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Abstract
We propose a hybrid architecture composed of a fully convolutional network (FCN) and a Dempster-Shafer layer for image
semantic segmentation. In the so-called evidential FCN (E-FCN), an encoder-decoder architecture first extracts pixel-wise
feature maps from an input image. A Dempster-Shafer layer then computes mass functions at each pixel location based on
distances to prototypes. Finally, a utility layer performs semantic segmentation from mass functions and allows for imprecise
classification of ambiguous pixels and outliers. We propose an end-to-end learning strategy for jointly updating the network
parameters, which can make use of soft (imprecise) labels. Experiments using three databases (Pascal VOC 2011, MIT-scene
Parsing and SIFT Flow) show that the proposed combination improves the accuracy and calibration of semantic segmentation
by assigning confusing pixels to multi-class sets.
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1 Introduction

In the past few decades, one of the most difficult problems
in computer vision has been image semantic segmentation,
defined as the process of partitioning a digital image into
multiple sets of pixels. The result of image segmentation is
a set of segments that collectively cover the entire image,
called the segmentation mask. This mask constitutes a
simplified representation, more meaningful and easier to
analyze than the original image. Semantic segmentation has
been widely applied to advanced driver assistance systems
[6, 16, 36], human-machine interaction [39], medical
imaging [18], and so on.
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In the last decade, deep learning-based models, espe-
cially fully convolutional networks (FCNs) [25] and variants
[22, 28], have been developed for semantic segmentation
and have achieved remarkable success. FCNs take advan-
tage of existing deep neural networks, which have the
capacity to learn reliable and robust features. An FCN trans-
forms existing and well-known classification models such
as VGG (16-layer net) [31] or ResNet [21] into fully con-
volutional ones by replacing the fully connected layers with
convolutional ones to output spatial maps instead of classifi-
cation scores. Those maps are upsampled using fractionally-
strided convolutions (called deconvolutions [41, 42]) to
produce dense per-pixel labeled outputs. This approach has
allowed for significant improvements in segmentation accu-
racy over traditional methods on benchmark databases like
Pascal VOC 2011 [17]. However, despite the power and
flexibility of the FCN-based models, they still face the
following three problems:

1. How to perform novelty detection? In many learning
sets, not all classes are labeled, especially for some
objects in the background. An ideal image segmentation
algorithm should detect “unknown” objects belonging
to classes that are not represented in the learning set.
This capacity is called novelty detection [8]. FCN-based
models generally randomly assign unknown objects to
one of the known classes, though some models tend to
assign unknown objects to the background class.
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2. How to process pixels with confusing information?
In image-segmentation training sets, all pixels are
precisely labeled, even if the true label is actually
uncertain. This is the case, for example, for the pixels
at object borders. Pixels with precise but incorrect
labels may have negative effects on the performance of
learning systems [2, 27].

3. When will the FCN-based methods fail? In decision-
making systems, a neural network should not only be as
accurate as possible, but it should also have the ability to
signal when it is likely to be incorrect. Neural networks
developed nowadays tend not to be well calibrated [20],
though they are more accurate than they were a decade
ago. In other words, the accuracy of modern neural
networks, including FCN-based models, does not match
their confidence.

In this paper, the above problems are tackled using the
Dempster-Shafer (DS) theory of belief functions [7, 30].
This mathematical framework, also referred to as Evidence
Theory, is based on representing independent pieces of
evidence by mass functions and combining them using
a generic operator called Dempster’s rule. It is a well-
established formalism for reasoning and making decisions
under uncertainty [10, 13, 38]. A mass function has more
degrees of freedom than a probability distribution, which
allows it to represent a wider range of belief states, from
complete ignorance to full certainty.

One of the applications of the DS theory is to design
evidential classifiers (e.g., [9, 14, 24, 33]), which compute
a predicted mass function for each input vector. The output
mass function can then be used for decision-making [4,
8, 19]. Over the years, two main principles have been
developed to design an evidential classifier: the model-
based and distance-based approaches [15]. The former
uses estimated class-conditional distributions [32], while
the latter constructs mass functions based on distances
to prototypes [9, 14, 24]. Thanks to the generality
and expressiveness of the belief-function formalism, an
evidential classifier provides more informative outputs than
those of conventional classifiers (e.g., a neural network
with a softmax output layer). The flexibility of evidential
classifiers can be exploited for uncertain data classification
[40] and set-valued classification [8, 26]. Therefore, it may
be advantageous to combine an FCN-based model with an
evidential classifier for semantic segmentation.

The objective of this study is to take advantage of object
representations generated by an FCN and use them as
the input features of an evidential classifier for decision-
making. The proposed model, referred to as the evidential
fully convolutional network (E-FCN), transforms an FCN
model by replacing its softmax layer by a distance-based DS
layer and a utility layer. In an E-FCN, an FCN architecture

is used to extract pixel-wise high-order features from an
input image. Then, the features are converted into pixel-
wise mass functions by the DS layer. Finally, the mass
functions are used to compute the utilities of acts assigning
pixels to a set of classes for semantic segmentation in a
so-called “utility layer”. An end-to-end learning procedure
allows us to train the E-FCN using a learning set with
soft labels. The effectiveness of the E-FCN is demonstrated
and discussed based on experiments using three benchmark
databases (Pascal VOC 2011 [17], MIT-scene Parsing [43],
and SIFT Flow [34]).

The rest of the paper is organized as follows. Section 2
starts with a brief reminder of DS theory, the DS layer
for constructing mass functions, and feature representation
via FCN. The E-FCN model is then introduced in
Section 3. Section 4 presents numerical experiments, which
demonstrate the advantages of the E-FCNs. Finally, we
conclude the paper in Section 5.

2 Background

This section first recalls some necessary definitions
regarding DS theory (Section 2.1), and the evidential neural
network at the basis of the DS layer (Section 2.2). A
brief description of feature representation via FCNs is then
provided in Section 2.3.

2.1 Dempster-Shafer theory

The main concepts underlying DS theory are only briefly
presented in this section, and some basic notations are
introduced. Detailed information can be found in Shafer’s
original work [30] and in the recent review [13].

Let Ω = {ω1, . . . , ωM} be a set of classes, called the
frame of discernment. A mass function on Ω is a mapping
m from 2Ω to [0,1] such that m(∅) = 0 and

∑

A⊆Ω

m(A) = 1. (1)

For any A ⊆ Ω , each mass m(A) is interpreted as a share of
a unit mass of belief allocated to the hypothesis that the truth
is in A, and which cannot be allocated to any strict subset
of A based on the available evidence. Set A is called a focal
set of m if m(A) > 0. A mass function is said to be logical
if it has only one focal set.

Two mass functions m1 and m2 representing independent
items of evidence can be combined conjunctively by
Dempster’s rule ⊕ [30] as

(m1 ⊕ m2) (A) = (m1 ∩ m2)(A)

1 − (m1 ∩ m2)(∅)
(2a)
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for all A �= ∅, with
(m1 ∩ m2)(A) =

∑

B∩C=A

m1 (B)m2 (C) , (2b)

and (m1 ⊕ m2)(∅) = 0. Mass functions m1 and m2 can
be combined if and only if the denominator on the right-
hand side of (2a) is strictly positive. The operator ⊕ is
commutative and associative.

For decision-making with belief functions, let uij ∈
[0, 1] denote the utility of selecting ωi when the true state is
ωj , and fωi

the act of selecting ωi . We define the pignistic
expected utility [11] of act fωi

as

Em(fωi
) =

M∑

j=1

uijBetPm({ωj }), (3a)

where BetPm is the pignistic probability measure computed
from mass function m by the pignistic transformation,
defined as

BetPm({ωj }) =
∑

{A⊆Ω:ωj ∈A}

m(A)

|A| , (3b)

for all ωj ∈ Ω . The act with the highest pignistic expected
utility can then be selected. Other decision criteria in the
belief function framework are reviewed in [11] and [26].

2.2 Evidential neural network

Denœux [9] proposed a distance-based neural-network
based on DS theory, known as the evidential neural
network (ENN) classifier. The ENN classifier summarizes
the learning set by a small number of prototypes, and treats
the proximity of an input vector to each prototype as a piece
of evidence about its class. The different pieces of evidence
are represented by mass functions, which are combined
using Dempster’s rule (2.1). This section provides a brief
description of the ENN classifier.

We consider a training set X = {
x1, . . . , xN

} ⊂ R
P of

N examples represented by P -dimensional feature vectors,
and n prototypes {p1, . . . , pn} ⊂ R

P . For a test sample x,
the ENN classifier constructs mass functions that quantify
the uncertainty about its class in Ω = {ω1, . . . , ωM}, using
a three-step procedure. This procedure can be implemented
in a neural network with two hidden layers and one output
layer. These three layers can be considered as a single
complex layer called the “DS layer”, which will be plugged
into an FCN architecture as explained in Section 3.1. The
three-step procedure can be described as follows.

Step 1: The similarity between x and each prototype pl is
computed as

sl = αl exp

(
−

(
ηldl

)2)
, l = 1, . . . , n, (4)

where dl = ∥∥x − pl
∥∥ is the Euclidean distance between

x and prototype pl , ηl ∈ R is a scale parameter and αl

is a parameter in [0, 1]. Prototypes p1, . . . , pn can be
considered as vectors of connection weights between the
input layer and a hidden layer of n Radial Basis Function
(RBF) units. The number n of prototypes is a hyper-
parameter and can be tuned using a validation set or by
cross-validation.

Step 2: The mass function ml associated to reference
pattern pl is computed as

ml({ωj }) = vl
j s

l, j = 1, . . . ,M (5a)

ml(Ω) = 1 − sl, (5b)

where vl
j ≥ 0 is the degree of membership of prototype

pl to class ωj with
∑M

j=1 vl
j = 1. We denote the vector

of masses induced by prototype pl as

ml = (ml({ω1}), . . . , ml({ωM}), ml(Ω))T .

(5) can be regarded as computing the activation of units
in a “mass functions” layer composed of n modules of
M + 1 units each. The activations of the units in module
l correspond to the belief masses assigned by ml .

Step 3: The n mass functions ml , l = 1, . . . , n, are
aggregated by Dempster’s rule (2). The combined mass
function can be computed iteratively as μ1 = m1 and
μl = μl−1 ∩ ml for l = 2, . . . , n. From (2a), we have

μl({ωj }) = μl−1({ωj })ml({ωj }) +
μl−1({ωj })ml({Ω}) + μl−1(Ω)ml({ωj }) (6a)

for l = 2, . . . , n and j = 1, . . . , M , and

μl(Ω) = μl−1(Ω)ml(Ω) l = 2, . . . , n. (6b)

The output vector m = (m({ω1}), . . . , m({ωM}),
m(Ω))T is finally obtained by normalizing μn as

m(A) = μn(A)

μn(Ω) + ∑M
j ′=1 μn({ωj ′ }) ,

with A ∈ {{ω1}, . . . , {ωM}, Ω}.

The network parameters are the prototypes pl , the
coefficients αl and ηl , and the membership degrees vl

j for
l = 1, . . . , n and j = 1, . . . , M . They are learnt by
minimizing a loss function. To enforce the constraints 0 ≤
αl ≤ 1, we introduce new variables ξ l ∈ R such that

αl = 1

1 + exp(−ξ l)
∈ (0, 1).
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Similarly, the constraints on parameters vl
j are enforced by

introducing new parameters δl
j ∈ R such that

vl
j = (δl

j )
2

∑M
j ′=1(δ

l
j ′)2

(7)

for l = 1, . . . , n and j = 1, . . . , M . More details can be
found in [9].

2.3 Fully convolutional network

The performance of a classifier in semantic segmentation
tasks heavily depends on the information contained in its
input features. Feature representation, an essential part of
the machine learning workflow, consists in discovering the
predictors needed for semantic segmentation from input
images. In recent years, FCNs [25] and their variants
[22, 28] have achieved remarkable performances thanks
to their ability to construct rich pixel-wise deep feature
representations.

FCNs owe their name to their architecture, which is built
only from locally connected layers, such as convolution,
pooling, and upsampling layers. No dense layer is used in
this kind of architecture. Generally, an FCN consists of two
main parts: an encoder-decoder architecture for pixel-wise
object representation and a softmax layer for pixel-wise
assignments. In the encoder-decoder architecture, an input
image is encoded by several convolutional and pooling
layers and then decoded by one or more upsampling layers.
The softmax layer assigns each pixel in the input image
to one of the classes based on the outputs of the encoder-
decoder architecture. Therefore, the outputs of the encoder-
decoder architecture, called the pixel-wise feature maps, are
considered as a feature representation of the input image. In
the study, these feature maps are used as input to a DS layer

allowing for set-valued semantic segmentation, as will be
shown in Section 3.1.

To understand the feature representation of FCNs, we
briefly recall the encoder-decoder architecture illustrated in
Figure 1. The encoder part consists of several convolutional
and pooling layers. Each convolutional layer performs
convolutions its input to produce a set of feature maps. Let
z = (z1, . . . , zD) be the input made up of D input maps
or input channels zi (i = 1, . . . , D) of size H × W . The
processes in a convolutional layer with input z, consisting
of e convolution kernels with size a × b, are expressed as

cj = f (λj +
∑

i

εi,j ∗ zi), (8)

where εi,j , a matrix of size a × b, is the convolution kernel
between the i-th input map and the j -th output map; λj is
the bias of kernel εi,j ; ∗ denotes the convolution operation;
cj is the j -th output feature map, with size h−a+1

r
× w−b+1

r
,

j = 1, . . . , e; r is the stride with which the kernel slides
over input map zi , and f is the activation function, such
as the rectified linear unit ReLU(x) = max(0, x) [23].
A pooling layer follows the convolutional layer to sub-
sample feature map cj by computing some statistics of
feature values within non-overlapping s × s windows. In
the case of max-pooling used in this paper, the statistic is
the maximum. Thus, the outputs of the pooling layer is
composed of the D feature maps sub-sampled by factor s.
For example, feature map cj with size h−a+1

r
× w−b+1

r
is

downsized to h−a+1
2r × w−b+1

2r by a pooling layer with a 2×2
non-overlapping window.

Although the convolution and pooling operations in
the encoder part contribute to feature representation by
retaining only robust activations, spatial information within
a receptive field is lost, which may be critical for image
semantic segmentation. To address the issue, a decoder part
made up of one or more upsampling layers is added at the

Fig. 1 Illustration of the
encoder-decoder architecture.
An encoder downsizes its input
by convolution and pooling
operations. The outputs of the
encoder, as the sparse feature
maps, are imported into a
decoder. A decoder upsamples
and densifies its inputs by
performing the reverse operation
of convolution and pooling. The
final decoder outputs are the
pixel-wise feature maps
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output of the encoder part. The decoder performs the reverse
operation of convolution and pooling for reconstructing a
set of activations with the same size of the input image, as
shown in Fig. 1. Thus, the outputs of the decoder part are
enlarged feature maps. In this study, we use a deconvolution
layer [28] to implement the upsampling operation.

A deconvolutional layer densifies its inputs of sparse fea-
ture maps through convolution-like operations with multiple
learned kernels. However, contrary to convolutional layers,
which connect multiple inputs within a kernel to a single
activation, a deconvolutional layer associates a single input
in a feature map to multiple outputs. Thus, the outputs of a
deconvolutional layer are enlarged and dense feature maps.
The processes of a deconvolution operation can also be sum-
marized as (8), but its kernel sizes are larger than the input
sizes, i.e., a ≥ H and b ≥ W .

3 Evidential fully convolutional network

In this section, we describe the proposed E-FCN.
Section 3.1 presents the overall architecture composed of
an encoder-decoder module for feature representation, a
DS layer to construct mass functions, and a utility layer
for decision-making. The details of the utility layer are
described in Section 3.2. Section 3.3 introduces the strategy
for training E-FCN models using a learning set with soft
labels.

3.1 Network architecture

The main idea of this work is to hybridize the ENN classifier
presented in Section 2.2 and the FCN recalled in Section 2.3

by “plugging” a DS layer followed by a utility layer at the
output of the final deconvolutional layer in the FCN. The
architecture of the proposed method, called the evidential
FCN (E-FCN), is illustrated in Fig. 2. An E-FCN classifier
performs set-valued semantic segmentation and quantifies
the uncertainty about the class of each pixel, taking values
in Ω = {ω1, . . . , ωM}, using a three-step procedure defined
as follows.

Step 1: As in a probabilistic FCN (P-FCN), an image of
size W × H × 3 is presented as input to the encoder-
decoder architecture of an FCN to generate pixel-wise
feature maps of size W ×H ×P , where P is the number
of output channels. Each feature vector 1× 1×P from a
pixel-wise feature map is a P -dimensional representation
of the corresponding pixel, ready to be fed into the
DS layer. This architecture generates reliable pixel-
wise representations of the input image. Thanks to the
representations, the E-FCN yields similar or even better
performance for precise semantic segmentation than does
a P-FCN with the same encoder-decoder architecture, as
will be shown in Section 4.2.
Step 2: Each feature vector from the encoder-decoder
architecture is fed into the DS layer, in which it is used
to compute a mass function as explained in Section 2.2.
The output of the DS layer for a given feature vector is
an (M + 1)-dimensional mass vector

m = (m({ω1}), . . . , m({ωM}), m(Ω))T .

Thus, given pixel-wise feature maps of size W × H × P

from Step 1, the output of the DS layer is a tensor
of size W × H × (M + 1). Each mass vector in
the tensor represents the uncertainty about the class

Fig. 2 Architecture of an evidential fully convolutional network (E-
FCN). The E-FCN performs semantic segmentation using a three-step
procedure. In the first step, an encoder-decoder architecture extracts
pixel-wise feature maps from the input image. Each vector in the fea-
ture maps is fed into a DS layer to construct the pixel-wise mass

functions in the second step. These mass functions are finally fed into
a utility layer to generate the pixel-wise expected utilities of all acts.
Finally, the segmentation mask is computed based on the expected
utilities
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of the corresponding pixel. More precisely, the mass
m({ωi}) is the degree of belief that the true class of the
corresponding pixel is ωi . The DS layer tends to allocate
uniform masses if the representations contain confusing
information. The additional degree of freedom m(Ω)

makes it possible to quantify the lack of evidence [12]
and to verify whether the model is well trained [35].
The advantages of this uncertainty representation will be
demonstrated in the performance evaluation of set-valued
semantic segmentation using E-FCN in Section 4.3.
Step 3: The output pixel-wise mass vectors are fed into a
utility layer, where they are used to compute the expected
utility of acts. Each act is defined as the assignment
of a pixel to a non-empty subset A of Ω . Therefore,
the output of the layer for each feature vector from
Step 2 is a vector of at most 2Ω − 1 expected utilities
when all of the possible acts are considered. The utility
layer allows the E-FCN to perform set-valued semantic
segmentation. This capability will be demonstrated by
comparing the performances of the two types of FCNs
in set-valued segmentation (Section 4.3) and novelty
detection (Section 4.4) tasks. More details about the
utility layer are given in the next section.

3.2 Utility layer

In this section, we describe in greater detail the
decision-making process taking place in the utility layer.
Section 3.2.1 begins by introducing the precise semantic
segmentation method using mass functions and utilities.
Section 3.2.2 then describes a method for computing the
utility of set-valued pixel-wise classification, after which an
approach to set-valued classification based on mass func-
tions is described in Section 3.2.3. In Section 3.2.4, we
summarize the workflow as a neural network layer in the
E-FCN model.

3.2.1 Precise semantic segmentation

Let Ω = {ω1, . . . , ωM} be the set of classes. For semantic
segmentation problems with precise prediction, each pixel
in an image is assigned to exactly one class. An act is
thus defined as the assignment of a pixel to one and
only one of the M classes, and the set of acts is F =
{fω1 , . . . , fωM

}, where fωi
denotes assignment to class ωi .

To make decisions, we define a utility matrix U of size
M × M , whose general term uij ∈ [0, 1] is the utility of
assigning a pixel to class ωi when the true class is ωj .

When uncertainty about Ω is described by a DS mass
function, each act fωi

induces an expected utility, such as
the pignistic expected utility defined by (3). Given utility
matrix U and the output of the DS layer m for a given pixel,
the pignistic expected utility of assigning that pixel to class

ωi is given by (3a), where BetPm is the pignistic probability
defined by (3b). The pixel is finally assigned to class ωi∗
such that

i∗ = arg max
i∈{1,...,M}Em(fωi

). (9)

3.2.2 Extending the utility matrix

For semantic segmentation problems with imprecise predic-
tion, we adopt the approach described in [26] for set-valued
classification under uncertainty, which allows the assign-
ment of a pixel to any non-empty subset A of Ω . The set of
acts thus potentially becomes F = {fA : A ⊆ Ω, A �= ∅},
where fA denotes the assignment to a subset A. (In practice,
when the cardinality of Ω is very large, we may only con-
sider acts fA for some subsets A of Ω). In this study, fA is
referred to as an imprecise assignment when subset A is a
multi-class set with |A| ≥ 2. For decision-making with F ,
the utility matrix U has to be extended to a matrix Ũ of size
(2M − 1) × M , where each element ũA,j denotes the utility
of assigning a pixel to set A of classes when the true label is
ωj . Following [26], this extension is performed as follows.

When the true class is ωj , the utility of assigning a pixel
to set A is defined as an Ordered Weighted Average (OWA)
aggregation [37] of the utilities of each precise assignment
in A as

ũA,j =
|A|∑

k=1

gk uA
(k)j , (10)

where uA
(k)j is the k-th largest element in the set {uij :

ωi ∈ A} made up of the elements in the utility matrix U ,
and weights g = (g1, . . . , g|A|) represent the preference to
choose u(k)j (A) if forced to select a single value in {uij :
ωi ∈ A}. The components of weight vector g represent
the tolerance to imprecision of a decision maker (DM).
For example, full tolerance to imprecision is achieved when
the assignment act fA has utility 1 once set A contains
the true label, no matter how large A is. In this case, only
the maximum utility of elements in set {uij , ωi ∈ A} is
considered: (g1, g2, . . . , g|A|) = (1, 0, . . . , 0). At the other
extreme, a DM attaching no value to imprecision would
consider the act fA as equivalent to selecting one class
uniformly at random from A: this is achieved when

(g1, g2, . . . , g|A|) =
(

1

|A| ,
1

|A| , . . . ,
1

|A|
)

,

in which case the OWA operator becomes the average. In
this study, following [26], we determine the weight vector g

of the OWA operator by adapting O’Hagan’s method [29].
We define the tolerance to imprecision as

T DI (g) =
|A|∑

k=1

|A| − k

|A| − 1
gk = γ, (11)
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which equals 1 for the maximum, 0 for the minimum, and
0.5 for the average. In practice, we only need to consider
values of γ between 0.5 and 1 as a precise assignment is
always more desirable than an imprecise one when γ<0.5
[26]. Given a value of γ , we can compute the weights of the
OWA operator by maximizing the entropy

ENT (g) = −
|A|∑

k=1

gk log gk (12)

subject to the constraints T DI (g) = γ ,
∑|A|

k=1 gk = 1, and
gk ≥ 0.

Example 1 Table 1 shows an example of the extended utility
matrix generated by an OWA operator with γ = 0.8.
The first three rows constitute the original utility matrix,
indicating that the utility equals 1 when assigning a sample
to its true class, and 0 otherwise. The remaining rows are
the matrix of the aggregated utilities. For example, we get a
utility of 0.8 when assigning a sample to set {ω1, ω2} if the
true label is ω1.

3.2.3 Set-valued semantic segmentation

Based on an extended utility matrix Ũ and the output of the
DS layer m for a given pixel, we can compute the pignistic
expected utility of assigning that pixel to set A as

Em(fA) =
M∑

j=1

ũA,jBetPm({ωj }), (13)

where BetPm is the pignistic probability defined by (3b).
The pixel is finally assigned to set A such that

A = arg max
∅�=B⊆Ω

Em(fB). (14)

Table 1 Utility matrix extended by an OWA operator with γ = 0.8

Classes

ω1 ω2 ω3

f{ω1} 1 0 0

f{ω2} 0 1 0

f{ω3} 0 0 1

f{ω1,ω2} 0.8 0.8 0

f{ω1,ω3} 0.8 0 0.8

f{ω2,ω3} 0 0.8 0.8

fΩ 0.6819 0.6819 0.6819

3.2.4 Utility layer

The procedure of assigning a pixel to a set of classes
using utility theory is implemented in the neural network
as a utility layer. In this layer, the inputs and outputs
are, respectively, the pixel-wise mass vectors m from the
preceding DS layer and the pixel-wise expected utilities
of all acts in F . The connection weight between unit j

of the DS layer and output unit A ⊆ Ω corresponding
to the assignment to set A is the utility value ũA,j . As
coefficient γ describing the imprecision tolerance degree
is predetermined, the connection weights of the expected
utility layer are fixed and do not need to be updated during
training.

In practice, the connections between the DS and utility
layers can be designed by the user. For example, one can
build a utility layer using the utility values ũA,j with |A| =
1 to only consider precise assignments, or 0 < |A| ≤ 2
to consider assignment to sets classes of cardinality one or
two. In this paper, we have only considered the acts fA such
that A is a singleton, Ω , or one of the soft labels present in
the learning set (as explained in Section 3.3 below).

3.3 Learning with soft labels

In traditional learning systems for image semantic segmen-
tation, all pixels are labeled with a single class even when
their true class cannot be determined with full certainty. For
example, the true class may be uncertain at object borders,
but the border pixels are still given precise labels. Addi-
tionally, one cannot reliably label some small objects in an
image, such as distant objects in a driving scene. Arbitrarily
giving precise labels to pixels with confusing information
may negatively impact the performance of learning systems
in image semantic segmentation tasks. The notion of soft
label [5, 14] is a way to address this problem.

Here, we define a soft label as a nonempty subset A∗ ∈
2Ω\∅ of classes a pixel may belong to, based on our current
knowledge. For example, label A∗ = {ωi, ωj } indicates
that the true class of a pixel is known to be either ωi

or ωj but we cannot determine which one specifically.
A strategy of end-to-end learning is proposed to train an
E-FNC from an image learning set with soft labels. All
parameters in the DS layer are first initialized randomly
using normal distributions. For a given pixel with nonempty
soft label A∗ ⊆ Ω , let ml be the logical mass function
with focal set A∗, i.e., such that ml(A∗) = 1. The labeling
pignistic expected utilities Eml

(fA) for A ∈ 2Ω\∅ can
be computed using (13) and the pignistic belief-probability
transformation (3b). Similarly, we consider the predicted
pignistic expected utilities Em(fA) for A ∈ 2Ω\∅ , where
m is the predicted mass function from the DS layer of the
E-FCN, with focal sets {ω1}, . . . , {ωM} and Ω . For a given
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pixel with soft label ml and predicted mass function m, the
loss L(m, ml) is defined as the squared Euclidean distance
between the vectors of expected utilities w.r.t. ml and m:

L(m, ml) =
∑

∅�=A⊆Ω

[
Eml

(fA) − Em(fA)
]2 . (15)

The derivatives of L(m, ml) of the error w.r.t the output
masses m({ωk}) are

∂L(m,ml)

∂m({ωk}) =
∑

∅�=A⊆Ω

∂L(m,ml)

∂Em(fA)
· ∂Em(fA)

∂m({ωk})

=−2
∑

∅�=A⊆Ω

[
Eml

(fA)−Em(fA)
] M∑

j=1

∂Em(fA)

∂BetPm(ωj )

∂BetPm(ωj )

∂m({ωk})

= −2
∑

∅�=A⊆Ω

[
Eml

(fA) − Em(fA)
] M∑

j=1

ũA,j

(
δkj − 1

M

)
,

(16)

where δkj = 1 if k = j and δkj = 0 otherwise.
The derivatives of m({ωk}) w.r.t pl

k , η
l , and ξ l in the DS

layer are the same as in Denœux’s original work [9], and
the gradient with respect to all network parameters can be
back-propagated from the output layer to the input layer.

4 Experiments

In this section, we present numerical experiments that
demonstrate the advantages of the proposed model. The
databases and metrics are first introduced in Section 4.1.
Precise and imprecise segmentation results are then

reported, respectively, in Sections 4.2 and 4.3. Finally,
novelty detection results are presented in Section 4.4.

4.1 Databases andmetrics for performance
evaluation

4.1.1 Databases

Three benchmark databases were used in the study: Pascal
VOC 2011 [17], MIT-scene Parsing [43], and SIFT Flow
[34]. These databases were used to train and test the E-FCNs
as well as probabilistic FCNs (P-FCNs) for comparison.

The Pascal VOC 2011 database contains 20 object
classes in 5034 images, with segmentation masks that
indicate the class of each pixel, or label it as “background”
if the object does not belong to one of the twenty specified
classes. The MIT-scene Parsing and SIFT Flow databases
are similar to the Pascal VOC 2011 database but have,
respectively, 150 categories in 20K images and 33 classes
in 2688 images. The list of classes for the three databases
are given in Table 2. Each of the three databases was split
into 50% for training/validation and 50% for testing. The
validation sets were used to determine hyper-parameters,
such as the number of prototypes in each DS layer. The
optimal tolerance to imprecision γ can be determined in
the same way since it can also be considered as a hyper-
parameter.

There is no confidence value associated with the pixel
labels in any of the three databases. Thus, we defined soft
labels for them. For the Pascal VOC 2011 database, we
assigned each pixel in a boundary area a soft label A ⊆ Ω ,
where A consists of the object classes around the boundary
area. Some examples are shown in Fig 3a. For the MIT-
scene Parsing and SIFT Flow databases with no identified

Table 2 Lists of classes for the three databases used in this study

Database Class list

Pascal VOC 2011 background, cat, dog, horse, sheep, train, sofa, aeroplane, bicycle, bird, boat, bottle, bus, car, chair, cow, diningtable,
motorbike, person, pottedplant, tv.

MIT-scene parsing wall, floor, ceiling, bed, cabinet, earth, curtain, water, painting, shelf, house, mirror, rug, armchair, seat, desk, wardrobe,
lamp, bathtub, railing, cushion, base, box, column, chest, counter, sink, skyscraper, fireplace, refrigerator, grandstand, path,
stairs, runway, case, pool, pillow, screen, bookcase, blind, coffee, toilet, flower, book, hill, bench, countertop, stove, palm,
kitchen, computer, swivel, bar, arcade, hovel, towel, light, truck, tower, chandelier, booth, dirt track, apparel, land, bannister,
escalator, ottoman, buffet, poster, stage, van, ship, fountain, conveyer, canopy, washer, plaything, swimming, stool, barrel,
basket, waterfall, tent, bag, minibike, cradle, oven, ball, food, step, tank, trade, microwave, pot, animal, lake, dishwasher,
screen, blanket, sculpture, hood, sconce, vase, traffic, tray, ashcan, fan, pier, screen, plate, monitor, bulletin, shower, radiator,
glass, clock, flag, sofa, airplane, building, sky, tree, road,windowpane, grass, sidewalk, person, door, table,mountain,
plant, chair, car, sea, field, fence, rock, sign, sand, staircase, river, bridge, boat, bus, awning, streetlight, tv, pole,
bottle, minibike, bicycle.

SIFT Flow balcony, crosswalk, desert, moon, sun, window, awning, bird, boat, bridge, building, bus, car, cow, door, fence, field,
grass, mountain, person, plant, pole, river, road, rock, sand, sea, sidewalk, sign, sky, staircase, streetlight, tree.

Classes in bold characters are included in two or three databases. Classes with close meanings, such as “minibike” and “motorbike”, are considered
as identical
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Fig. 3 Segmentation masks with soft labels: a Pascal VOC 2011, bMIT-scene Parsing, and c SIFT Flow

boundary areas, we assigned soft labels to the pixels situated
between every two objects, as shown in Fig. 3b and c.

A semantic segmentation model should not only be
accurate for the classes in the learning set, but it should
also be able to detect objects belonging to classes that
are not included in the learning set. To evaluate this
novelty detection capacity, we mixed the three databases:
for example, an FCN model trained using the Pascal VOC
2011 database was tested on the other two databases.

4.1.2 Metrics

We used three metrics for the performance evaluation
of semantic segmentation: pixel utility (PU), utility of
intersection over union (UIoU), and expected calibration
error (ECE).

Pixel utility. For an image with T pixels, the pixel utility is
defined as

PU = 1

|T |
|T |∑

i=1

ũA(i),A∗(i) (17)

where A∗(i) is the label of pixel i, A(i) is the selected
set of classes for pixel i determined from (14), and using
the notations introduced in Section 3.2, ũA(i),A∗(i) is the
utility of assigning pixel i to subset A(i) ⊆ Ω when its
label is A∗(i). Thus, PU is the same as pixel accuracy when
only considering precise assignments and precise labels.
To consider soft labels, the utility matrix Ũ defined in
Section 3.2 should be extended to a matrix Ũ

′
of size

(2M −1)× (2M −1) with general term ũA,A∗ defined as the
utility of assigning a pixel to subset A ⊆ Ω when its label is
A∗, with |A∗| ≥ 1. Soft label A∗ means that we only know
the true class of a pixel is in set A∗, and nothing more. To

define the utility ũA,A∗ , we first compute the average of the
utilities of selecting subset A when the true class is in A∗ as

uA,A∗ = 1

|A∗|
∑

wk∈A∗
ũA,k, (18a)

where ũA,k is the utility of selecting subset A when the true
class is ωk , and we normalize this average utility to ensure
that ũA∗,A∗ = 1:

ũA,A∗ = uA,A∗
uA∗,A∗

. (18b)

Example 2 Table 3 shows an example of the utility matrix
considering soft labels, which is extended from Example 1.
The last four columns correspond to the utility matrix for
soft labels. An act achieves utility 1 only if A = A∗, 0 if
A ∩ A∗ = ∅, and a value between 0 and 1 if A �= A∗ and
A ∩ A∗ �= ∅.

Utility of intersection over union. The segmentation perfor-
mance was also evaluated by the utility of intersection over
union (UIoU) defined as

UIoU = 1

2|Ω| − 1

∑

B⊆Ω

∑
i∈GB∩P B ũA(i),B

|GB ∪ P B | , (19)

where P B = {i : A(i) ∩ B �= ∅} is the predicted area
containing pixels assigned to a set of classes that intersect
B, and GB = {i : A∗(i) = B)} is the ground truth area
composed of pixels with label B. Thus, in the special case
of precise segmentation with only precise labels, UIoU boils
down to intersection over union, a widely used metric for
semantic segmentation [22, 25, 28].
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Table 3 Utility matrix considering soft labels with γ = 0.8

Label

ω1 ω2 ω3 {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω

Act f{ω1} 1 0 0 0.625 0.625 0 0.489

f{ω2} 0 1 0 0.625 0 0.625 0.489

f{ω3} 0 0 1 0 0.625 0.625 0.489

f{ω1,ω2} 0.8 0.8 0 1 0.5 0.5 0.782

f{ω1,ω3} 0.8 0 0.8 0.5 1 0.5 0.782

f{ω2,ω3} 0 0.8 0.8 0.5 0.5 1 0.782

fΩ 0.682 0.682 0.682 0.853 0.853 0.853 1

Expected calibration error. In decision systems, a neural
network should not only be accurate, but it should
also indicate when it is likely to be incorrect. Thus,
the confidence of an E-FCN should be calibrated.
To characterize this property, we extend the expected
calibration error (ECE) introduced in [20] as follows. We
define the prediction confidence of pixel i as

co(i) = BetPi(A∗(i)) =
∑

ωj ∈A∗(i)
BetPi({ωj }), (20)

where BetPi is the predicted pignistic probability measure
for pixel i. Let Iq be the set of pixels whose prediction
confidence lies in the interval (

q−1
Q

,
q
Q

], q = 1, . . . , Q.
The average utility and confidence of Iq are defined,
respectively, as

au(Iq) = 1

|Iq |
∑

i∈Iq

ũA(i),A∗(i), (21a)

and

co(Iq) = 1

|Iq |
∑

i∈Iq

co(i). (21b)

We consider that the classifier is well calibrated if co(Iq) ≈
au(Iq) for all q, and we define the ECE as

ECE =
∑Q

q=1 |Iq | × |co(Iq) − au(Iq)|
∑Q

q ′=1 |I ′
q | (22)

When only considering precise acts and labels, ECE
defined by (22) boils down to the original definition in [20].

4.2 Precise segmentation results

In precise segmentation, each pixel of an image is assigned
to exactly one class, the set of acts being defined as
F = {fω1 , . . . , fωM

}. Three databases without soft labels
mentioned in Section 4.1.1 were used to train and test
the E-FCNs and probabilistic FCNs (P-FCNs). The metrics

defined in Section 4.1.2 with the utility matrix U equal to
the identity matrix were used for performance assessment.

In the experiment with each database, three widely
used encoder-decoder architectures were combined with the
DS and utility layers, as shown in Table 4. All encoder-
decoder architectures in Table 4 have the same encoder
part, which consists of four stages and two convolutional

Table 4 Performance evaluation of precise segmentation: (a) Pascal
VOC 2011, (b) MIT-scene Parsing, and (c) SIFT Flow

PU UIoU

(a)

P-FCN-32s [25] 0.8912 ± 0.0019 0.5941 ± 0.0033

P-FCN-16s [25] 0.9001 ± 0.0015 0.6243 ± 0.0025

P-FCN-8s [25] 0.9033 ± 0.0017 0.6269 ± 0.0021

E-FCN-32s 0.8973 ± 0.0021 0.6128 ± 0.0024

E-FCN-16s 0.9045 ± 0.0014 0.6304 ± 0.0019

E-FCN-8s 0.9074 ± 0.0015 0.6337 ± 0.0020

(b)

P-FCN-16s [25] 0.7009 ± 0.0030 0.289 ± 0.0051

P-FCN-8s [25] 0.7128 ± 0.0024 0.294 ± 0.0048

P-FCN-SegNet [1] 0.7153 ± 0.0023 0.305 ± 0.0042

E-FCN-16s 0.7090 ± 0.0026 0.292 ± 0.0048

E-FCN-8s 0.7148 ± 0.0025 0.296 ± 0.0046

E-FCN-SegNet 0.7167 ± 0.0026 0.330 ± 0.0043

(c)

P-FCN-16s [25] 0.8489 ± 0.0034 0.3922 ± 0.0047

P-FCN-8s [25] 0.8525 ± 0.0032 0.3948 ± 0.0042

P-FCN-DilatedVGG [3] 0.8643 ± 0.0036 0.4168 ± 0.0043

E-FCN-16s 0.8521 ± 0.0030 0.3937± 0.0042

E-FCN-8s 0.8528 ± 0.0031 0.3961 ± 0.0040

E-FCN-DilatedVGG 0.8649 ± 0.0035 0.4182 ± 0.0038

P-FCN and E-FCN are, respectively, probabilistic and evidential
FCNs. The rests of the notations, such as “-32s” and “-16s”, stand
for different encoder-decoder architectures. The results are in form
of “mean value ± standard deviation”. The best results for each
encoder-decoder architecture are shown in bold.

6385Evidential fully convolutional network for semantic segmentation



layers with 3 × 3 kernels. Each stage is made up of three
convolutional layers with 3 × 3 kernels and a max-pooling
layer with a 2 × 2 non-overlapping window. Figure 4a
illustrates the differences between the FCN-32s, FCN-16s,
and FCN-8s architectures in their decoder parts with a
deconvolutional layer. The FCN-SegNet architecture uses
four deconvolutional layers to upsample the sparse feature
maps from the end of the encoder part, as well as the
feature maps from the corresponding pooling layers based
on pooling indices [1], as shown in Figure 4b. The FCN-
DilatedVGG architecture is the same as FCN-SegNet except
that it adds a fully connected conditional random field at the
end of the last deconvolutional layer [3]. The numbers P of
feature maps for the Pascal, MIT and SIFT databases were,
respectively, 31, 128 and 64. The numbers n of prototypes in
the DS layer for these three databases were set, respectively,
to 75, 300 and 95.

The DS and utility layers slightly improve the accuracy
of precise assignments performed by FCN models, even

though the performance of FCN models on precise
segmentation mainly depends on the encoder-decoder
architecture. Table 4a presents the results of PU and UIoU
for the Pascal VOC database. E-FCNs achieved higher PU
and UIoU than P-FCNs with the same encoder-decoder
architecture, which shows the E-FCNs outperform the P-
FCNs for precise segmentation. Similar improvements can
also be found in the MIT-scene Parsing and SIFT Flow
databases as shown, respectively, in Table 4 band c.

The use of DS and utility layers also makes the
FCN models better calibrated. Figure 5 presents a visual
calibration representation of the FCN-8s models in the
Pascal VOC database. The top row shows the pixel
distribution of prediction confidence (21b) as histograms.
The average confidence of the E-FCN-8s model closely
matches its average pixel utility, while the average
confidence of the P-FCN-8s model is substantially higher
than its average pixel utility. This is further illustrated in
the pixel utility diagrams (bottom row of Fig. 5), which

Fig. 4 Illustration of the
encoder-decoder architectures
used in this paper. Pooling
layers are represented as grids
that show relatively sparse
information. Intermediate
convolution layers are omitted. a
The FCN-32s, FCN-16s,
FCN-8s architectures are used to
combine sparse and high-layer
information with dense and
low-layer information for
upsampling. Black arrow: the
deconvolutional layer in
FCN-32s directly upsamples the
outputs of Pool 4 to pixel-wise
feature maps; orange arrows: the
deconvolutional layer in
FCN-16s combines outputs from
Pool 3 and 4, lets the net predict
finer details, while retaining
high-level semantic information;
green arrows: the
deconvolutional layer in FCN-8s
acquire additional feature maps
from Pool 2 to provide further
precision; b The FCN-SegNet
architecture uses four
deconvolutional layers to
upsample the sparse feature
maps from the end of the
encoder part, as well as the
feature maps from the
corresponding pooling layers
based on pooling indices (purple
arrows)
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Fig. 5 Pixel confidence
distributions (top) and pixel
utility histograms (bottom) for
P-FCN-8s (left) and E-FCN-8s
(right) on the Pascal VOC
database

show pixel utility as a function of confidence. The E-FCN-
8s model is well calibrated since its confidence in each
bin approximates the expected average utility, whereas the
predicted utility of the P-FCN-8s model does not match
its confidence. As a consequence, the E-FCN-8s model
achieves a smaller ECE than the probabilistic one. The
effect of the DS and utility layers on the calibration can
also be found in the FCN-SegNet and FCN-DialtedVGG
models on the MIT-scene Parsing and SIFT Flow databases
as shown, respectively, in Figs. 6 and 7.

4.3 Imprecise segmentation results

In imprecise segmentation, each pixel of an image is
assigned to a non-empty subset A of Ω; the set of acts
is F = {fA, A ∈ 2Ω\∅}, or a subset thereof. Here
we only considered acts fA such that A is a singleton,
Ω or one of the soft labels in the training set. For
performance evaluation, we used the metrics and the three
databases described in Section 4.1. For each database, the
segmentation masks with and without soft labels were used
to train different FCN models. The same encoder-decoder

architectures used for precise segmentation in Section 4.2
were combined with the DS and utility layers.

Figure 8 displays the test results according to PU
and UIoU for imprecise segmentation of the Pascal VOC
database. For a wide range of imprecision tolerance degree
γ , the E-FCNmodels reach higher PU and UIoU values than
those obtained by the P-FCN models; this is due to the fact
that the E-FCN models tend to assign ambiguous pixels to
multi-class sets, instead of making precise decisions. Such
imprecise assignments avoid pixel misclassification in case
of high uncertainty, especially when feature vectors from
an encoder-decoder architecture do not contain sufficient
information to predict a precise class, and multiple classes
have similar probabilities. Figure 9 shows the pixel
confidence distributions for the FCN models with γ =
0.8. We can see that the average confidences of the E-
FCN models are smaller than those of the P-FCN models.
This observation suggests that the E-FCN models make
cautious decisions for ambiguous pixels by assigning them
to multi-class sets, rather than classifying them arbitrarily
into a single class. The E-FCN models are thus better
calibrated than those based on P-FCN, which can be over-
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Fig. 6 Pixel confidence
distributions (top) and pixel
utility histograms (bottom) for
P-FCN-SegNet (left) and
E-FCN-SegNet (right) on the
MIT-scene Parsing database

Fig. 7 Pixel confidence
distributions (top) and pixel
utility histograms (bottom) for
P-FCN-DilatedVGG (left) and
E-FCN-DilatedVGG (right) on
the SIFT Flow database
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Fig. 8 Testing PU and UIoU vs. γ on the Pascal VOC database. The first and second columns are the models trained with/without soft labels,
respectively

Fig. 9 Pixel confidence
distributions for the P-FCN-8s
(left) and E-FCN-8s (right)
models on the Pascal VOC 2011
database without (top)/with
(bottom) soft labels
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Fig. 10 Testing PU and UIoU vs. γ on the MIT-scene Parsing database. The first and second columns are the models trained with/without soft
labels, respectively

Fig. 11 Pixel rate histograms
for the P-FCN-SegNet (left) and
E-FCN-SegNet (right) models
on the MIT-scene Parsing
database without (top)/with
(bottom) soft labels
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Fig. 12 Testing PU and UIoU vs. γ on the SIFT Flow database. The first and second columns are the models trained with/without soft labels,
respectively

Fig. 13 Pixel rate histograms
for the P-FCN-DilatedVGG
(left) and E-FCN-DilatedVGG
(right) models on the SIFT Flow
database without (top)/with
(bottom) soft labels
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Fig. 14 Segmentation examples from the Pascal VOC 2011 database:
a Original image, b Precise segmentation, c Imprecise segmentation
with γ = 0.6, d Imprecise segmentation with γ = 0.7, e Impre-
cise segmentation with γ = 0.8, and f Imprecise segmentation with

γ = 0.9. Red masks are pixels incorrectly classified in the precise seg-
mentation; green masks are pixels assigned to multi-class sets except
set Ω; pink masks are pixels assigned to set Ω; other masks are pixels
assigned to correct single-class sets

confident. Similar results are observed with the MIT-scene
Parsing (Figs. 10 and 11) and SIFT Flow (Figs. 12 and 13)
databases. We can thus conclude the DS and utility layers
improve the performance of the FCN models in imprecise
segmentation tasks by allowing the assignment of some
ambiguous pixels to multi-class sets.

In Figs. 8, 10 and 12, we can see that the value of UIoU
first increases and then decreases when γ increases from
0.5 to 1. To explain this behavior, Fig. 14 shows some
segmentation examples generated by the E-FCN-8s model
trained on the Pascal VOC database with soft labels. The
first and second columns of Fig. 14 contain, respectively,
the original images and their precise segmentation predicted
masks, while the third to sixth columns show the imprecise
segmentation results for values of γ ranging from 0.6 to 0.9.
When γ increases from 0.5 to 0.8, the majority of the green
masks (the areas whose pixels are assigned to multi-class
sets) tends to cover the red masks (the areas whose pixels
are incorrectly classified in the precise segmentation). This

observation can be explained by the fact that, in (19), the
increase in the utility of the intersection between predicted
and labeled areas is larger than the increase in the union
between the two areas. As a result, UIoU increases when
γ increases from 0.5 to 0.8. However, when γ increases
from 0.8 to 1.0, the majority of the green masks cover the
areas predicted correctly in the precise segmentation, which
causes the increase in the utility of intersection to be smaller
than the increase in the union areas. This phenomenon leads
to the decrease of UIoU when γ is larger than 0.8.

The use of soft labels improves the performance of
the FCN models for imprecision segmentation tasks. As
shown in Fig. 8, the FCN models trained on the Pascal
VOC database with soft labels have larger testing PU and
UIoU than the ones without soft labels, which demonstrates
the accuracy improvement using soft labels. Additionally,
the use of soft labels can also improve the calibration
of the FCN models. Figure 15 shows that the ECEs
and bin gaps in the E-FCN and P-FCN models are
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Fig. 15 Average utility
histograms for P-FCN-8s (left)
and E-FCN-8s (right) with
γ = 0.8 on the Pascal VOC
2011 database without
(top)/with (bottom) soft labels

Fig. 16 Average utility
histograms for P-FCN-SegNet
(left) and E-FCN-SegNet (right)
with γ = 0.8 on the MIT-scene
Parsing database without
(top)/with (bottom) soft labels
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Fig. 17 Average utility
histograms for
P-FCN-DilatedVGG (left) and
E-FCN-DilatedVGG (right)
with γ = 0.8 on the SIFT Flow
database without (top)/with
(bottom) soft labels

Fig. 18 Proportion of pixels
assigned to Ω as a function of γ

for novelty detection on the
combination of MIT-scene
Parsing and SIFT Flow
databases (top) and the testing
set from the Pascal VOC 2011
database (bottom) when the
learning set is from the Pascal
VOC database without
(left)/with (right) soft labels
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Fig. 19 Proportion of pixels
assigned to Ω as a function of γ

for novelty detection on the
combination of Pascal VOC
2011 and SIFT Flow (top) and
the testing set of the MIT-scene
Parsing database (bottom) when
the learning set is from the
Pascal VOC database without
(left)/with (right) soft labels

smaller when using the learning set with soft labels. These
results demonstrate the feasibility of processing pixels with
ambiguous information using soft labels when training FCN

models. An improvement of accuracy and calibration due
to learning from soft labels is also observed with the
MIT-scene Parsing and SIFT Flow databases, as shown,

Fig. 20 Proportion of pixels
assigned to Ω as a function of γ

for novelty detection on the
combination of Pascal VOC
2011 and MIT-scene Parsing
(top) and the testing set of the
SIFT Flow database (bottom)
when the learning set is from the
Pascal VOC database without
(left)/with (right) soft labels
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Fig. 21 Examples of novelty
detention from the MIT-scene
Parsing database and their
segmentation masks given by the
E-FCN-8s model trained using
the Pascal VOC database with
soft labels when γ equals 0.8.
Red masks are pixels incorrectly
assigned in the precise
segmentation; green masks are
pixels assigned to multi-class
sets except set Ω; pink masks
are pixels assigned to set Ω;
other masks are pixels assigned
to correct single-class sets

respectively, in Figs. 16 and 17. Therefore, we can conclude
that the use of soft labels improves the accuracy and
calibration of FCN models.

4.4 Novelty detection results

For novelty detection, a pixel is considered as an outlier or
an ambiguous sample if it is assigned to set Ω . Figures 18,
19 and 20 show the results of novelty detection using the E-
FCN and P-FCN models when the learning set is extracted,
respectively, from the Pascal VOC, MIT-scene Parsing and
SIFT Flow databases, and the test set is composed of
images from the other two databases. In each testing set
composed of two databases, only the pixels whose class
is not represented in the corresponding learning set are
reported in Figs. 18-20. The E-FCN models assign outliers

and some known-class pixels to set Ω for values of γ

between 0.7 and 0.9, while the P-FCN models do not. This
observation shows that the E-FCNmodels are more efficient
than the probabilistic ones for rejecting outliers together
with ambiguous samples. The proposed architecture thus
has the potential to perform novelty detection once given a
reasonable value of tolerance to imprecision. However, none
of the FCN models performs well when γ is less than 0.7
since these models favor precise decisions.

The E-FCN models tend to reject unknown objects
whose features are very different from those of the known
objects in the learning set. For example, Fig. 21 shows
images from the MIT-scene Parsing database in which
pixels representing ‘bag’, ‘street light’ and ‘ball’ objects are
rejected by an E-FCN-8s model trained using the Pascal
VOC database, which does not contain these objects. As
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Table 5 Percentage of pixels from some unknown classes in the MIT-scene Parsing and SIFT Flow databases classified by an E-FCN-8s model
trained on the Pascal VOC database into some sets of classes

True class

bag street light ball seat bench bed wall

Assigned set Ω 68.4 77.3 75.2 7.8 4.7 15.9 4.9

{bottle, . . .} 21.8 16.3 16.1 48.5 39.7 30.3 0.2

{chair, . . .} 11.3 9.2 8.5 84.7 81.7 58.6 0.3

{background, . . .} 15.2 13.7 11.5 58.7 48.6 46.9 88.0

Others 4.2 2.4 1.5 2.7 3.5 5.2 3.7

The model was trained with soft labels and γ = 0.8. For instance, 68.4% of the pixels representing a bag were rejected (i.e., assigned to Ω), and
84.7% of pixels representing a seat were assigned to a set of classes containing the class “chair”

shown in Table 5, 75.2% of the pixels representing a ball
in the MIT-scene Parsing and and SIFT Flow databases
are assigned to Ω , while 16.1% are assigned to a set of
classes containing “bottle”. For the “bag” and “street light”
classes, these numbers are, respectively, 68.4%/21.8% and
77.3%/16.3%. Some unknown objects are not so easily
rejected because of their similarity with known objects. For
instance, 84.7% of the pixels representing a seat and 81.7%
of pixels representing a bench are assigned to a set of classes
containing “chair”, and 88% of “wall” pixels are assigned
to a set of classes containing “background”.

We can also observe that the FCN models trained using
a leaning set with soft labels reject more outliers than
those trained without soft labels, as shown in Figs. 18,
19 and 20. This is because the use of soft labels makes
the FCN models more cautious and better calibrated, as
discussed in Section 4.3. More precisely, for ambiguous
pixels or outliers, the output mass functions of the FCN
models trained with soft labels are more uniform than those
computed by FCN models trained without soft labels. As
a result, ambiguous pixels and outliers are more easily
assigned to setΩ . We can thus conclude that soft labels have
the potential to enhance novelty detection performance.

5 Conclusions

In this paper, we have presented a new approach based on
the combination of DS theory and FCN for image semantic
segmentation. In the proposed model, called evidential
fully convolutional network (E-FCN), an encoder-decoder
architecture first extracts pixel-wise feature maps from
an input image. A Dempster-Shafer layer then computes
mass functions at each pixel location based on distances
to prototypes. Finally, a utility layer performs semantic
segmentation based on pixel-wise mass functions. The
proposed model can be trained using a learning set with soft
labels in an end-to-end way.

The main finding of this study is that the proposed
combination of FCNs and ENNs makes it possible to
improve accuracy and calibration of FCN models by
assigning ambiguous pixels to multi-class sets, while
maintaining the good performance of FCNs in precise
segmentation tasks. The E-FCN model is able to select a set
of classes when the object representation does not allow us
to select a single class unambiguously, which easily leads
to incorrect decision-making in probabilistic FCNs. This
result provides a new direction to improve the performance
of FCN models for semantic segmentation. The learning
strategy using soft labels further improves the accuracy and
calibration of the FCN models. Additionally, the proposed
approach makes it possible to reject outliers together with
ambiguous pixels when the tolerance to imprecision is
between 0.7 and 0.9.

Future work will focus on two main aspects. First, we
will investigate multi-FCN-model information fusion for
semantic segmentation based on the definition of soft labels,
using an approach similar to that introduced in [36]. Other
advanced evidential classifiers, such as the contextual-
discounting evidential K-nearest neighbor [14] will also
be considered to improve the performance of the proposed
neural network architecture.
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