context of visual search in a 3D environment.
They proved that it was NP-hard, and thus optimal solutions
for all instances should not be expected. They then defined
a strategy that successfully could find objects in unknown
environments, a strategy refined and implemented on a vari-
ety of robot platforms (Tsotsos and Shubina 2007), including
the PLAYBOT intelligent wheelchair (Tsotsos et al. 1998;
Andreopoulos and Tsotsos 2007) and the ASIMO humanoid
(Andreopoulos et al. 2011).

As implied earlier, the current goal of an agent deter-
mines which control strategy applies best. Actions such as
pick up an object, insert a piece, or decompose clutter are
addressed in (Tsikos 1987; Tsikos and Bajcsy 1991). In that
work, they build a system composed of laser range finder
(vision system) and a manipulator equipped with a selec-
tion of different grippers (two fingered hand and a suction
cup) operating on a cluttered environment (postal objects,

boxes, letters, tubes on a conveyor belt). The control system
was modeled by a finite state machine with deterministic
sensor/action connections. The goal was to have an empty
conveyor belt while the system classified different objects
into different pallets. The parameters to be considered were
the object size in order to determine which end effector can
pick them up. If the object was too big or too heavy the sys-
tem had the option to push them aside. In the case that the
goal is rather open ended, exploratory, the system must be
equipped with some broad goals to learn about its environ-
ment. This boils down to learning about the geometrical and
physical properties of the environment in order to survive or
act (Weng 2003). This was executed in Bajcsy and Campos
(1992) where exploratory procedures were developed that
determined material properties such as hardness, brittleness,
Compliance, elasticity, plasticity, viscosity, ductility, and
Impact. Geometric properties were described as shape and
size, while kinematic properties were determined as degrees
of freedom. The exploration control was designed as to
deliver the above-mentioned attributes. For vision, feedback
control was guided by exhaustive search, changing the views
as necessary. For haptic feedback, the guide was characteri-
zation of the surfaces for grasping purposes. The conclusion
was that there is natural flow from active and dynamic per-
ception, through exploration, leading to perceptual learning.

6 Empirical issues

6.1 The key difference between active and passive vision
processes

Computer vision researchers have become accustomed to the
use of datasets and bench-marks in their work. It is a good
practical way to measure how much progress one is making.
Indeed, the introduction of special datasets in stereo research
or in optical flow research has acted first as a catalyst for new
ideas with researchers competing for highest performance.
The standard processing pipeline is shown in Fig. 2.

Having many different kinds of inputs together with
ground truth information, enables almost every one with
access to a personal computer to develop and experiment
with new ideas. With time however, unless the datasets
are replaced by new, more challenging ones, those same
datasets contribute to the decline of the specific discipline. A
striking example is the famous Middlebury Stereo Dataset.
Researchers where researchers tailored their algorithms to

Fig. 2 The current standard
processing pipeline common in
computer vision

select sample
from dataset perception record

result
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Fig. 3 Active perception
processing pipeline define next

sample perception record
result

perform best for the images in the dataset. When maximum
performance was reached, research clearly leveled off. There
was nothing else to do with this dataset, but the problem was
far from solved.

Active Perception systems attempt to deal with the
perceptual-motor loop of a robot in a real environment. A
hypothetical active processing pipeline is shown in Fig. 3.

Following Gibson in his famous debate with David Marr
(Bruce and Green 1990), the ’agents’-literature focuses on
complex behavior coming from mechanisms operating in
tight coupling with a complex environment. This is in con-
trast to Marr’s emphasis on the feed-forward computation
of a representation from sensory data. On the other hand,
machine learning approaches that learn both sensory percep-
tions and motor actions in some environment are not easy to
find (but see Ackermann 2016). The reason is that it is diffi-
cult to build a statistical model of an environment when the
system’s perceptions are transformed into actions that affect
the statistics of the input. Indeed, what could such an action-
perception system learn? It would clearly have to develop a
probability distribution of what happens. The hidden depen-
dencies, redundancies and symmetries in this distribution are
basically the structure of the world. But then, since the world
is partly affected by the actions of the system, the shape of this
distribution is action dependent—the system partly chooses
what regularities exist, making the statistics difficult if not
impossible to compute.

6.2 Addressing the “Entry barrier for active vision
experimentation”

Modern computer vision seems highly dependent on the
availability of public image datasets for algorithm evaluation
and performance comparisons are done by tests on indi-
vidual images within these common datasets. However, in
active vision, the algorithm includes selecting and acquiring
the image or images for any task. This requires specialized
hardware that can be both costly and troublesome to use
and maintain. The ’entry barrier’ referred to in the title of
this section is exactly this: it is relatively easy for anyone
to download image datasets. It is far from easy to have an
image acquisition platform with which to test active vision
ideas. This naturally brings up the question of whether or
not a simulated world might ameliorate the problem. Per-
haps a simulated world might provide a testbed that can be

shared thus providing a way for algorithms to be compared.
Such a testbed would need sufficient realism to be useful
and needs not only good simulated world but also simulated
image acquisition.4

This idea is not new. It was part of the ’animat’ concept
proposed by Terzopoulos and Rabie (1995, 1997), Rabie and
Terzopoulos (2000) and further discussed in Terzopoulos
(2003). Sprague et al. (2007) have also employed simula-
tions for their work modeling human visuo-motor behaviors.
Chessa et al. (2009) developed a simulator for active vision
studies of stereo vision. And there are more examples. Part
of the early issues with the idea had to do with how well
the simulated environment matches the real world; however,
modern graphics methods currently provide amazing real-
ism as is evidenced primarily by the visual worlds available
for computer games, such as Grand Theft Auto V, ARMA
III, Battlefield 4 or others.5 It may be that with only small
effort, those techniques could create suitableworlds for active
vision experimentation that could be appropriately evaluated
against ground truth.

The visual realism of the world is not the only aspect
however. An agent interacts with the world and the impact of
the world on the agent and the agent on the world must also
be modeled. There are a variety of ways a dynamic agent
affects its world and ways the world affects the agent. A
humanoid walking along a country road would raise dust or
kick pebbles as its feetmove, picking up an objectwould have
proprioceptive effects on the agent’s manipulator, running a
hand across an object would have haptic consequences, and
much more. The interaction with the visual world is just as
important as the appearance of the visual world and depends
strongly on agent design and configuration.

Finally, the acquisition process needs to be appropriately
modelled and done so in a manner that is sufficiently flexi-
ble and customizable so that a wide variety of sensors may
be considered for any particular agent design. The sensing
modalitiesmentioned above each have unique characteristics
and their control, which is a key aspect of active perception
after all, must be realistically simulated.

Validation of a simulated world is of course critical and
this might occur with specific side-by-side tests: choose a

4 We thank an anonymous reviewer for this phrase, which describes
the problem perfectly.
5 http://www.pcworld.com/article/2840251/software-games/10-gorg
eous-graphics-intensive-games-that-will-utterly-punish-your-pc.html.
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real environment and sensing agent, develop a simulation of
these, execute the same series of tests on each and measure
and compare relevant performance properties. It could be
an opportune time for a major push by the relevant funding
agencies to develop an open platform that can be shared,
customized, and evaluated in such a manner and then further
used as a springboard to help remove the entry barrier to
active perception experimentation.

6.3 Evaluating active vision systems

An active perception system consists of many components
(modules, processes) that are interconnected in a network
feeding each other with input. For example, an active percep-
tion system that understands human manipulation actions,
has modules devoted to segmenting and tracking the hands,
modules for segmenting, recognizing andmonitoring objects
and tools, modules for classifying movement into action
descriptions, modules for goal perception, modules for pre-
diction and modules for parsing. In addition, the attentional
modules are connected to all of the above. There is a system-
atic way to evaluate such systems. In principle, one tests each
module in isolation, then in pairs and eventually all together.
Thus, one needs to find the reliability of a system based on
the reliability of its components. This is a classic problem
in systems engineering, mostly understood for feedforward
systems but still challengingwhen feedback is involved. Cur-
rently, it takes the form of a question in the “cyber-physical
systems” area. Indeed, an active perception system combines
the cyber and physical aspects and as such, it falls within
the modern science of cyberphysical systems which studies
the interplay between programming language design, control
and perception/knowledge (Alur 2016). Using this frame-
work, the field could develop a methodology for evaluating
active vision systems, predicting their performance as well
as proving some of the system’s properties.

7 Directions forward

The previous section presented possible extensions to current
empirical methodologies that might be appropriate for active
vision systems. Active Perception by definition needs a live
environment or a random scene generator that can generate
on demand given imaging geometry parameters. In principle,
an active perception system can be evaluated in terms of its
performance on the tasks that it is supposed to accomplish
(or the performance of its components) and can be evalu-
ated using basic techniques of systems engineering (such as,
Sztipanovits et al. 2012). This represents one pointer for how
research may advance in the future. However, there are sev-
eral other issues that can be addressed and these follow.

7.1 Why has the robotics community failed to produce a
flexible platform for researchers?

The design and implementation of robotics systems which
embody the basic prerequisites for Active Perception is still
hard. Why? Manipulators are typically built by mechanical
engineerswho appropriately equip themwith position, veloc-
ity and sometimes accelerometer and force/torque sensors
and of course corresponding actuators. The low level con-
trollers (typically microcontrollers) are interfaced to a more
powerful computer. The operating system on these comput-
ers then typically executes a program that, using input from
the sensors, produces a control command which then is con-
verted by themicrocontroller into analog signal which in turn
controls the actuation. In the old days one had to perform this
programming in low level language in order to access the
proper actuators. Today, this is hidden by the Robot Operat-
ing System (ROS) which enables the user to program robot
activity in a higher level programming language such as C or
C++ or even Python. ROS also makes it easy to access and
connect the sensors (position, velocity, acceleration, force)
with the actuators. To connect the vision sensors is not so
straightforward but progress has been made. Both the PR2
and Baxter robots, for example, operate ROS. There is no
commercially available control of a camera system, namely
of the focus, aperture and field of view, though there com-
mercially available pan and tilt controllers.

(a) Commercial development for a complex robotic
system that would include active perception is pred-
icated on the public needs, and the market desires.

Who are the customers? Industry uses robots in very con-
straint environments with limited number of tasks. The
design criteria for such robotic systems are primarily accu-
racy, reliability and speed of performance. Active perception
does not add value because those robots operate in environ-
ments where changes are predictable. The military has been
investing in demonstrations that are more general. The ser-
vice industry could be a prime customer for robots equipped
with active perception. However, the scientific community
has not yet delivered robust, real time and reliable perfor-
mance, which would be adaptive to the varied environments.
Currently, the most successful service robots are vacuum
cleaners, clearly far from what the potential of what a robot
with active perception can do. The robots operating in uncer-
tain, dynamic environments cannot gather and process all
relevant data and generate intelligent plans in real-time, so
some sort of active perception is required. Why haven’t
results from active perception research led to more intelli-
gent and autonomous robots? The reason is that the space of
possibilities in a dynamic uncertain environment is huge and
highly complex. Robots simply can’t learn everything they
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need to know in any reasonable time—consider the Google
grasping project (Ackermann 2016). After 800,000 grasp tri-
als in a constrained environment, the robots’ abilities to pick
up the objects was still improving. Not only is the space big
and complex, but useful tasks (such as grasping) are also com-
plex. It is difficult to constructmodels for the learning process
that capture the most salient features of the tasks. This makes
the construction of good reward functions for the learning
process is nearly impossible. Even with “nice” reward func-
tions, high-dimensional, non-convex spaces make learning
slow. Add to this issues of convergence and generalization
and it is clear that there is much work to be done

(b) The vision community has focused on different
agenda!

The abundance of images on the web has promoted a suc-
cess of the computer vision in object recognition and scene
classification using convolutional neural networks, but they
have not addressed the real time issue and how to deal with
unexpected situations not available in the training data set.
In service robotics (at home or even in hospitals, restaurants,
old age homes, etc.) one will need to face up to the fact
that one does not have the luxury to process all the avail-
able information (the real time constraint), hence the system
has to select what to process at each instance of the time.
This is the challenge of active perception, since one has to
act upon the current available sensory information. Images
are not the only sensory source: tactile and force sensor data
and more is also important. Although some have explored
low-level contact models (e.g., Trinkle et al. 2001; Kolev
and Todorov 2015, and others), these are too detailed for the
level of abstraction where active perception operates.

(c) The great commercial opportunity is in the service
industry

Aswasmentioned earlier, the service industry seems an ideal
receptor for robots with active perception. Applications such
as companion robots for the elderly and infirm, hospital or
nursing home robotics assistants to ameliorate the heavy bur-
den that burns out care-givers, delivery robots, and more
seem ripe. In order to make this happen, the research com-
munity will have to show that we can build robotic systems
with active perception capabilities that are adaptive to var-
ied environments and tasks, that can deal with unexpected,
novel situations and that they can learn. Their performance
must be robust, reliable and safe. At this point the humanoid
robots focus on the control of their movements and their
perceptual abilities are very limited (but see Andreopou-
los et al. 2011). Robot use in hotels and hospitals is also
very limited. It is unlikely that without a positive interven-
tion, individual labs will be able to make strong progress; as

described above, there is a high entry cost to active robotics
research, both hardware development and empirical work. A
consortium composed of the private, industry academia and
government can put together a program to create a flexible
platform with a sensor suite (including vision), the operat-
ing system enabling higher level programming that will give
impetus to researchers to show what is feasible. Perhaps a
grand challenge such as DARPA executes from time to time
is in order since it encourages competition and attracts young
people to the field of robotics.

8 Conclusions

Any paper whose goal is a ’re-visitation’ of a research topic
is bound to encounter differing viewpoints and opinions that
have arisen during the history of the topic. It is a challenge
to appropriately include them while not detracting from the
main line of the argument. Further, it is very difficult to
be certain that all the relevant landmarks of research have
been included; other relevant reviews and collections include
Crowley et al. (1992), Aloimonos (1993), Christensen et al.
(1993), Crowley and Christensen (1995), Vernon (2008),
Dahiya et al. (2010), Chen et al. (2011) and Andreopoulos
and Tsotsos Andreopoulos and Tsotsos (2013a, b), among
others. Here, ourmain argument is that despite the recent suc-
cesses in robotics, artificial intelligence and computer vision,
a complete artificial agent necessarily must include active
perception. The reason follows directly from the definition
presented in the first section: An agent is an active perceiver
if it knows why it wishes to sense, and then chooses what to
perceive, and determines how, when and where to achieve
that perception. The computational generation of intelligent
behavior has been the goal of all AI, vision and robotics
research since its earliest days and agents that know why
they behave as they do and choose their behaviors depending
on their context clearly would be embodiments of this goal.

A multitude of ideas and methods for how to accomplish
this have already appeared in the past, their broader util-
ity perhaps impeded by insufficient computational power or
costly hardware. We are of the opinion that those contribu-
tions are as relevant today as they were decades ago and,
with the state of modern computational tools, are poised to
find new life in the robotic perception systems of the next
decade. To reach this conclusion we have traversed, over a
period of time extending, personally for us the co-authors, at
least 4 decades, and have been seen our views strengthened.
Moreover, we have been affected by a variety of motivations,
disciplines, approaches, and more. These cannot all be eas-
ily presented here within a single story line, but we feel that
the following personal outlooks may permit the excursions
that we have individually experienced to add an interesting
texture to our main story line.
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Ruzena Bajcsy I believe that there is a natural flow
from Active Perception through Exploration to Perceptual
Learning. In spite of a great deal of progress in sensing,
computational power and memory, the goals set out in the
original Active Perception paradigm are valid today. We
are interested in conceptualizing the perceptual process of
an organism/cyber-physical system that has the top-level
task of functioning/surviving in an unknown environment.
All the recognition algorithms depend on the context and
it is context that determines the control of sensing, rea-
soning and action components of any system. To concep-
tualize this perceptual process four necessary ingredients
have emerged for either artificial or biological organisms.
First, the sensory apparatus and processing of the system
must be active (controllable/adjustable) and flexible. Sec-
ond, the systemmust have exploratory capabilities/strategies.
It must also be able to evaluate at each step of explo-
ration if it gains new information. Third, The system must
be selective in its data acquisition in order to be able to
act upon the perceptual information in real time. Fourth,
The system must be able to learn. The learning process
depends very much on the assumptions/models of what is
innate and what is learned. The theory of the cyber-physical
system that I have been pursuing predicts that an agent
can explore and learn about its environment modulo its
available sensors, kinematics and dynamic of its manipu-
lators/end effectors, its degrees of freedom in mobility and
exploratory strategies /attribute extractors. It can describe its
world with an alphabet of set of perceptual and actionable
primitives.

I take a great deal of inspiration fromwhat is known about
infant vision, and from psychological studies on perceptual
exploration (Gibson 1950, 1979;Maturana and Varela 1987)
and learning (Piaget 1962; Meltzoff andMoore 1989). Infant
vision especially seems inspirational. At birth visual struc-
tures are fully present but not fully developed. Newborns can
detect changes in brightness, distinguish between stationary
and kinetic objects, and followmoving objects in their visual
fields. During the first 2 months, due to growth and matu-
ration their acuity improves, they can focus and their light
sensitivity improves due to pupil growth. Stereo comes into
play at about 3months andmotion parallax capabilities occur
around 5 month of age. Monocular depth cues come about
much later, perhaps at the 4–5 month mark. The control of
head movement is also gradual. Given the above facts, one
can state that at best our visuo-artificial systems correspond
to an infant’s capabilities at about 2–5months.We havemuch
to do!

Another goal is to understand how to build systems that
interact with other humans. Collaboration between agents
has been a challenging problem in the robotic community for
many years. Perception of intent and agent affordances, the
communication between agents, and the coordinated action

are all open research problems. This challenge has an added
layer of complexitywhen humans are added to the interaction
the notorious human-in-the-loop. One of the ways we are
exploring these human cyberphysical systems, is by using
active perception to not only perceive the surroundings of the
agents, but to examine the agents themselves. Collaborative
teams of agents with different affordances offers methods of
completing tasks that are far richer than homogeneous teams.
By sensing the abilities of each agent, this diversity can be
utilized to its furthest extent.

The affordances of the human agent are often treaded
as being identical for all people. While this simplifies the
modelling of the collaboration, it results in a poor tradeoff
between system efficiency and safety. For instance, a device
that helps an individual walk, should not impede a firefighter,
but should also prevent an elderly individual from falling.
While the need for this functionality is clear, the design and
control of these systems requires knowledge of the individ-
ual’s affordances - the system is not just human-in-the loop,
but individual-in-the-loop.

Everyone is different, and we all change over time due to
age, illness and treatment. By accounting for these changes
we can better adapt a system to the interaction with the indi-
vidual, while making rigorous statements about the abilities
of the team, and the safety of the agents involved (Bestick
et al. 2015).

Yiannis Aloimonos My own views have been shaped
by basic questions regarding the overall organization of an
intelligent system with perception, a fundamental require-
ment for building intelligent autonomous robots. What kind
of information should a visual system derive from the
images? Should this information be expressed in some kind
of internal language? Should the information be in a sin-
gle general purpose form leaving it to other modules to
change it to fit their needs, or can a visual system directly
produce forms of information suited to other specific mod-
ules? Is part of the vision system’s function to control
processing in other subsystems? Is it possible to draw a
sharp boundary between visual processing and other kinds
of processing? How is the interaction between Vision and
Cognition? The basic thesis I have been developing, along
the ideas of Aristotle, Varela, Gibson and others, is that
action lies at the foundation of cognition. Every compo-
nent of the intelligent system is designed so that it serves the
action space, which in turn serves that component (feedback
loops).

The Active Vision Revolution of the ‘80’s and 90’s devel-
oped such models for the early parts of the vision system, the
eye. But if the agent is involved in actions where it needs to
make decisions as well as recognize andmanipulate different
objects, then it becomes challenging to develop the appropri-
ate mathematical models. Where does one start? And which
models to employ?
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The discovery of mirror neurons (Gallese et al. 1996)
solved the dilemma, for me and others. It became clear
that the system responsible for generating actions and the
system responsible for interpreting actions that are visu-
ally observed, are basically the same at a high level. Thus,
if it is hard to figure out how to organize the perception-
action cycles of an active perception system, it may be easier
to understand humans performing actions that we visually
observe. In other words, if we could develop systems that
understand human activity by observing it, at the same time
we are developing the high level architecture of an active
robotic agent that can perform the same actions. This was a
powerful idea that led to a gargantuandevelopment of compu-
tational approaches to interpreting human action from visual
information and amounted to a shift of some “active vision”
research to “action vision” research in my own work.

Consider again the kitchen scenario from before—the
making of the Greek salad. But now consider the dual prob-
lem: an active perception system iswatching a humanmaking
a salad. Its goal is to understandwhat it observes.Understand-
ing has of coursemany layers, one needsmore understanding
of the action in order to replicate it than in order to name it.
The active perception system watching the action would still
need to engage the modules of Fig. 1 just as before (Yang
et al. 2013). In addition, it would have to perform selec-
tion in space-time, i.e. to segment the video that it receives
into meaningful chunks that can map to symbols. For exam-
ple, the part of the video with the hand moving towards the
knife will be segmented when the hand reaches the knife
and will become the symbol REACH. The next video chunk
will be GRASP. The next one will be MOVE KNIFE TO
CUCUMBER’SLOCATION. Those symbols obey rules that
in general form a grammar (tree like rules) or some graphi-
cal model (graphs, random fields, conditional random fields,
etc.). Such knowledge allows a linguistic treatment of action,
since onewould be able using suchmodels to create a parsing
of the scene and a subsequent semantic analysis (Wörgötter
et al. 2012; Summers-Stay et al. 2013; Pastra and Aloimonos
2012; Manikonda et al. 1999; Dantam and Stilman 2013;
Fainekos et al. 2005; Aksoy et al. 2011; Worch et al. 2015;
Yang et al. 2015; Coates et al. 2008; Maitin-Shepard et al.
2010).

Considering then an active perception system that is able
to perform thousands of actions involving thousands of
objects, how would we call the actions and objects involved?
Would we name them action-1, action-2,. . ., action-m and
similarly object-1, object-2, and so on? Or would we use
their actual names, such as grasp, cut, move, screw, turn,
press,…, cucumber, tomato, knife, and so on? The second
choice allows the possibility of structuring the knowledge of
an active perception system in terms of language, allowing
for better communication with humans as well as for using
natural language processing techniques in the integration of

the system. This avenue contributes to the grounding of the
meaning of language and is an important research direction.
(Teo et al. 2012; Kollar et al. 2010; Tellex and Roy 2009;
Siskind 2001; Yu et al. 2011; Yang et al. 2014; Zampogian-
nis et al. 2015; Yang et al. 2015).

John TsotsosMy early years in the field, when we collec-
tively believed that we could use computation to understand
human visual and cognitive abilities, have played a large role
in shaping my viewpoint today. Over the years I find myself
more and more influenced by our ever-growing knowledge
about the human visual system and human behavior. Per-
haps more is known about the visual system of the brain than
any other component, and more of the brain’s cortical neu-
rons are devoted to visual processing than any other task.
Each discovery about human vision can be regarded as a hint
or clue that might be helpful in developing a functioning
artificial vision system. But there are far more experimental
discoveries than useful clues. And how one translates these
hints into real systems is also very important. At what level
of abstraction should it apply? What mathematical formula-
tion or computational construct best models the hint? How is
the result evaluated with respect to its computational perfor-
mance?What degree of faithfulness to those neurobiological
and behavioral observations is most useful? It is important
to understand that not all experimental observations about
vision are useful and generally we do not have a way of
knowing which. Any choice of neurobiological or behav-
ioral hints to use in an artificial vision system constrains the
space of possible systems that can result. A large aspect of
the art of creating artificial vision is to select the right subset
and to determine the best way to translate those hints into
enabling elements.

The hallmark of human vision is its generality. The same
brain and same visual system allow one to play tennis, drive
a car, perform surgery, view photo albums, read a book, gaze
into your loved one’s eyes, go online shopping, solve 1000-
piece jigsaw puzzles, find your lost keys, chase after your
young daughter when she appears in danger, and so much
more. The reality is that incredible as the AI successes so far
have been, it is humbling to acknowledge how far there is still
to go. The successes have all been uni-taskers (they have a
single function)—the human visual system is a multi-tasker,
and the tasks one can teach that system seem unbounded.
And it is an infeasible solution to simply create a brain that
includes a large set of uni-taskers. So how to move forward?
We need to consider a broader set of vision problems.We can
slowlymove towards that goal by remembering that people—
and their visual systems—move. Thus, the constraints that
can be applied to vision systemdevelopment can be expanded
by including the constraints that self-motion imposes, such
as the spatial, as well as temporal, correspondence between
successive images; there is a cost in time and energy involved
in moving the eyes (or body), and this constrains how often
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one may be willing to do so; there must be an innate under-
standing of visual perspective and geometry in order to build
an internal representation of what we have seen in previ-
ous views and where it is; and more. If we wish to fulfill
the dream of humanoid robotic companions for our elderly
and infirm, or household assistants, such constraints are
central.

But with this possibility a new problem arises: the amount
of sensory data to be processed grows rapidly and compu-
tational power begins to be strained. My solution is to seek
a general purpose vision system that can be tuned to dif-
ferent functions depending on the task required of it and
input it views (Tsotsos 2011). This, in fact forms the basis
for my definition of attention: Attention is a set of mecha-
nisms that tune and control the search processes inherent
in perception and cognition, with the major types of mech-
anisms being Selection, Suppression, and Restriction. One
aspect of this tuning is to select which portion of the input
to process at any time (select the visual field, from which
viewpoint it is sensed, etc.). The vision system can also
select the manner in which this input is processed at any
time, by priming the system for its current expectations, sup-
pressing irrelevant computations thus enhancing the relevant
ones, improving responses to task-relevant image charac-
teristics, sharpening decision processes, and more. This is
the essence of attentional behavior and active perception
represents an important subset of the full range of atten-
tional behaviors observed (Tsotsos 1992). Thus, I arrive my
current perspective on the problem. It’s all about control!
A passive sensing strategy, no matter how much data is
collected, gives up control over the quality and specific char-
acteristics of what is sensed and at what time and for which
purpose. Passive sensing reduces or eliminates the utility of
any form of predictive reasoning strategy (hypothesize-and-
test, verification of inductive inferences including Bayesian,
etc.). And it’s too early in the robot intelligence story to
believe such reasoning strategies are ultimately unneces-
sary.
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