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Abstract
Depending on the application, one needs to either stabilize or destabilize the interfacial properties of an emulsion. An aspect 
of the dynamics that governs the stability of emulsions in general is the drainage time of the film that is formed when two 
drops collide. In this work, we study the effect that viscoelasticity of the matrix fluid has on this drainage time of two New-
tonian drops that perform a head-on collision under an applied macroscopic extensional rate. For the modeling of the viscoe-
lastic matrix material, the Giesekus model is chosen. A cylindrical coordinate system is applied with imposed axisymmetry 
and the resulting equations are solved using fully resolved numerical simulations employing a finite element discretization. 
Our results show that viscoelasticity reduces the drainage time, which is a combined effect of three different stages.

Keywords  Numerical simulation · Viscoelastic fluid · Head-on collision · Film drainage

1  Introduction

The dynamics of drop interaction in flow has been exten-
sively studied both experimentally (Orme 1997; Couder 
et al. 2005; Willis and Orme 2003) and theoretically (Egg-
ers et al. 1999; Janssen and Anderson 2011) due to their vital 
importance in a diverse spectrum of multiphase systems. In 
some cases, for example in food and pharmaceutical indus-
tries, it is desired that the emulsion is stable for extended 
periods of time; i.e., the size distribution of drops should 
not change over time due to flow (Kogan and Garti 2006). 
However, in other applications, for instance in oil extraction, 
an unstable emulsion is preferred since it makes it easier to 
separate the drop phase from the suspending medium.

Active and passive manipulation of non-Brownian parti-
cles in fluids has been a topic of interest in microfluidics for 
several years now. The recent review by Lu et al. discusses 

particle manipulations in non-Newtonian microfluidics for 
various passive manipulations, including focusing, separa-
tion, washing and stretching of particles (Lu et al. 2017). 
Despite practical advantages of passive manipulation of 
particles (Kang et al. 2009), for several applications more 
control is required and an active manipulation is desired. 
Researchers have used different actuation mechanisms to 
displace and transport rigid and deformable particles like 
electrostatics (den Toonder et al. 2008; Khatavkar et al. 
2007), magnetics (Zhang et al. 2019; Wang et al. 2013, 2015, 
2016) and light (van Oosten et al. 2009).

Similar to industrial processes, also microfluidic mul-
tiphase systems have complex fluids as their components 
(Utracki 1989). The collision of drops is a delicate process 
which can be influenced by many different factors, such as 
the flow field type, the position and shape of the drops, the 
interfacial and viscoelastic properties of the phases. Despite 
all the previous work done, both experimentally and theo-
retically, the coalescence of drops in viscoelastic materials 
is still not very well understood.

Investigating the head-on collision of two drops can 
provide information, such as the drainage time, which is 
the basis of coalescence. Changes in the microstructure 
of blends, induced by coalescence and breakup, influence 
the size distribution of the drops and hence determine the 
final properties (Tucker and Moldenaers 2002). Informa-
tion obtained from the evolution of the microstructure can 
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be used to derive models which characterize the droplet 
size and distribution macroscopically (Ferkl et al. 2016).

In this article, we investigate the effect of the viscoe-
lasticity on the drainage time using numerical simulations 
in a regime relevant for microfluidics. A cylindrical coor-
dinate system is used with imposed axisymmetry. For the 
modeling of the viscoelastic matrix material, the Giesekus 
model is used (Giesekus 1982). The Newtonian drops are 
suspended in the viscoelastic matrix and perform a head-
on collision under a macroscopically applied biaxial exten-
sional flow. The problem is discretized using the finite 
element method.

The structure of the article is as follows. In Sect. 2, we 
define the problem and present the mathematical model 
that will be used for the balance and constitutive equa-
tions. In Sect.  3, the employed finite element method 
is presented. In Sect. 4, we show the validation of our 
method together with the obtained results. Finally, in 
Sect. 5, our main conclusions are summarized.

2 � Problem definition

For the purpose of this work, two isolated drops having 
the same radius perform a head-on collision under biaxial 
extensional flow. The drops consist of a Newtonian fluid, 
whereas the matrix fluid is viscoelastic. To compute the 
viscoelastic stress, the Giesekus model is used. To reduce 
the computational cost, axisymmetry of the problem is 
assumed. The initial geometry of the colliding spherical 
drops is depicted in Fig. 1.

2.1 � Governing equations

Since we are considering drops in a microfluidic environment, 
we assume that inertia can be neglected and that the fluid is 
incompressible. As a result, the momentum and the mass bal-
ance for both the drop and the matrix reduce to

where u is the velocity vector and � the stress tensor. The 
stress tensor � is written as:

where p is the pressure, I is the identity tensor and � is the 
extra stress tensor. For the Newtonian drop, the extra stress 
tensor is given by

with �d the viscosity of the fluid in the drops and 
D = (�u + (�u)T )∕2 the symmetric part of the velocity 
gradient tensor. For the viscoelastic matrix fluid, there is a 
contribution from the Newtonian (solvent) part and a viscoe-
lastic contribution �p to the extra stress tensor:

where �s is the solvent viscosity. The viscoelastic extra stress 
�p is governed by the Giesekus constitutive model, given by

where c is the conformation tensor, � is the relaxation time, 
� is the mobility and 

▽

() is the upper convected derivative:

with D()∕Dt the material derivative. The polymer stress is 
given by

herein the polymer modulus is G = �p∕� , where �p is the 
polymeric viscosity. The zero-shear-rate viscosity of the 
matrix fluid is �0 = �s + �p.

2.2 � Boundary and initial conditions

In this section, we define the boundary and initial conditions. 
It is assumed that the drop interface can be described by a 
sharp interface. This leads to a jump of the stress tensor at 
the boundary between the drops and the matrix, which can 
be expressed as:

where the subscripts m and d indicate that the term is eval-
uated on the matrix and drop side, respectively, �  is the 

(1)−� ⋅ � = 0,

(2)� ⋅ u = 0,

(3)� = −pI + � ,

(4)� = 2�dD,

(5)� = 2�sD + �p,

(6)�
▽

c + c − I + �(c − I)2 = 0.

(7)
▽

() =
D()

Dt
− (∇u)T ⋅ () − () ⋅ ∇u,

(8)�p = G(c − I),

(9)� ⋅ n|m − � ⋅ n|d = ��n,
Fig. 1   A 3D representation of the initial geometry of two spherical 
drops suspended in a fluid in biaxial extensional flow. The dash-dot-
ted line represents the axis of rotational symmetry
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surface tension coefficient, n is the outwardly directed unit 
normal vector and � is the curvature defined as:

with �s = (I − nn) ⋅ � the surface gradient operator. Fur-
thermore, there is no slip between the matrix and the drop 
fluids:

On the outer boundaries �Ω1, �Ω2 and �Ω3 (see Fig. 2), a 
macroscopic biaxial extensional velocity field is imposed, 
which in the axisymmetric case is given by

where x is the position vector with (z, r) coordinates and 𝜖̇ 
is the extensional rate.

Due to axisymmetry, symmetry conditions on the 
z-axis at r = 0 are needed. This yields the following 
equation:

Boundary conditions at the inflow, i.e., boundaries �Ω1 and 
�Ω3 , for the conformation are needed. Assuming that the 
boundaries are sufficiently far away from the stagnation 
point and the drops, we compute the conformation tensor 
for a purely biaxial extensional flow without the presence 
of any drops and prescribe it as follows:

where ce(t𝜖̇) is the value of the conformation tensor for biax-
ial extensional flow without drops at time t𝜖̇ . Initial condi-
tions for the conformation tensor are needed also, for which 
a stress-free state will be assumed:

(10)� = �s ⋅ n,

(11)u|m = u|d.

(12)u(x) = 𝜖̇

(
−z,

r

2

)
,

(13)ur(z, r = 0) = 0.

(14)c𝜕Ω1
(t𝜖̇) = ce(t𝜖̇), c𝜕Ω3

(t𝜖̇) = ce(t𝜖̇),

(15)c(t𝜖̇ = 0) = I.

2.3 � Interface tracking

Since we are dealing with sharp interfaces, it is needed to 
formulate appropriate equations that can track the motion 
of the interface. An interface can be described by a moving 
curvilinear coordinate system given by

where � represents the curvilinear coordinate and x̄ is the 
mapping function that converts the curvilinear coordinates 
to spatial coordinates x . The velocity of the interface is 
given by

and follows the material velocity u

i.e., the interface moves in a Lagrangian way.

3 � Numerical description

To solve the mathematical model described in Sect. 2, the 
finite element method is used. The equations are solved on 
moving boundary-fitted meshes, where the movement of the 
nodes is coupled with the flow problem.

3.1 � Weak form

The weak form can be obtained by multiplying Eqs. (1) and 
(2) with test functions v, q : Find u, p such that

in both the Newtonian drops and the matrix fluid. Using 
partial integration, Gauss’ theorem, the interface condition 

(16)x = x̄(𝜉, t),

(17)ẋ =
𝜕x̄

𝜕t

||||𝜉

(18)ẋ = u,

(19)(v,−� ⋅ �) = 0 for all v,

(20)(q,� ⋅ u) = 0 for all q.

Fig. 2   Initial geometry of spher-
ical drops using a cylindrical 
coordinate system with axisym-
metry. The dash-dotted line 
indicates the symmetry axis
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Eq. (9) and the continuity of velocity Eq. (11), we obtain the 
following weak form: Find u and p such that

using appropriate spaces for u , p, v and q, where S = S1 ∪ S2 . 
Now valid in the whole domain where in the Newtonian 
drops � is given by Eq. (4) and in the matrix fluid by Eq. 
(5). During a single time step, the momentum and mass bal-
ance equations are solved first, where the polymer stress �p 
is obtained by using a semi-implicit scheme as proposed 
in D’Avino and Hulsen (2010). With the updated veloc-
ity, the evolution equation for the conformation tensor is 
then solved. The mesh consists of both constant and mov-
ing boundaries. That means that the fluid is described on a 
mobile grid, which moves in a non-Lagrangian way. Hence, 
it is essential to use the arbitrary Lagrange–Euler (ALE) 
formulation, where the material derivative is rewritten as

where the partial derivative with respect to time t is calcu-
lated at constant mesh coordinate xm and um is the mesh 
velocity. For stabilization, we use the SUPG technique 
(Brooks and Hughes 1982), and together with the log-con-
formation approach (Hulsen et al. 2005; Fattal and Kupfer-
man 2004), the equation for the evolution of the conforma-
tion tensor Eq. (6) in its weak form with test function d 
becomes: Find s such that

where s = log c , � is the SUPG parameter and um is the mesh 
velocity. Further information about the log-conformation 
formulation and the expression for the function g can be 
found in Hulsen et al. (2005).

3.2 � Discretization

The weak form is discretized using the finite element method 
employing a mesh of quadratic triangles. Quadratic inter-
polation (P2) for the velocity and position and linear inter-
polation (P1) for pressure and conformation are used. An 
additional Poisson equation is used for the movement of the 
mesh nodes which in its weak form using test function w 
reads: Find x such that

where �n is the gradient using the position at the beginning 
of each time step as a reference. The tracking of the inter-
face can be done by solving two separate problems, usually 
by first predicting the position of the interface in the new 

(21)((�v)T , �) − (� ⋅ v, p) = −(v,��n)S for all v,

(22)(q,� ⋅ u) = 0 for all q,

(23)
D()

Dt
=

�()

�t

||||xm
+ (u − um) ⋅ (),

(24)
(
d + �(u − um) ⋅ �d,

Ds

Dt
− g((�u)T , s)

)
for all d,

(25)((�nw)
T ,�nx) = 0 for all w,

time step and then solving the momentum and mass bal-
ance problem (Villone et al. 2014). In a decoupled approach, 
the time step would be limited by the mesh capillary time 
(Courant et al. 1967). That is why we choose to solve Eqs. 
(21), (22), (25), coupled with the Poisson problem which has 
the interface tracking Eq. (18) as a boundary condition. The 
implementation is similar as in Mitrias et al. (2017), but now 
the whole domain is perturbed. In this way, our scheme is 
not limited by the characteristic mesh size time limit.

Regarding the time discretization, a semi-implicit stress 
formulation is implemented. That is not necessary for the 
case that will be studied in this work since a nonzero solvent 
viscosity is present, but the model has been derived such that 
�s = 0 could be chosen. Thus, Eq. (6) using an explicit Euler 
scheme similar to D’Avino and Hulsen (2010) reads

where f (c) for the Giesekus model (Giesekus 1982) is given 
by

With Eq. (26), we can compute the viscoelastic stress tensor 
at the new time as

where �̂n+1
p

 is a prediction of the viscoelastic stress tensor 
and it is substituted in Eq. (21). This leads to the final system 
of equations

where all superscripts ()n+1 have been dropped to increase 
readability. Noticeably, Eqs. (29)–(32) form a nonlinear sys-
tem of equations. For that reason, the system is linearized 
with cn known and solved with the Newton–Raphson 
method. For the time discretization of the interface tracking, 

(26)
cn+1

�t
+ (un − un

m
) ⋅ �cn =

cn

�t
+ (�u)n,T ⋅ cn

+ cn ⋅ �un + f (cn),

(27)f (c) = −
c − I

�
−

�(c − I)2

�
.

(28)

�̂
n+1
p

= G𝛥t(−(un+1 − un+1
m

) ⋅ �cn

+ (�u)n+1,T ⋅ cn + cn ⋅ �un+1)

+ G(cn + 𝛥tf (cn) − I)

(29)

((�v)T , 2�sD) + ((�nv)
T ,G�t(−(u − um) ⋅ �nc

n

+ (�nu)
T ⋅ cn + cn ⋅ (�nu)) − (� ⋅ v, p) = −(v,��n)S

− ((�nv)
T ,G(cn + �tf (cn) − I)) for all v,

(30)(q,� ⋅ u) = 0 for all q,

(31)((�nw)
T ,�nx) = 0 for all w,

(32)
(
r,
3x − 4xn + xn−1

2�t
− u

)
= 0 for all r.
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a second-order time integration (BDF2) is used (Ascher and 
Petzold 1998). Furthermore, the mesh velocity um is com-
puted by a BDF2 formula and updated during iterations. 
Although a first-order scheme is used for the viscoelastic 
stress tensor in the momentum balance, the actual error is 
still O(�t2) . After un+1, pn+1, xn+1 have been obtained, sn+1 is 
computed from the discretized Eq. (24) using BDF2 and thus 
we can calculate �n+1

p
= G(exp sn+1 − I).

When the moving mesh becomes distorted, remeshing 
is performed. All the variables that need time integration, 
i.e., the position of the interfaces and conformation field at 
previous time steps, are projected onto the new mesh (Hu 
et al. 2001). To be able to compute the mesh velocity, the 
mesh coordinates at previous time steps are projected as well 
(Jaensson et al. 2015). The mesh is generated using Gmsh 
(Geuzaine and Remacle 2009).

The components of the conformation tensor form multi-
ple systems of equations with the same matrix but a vary-
ing right-hand side. We choose to solve these systems using 
a direct solver provided by the HSL library (HSL 2013), 
which allows for the reuse of the LU-decomposition (Lay 
and Stade 2005). The system of equations formed by the 
momentum balance, mass balance and Poisson equations 
can grow fast due to the refinement of the approaching drop 
interfaces. This system is solved using a GMRES iterative 
solver from the Sparskit library (Saad 2001), with a modi-
fied preconditioner as explained in Jaensson et al. (2018). 
While the mesh is moving, the connectivity of the nodes 
does not change until remeshing is needed and the structure 
of the system matrix remains the same. Thus, it is possible to 
reuse the same preconditioner for multiple time steps, which 
significantly reduces the computational time. To reduce the 
size of the preconditioner, the graph that represents the sys-
tem matrix is renumbered using MeTiS (Karypis and Kumar 
1998).

4 � Results

In the following sections, all the results will be presented in 
dimensionless form. There are several dimensionless groups 
that characterize different aspects of our problem, which are

where Wi is the Weissenberg number, Ca is the capillary 
number, D is the normalized initial drop interface distance d0 
with the drop diameter 2R, � is the ratio of the drop viscos-
ity and the zero-shear viscosity of the viscoelastic fluid, � 
is the ratio of the solvent viscosity and zero-shear viscosity 
of the viscoelastic fluid and � is the mobility parameter of 
the Giesekus model. For all the simulations that consist of 
a viscoelastic matrix fluid, the viscosity ratio � = 0.5 , the 
mobility parameter � = 0.2 and the viscosity ratio � = 1 will 
be fixed. The initial distance of the drop interfaces D = 3 is 
chosen such that there is enough time to build up viscoelastic 
stresses in the layer of fluid in between the drops. Note that 
these stresses require a scaled time of at least t𝜖̇ = Wi to 
develop. If the drops are initially placed close to each other, 
the role of viscoelastic effects would be insignificant. The 
size of the domain is 20 times the radius R both in axial and 
radial directions, so that the imposed boundary conditions 
for the conformation tensor do not affect the dynamics close 
to the drops. The schematic in Fig. 3 shows the interface dis-
tance at the center hcent and the minimum interface distance 
hmin of the drops. When studying the film drainage, these are 
the important parameters that govern the drainage dynamics.

4.1 � Convergence test

In order to verify our numerical model, spatial and time 
convergence is investigated. For the constant parameters, 
we choose Ca = 0.1 , Wi = 0.1 and D = 3. Five different 
meshes are used with a varying number of elements on the 

(33)
Wi = 𝜆𝜖̇, Ca =

𝜂0𝜖̇R

𝛤
, D =

d0

2R
,

𝛿 =
𝜂d

𝜂0
, 𝛽 =

𝜂s

𝜂0
, 𝛼,

Fig. 3   Three-dimensional 
representation of the two drops 
at the later stages of the colli-
sion process. The insert shows 
a schematic representation of 
the dimple shape of the drop 
interfaces, with the symmetry 
axis represented by the dash-
dotted line

hmin

hcent
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drop equator, ne = 40, 45, 60, 75 and 500. The correspond-
ing number of nodes for the different meshes can be found 
in Table 1. The relative error is defined as

where href
cent

(t𝜖̇) is the reference interface distance at time 
t𝜖̇ and hcent(t𝜖̇) the interface distance for the correspond-
ing ne at time t𝜖̇ . In Fig. 4, the error er at t𝜖̇ = 0.01 of the 
interface distance at the center of the drops for the cases 
of ne = 40, 45, 60 and 75 which is relative to the one with 
ne = 500 is plotted. It can be seen that the error con-
verges giving a maximum relative error of 10−7 . We now 
chose the number of elements on the drop equator to be 
ne = 60 , and we perform simulations with a varying time 
step. In Fig. 5, the relative error at t𝜖̇ = 0.1 of time steps 
𝛥t𝜖̇ = 10−3, 5 × 10−4, 2.5 × 10−4 and 10−4 relative to the case 
of a time step 𝛥t𝜖̇ = 10−6 is plotted. The numerical method 
shows convergence, and in the remainder of this article, we 
are going to use ne = 60 and 𝛥t𝜖̇ = 10−3 , which is a compro-
mise between accuracy and numerical efficiency.

(34)er =
||||
||||
hcent(t𝜖̇) − href

cent
(t𝜖̇)

hrefcent(t𝜖̇)

||||
||||
,

To be able to correctly capture the flow in the thin layer 
that forms between the drop interfaces, the drop inter-
faces are refined so that there are enough elements in the 
fluid layer. In Figs. 6, 7, 8, the dimensionless first-nor-
mal stress difference of the polymer stress, N1∕𝜎̃ , where 
N1 = �p,11 − �p,22 , is shown using 4, 8 and 16 elements 
between the drops. Here, 𝜎̃ = 𝜂(𝛾̇eff)𝛾̇eff is the total shear 
stress, where 𝜂(𝛾̇eff) is the steady-state viscosity function of 
the viscoelastic model. Furthermore, the effective strain rate 
may be expressed as the magnitude of the rate of deforma-
tion tensor 𝛾̇eff =

√
2D ∶ D . Eight elements are shown to be 

enough to accurately describe the polymer stress in the thin 
fluid layer.

4.2 � Validation

We commence by validating our code by comparing to results 
obtained using the boundary integral method (BIM) of Janssen 

Table 1   Number of nodes Nnodes for meshes with different number of 
elements on the sphere equator ne

ne 40 45 60 75 500
Nnodes 1233 1530 2271 3041 134,561

10−8

10−7

10−6

101 102

1

3e

n

Fig. 4   Relative error er of the hcent using different meshes with 
the number of elements on the equator of the drops being 
ne = 40, 45, 60, 75 at t𝜖̇ = 0.01 . The dimensionless parameters are 
Ca = 0.1 , Wi = 0.1 , and D = 3. As a reference value, we use the 
result obtained from the case of ne = 500

10−6

10−5

10−4

10−5 10−4 10−3 10−2

1

1
e

∆tε̇

Fig. 5   Relative error er of the hcent using different time 
steps at t𝜖̇ = 0.1 . The error is plotted for the cases of 
𝛥t𝜖̇ = 10−3, 5 × 10−4, 2.5 × 10−4, 10−4 relative to the one obtained 
with 𝛥t𝜖̇ = 10−6 . The dimensionless parameters are Ca = 0.1 , 
Wi = 0.1 , and D = 3

−1

−0.75

−0.5
N1/σ̃

Fig. 6   Plotting the ratio of N1∕𝜎̃ while using four elements between 
the drop interfaces at time t𝜖̇ = 0.3 . The dimensionless parameters are 
Ca = 0.1 , Wi = 0.1 , and D = 3
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et al. (2006, 2008, 2011), where both the matrix and the drop 
consist of a Newtonian fluid. The parameters in this case are 
Ca = 0.05 , � = 1 and D = 0.5. In Fig. 9, it can be seen that 
there is a good agreement between our model and that of 

Janssen et al. (2006). The dimple shape as depicted in Fig. 3 
is observed only at the later stages of the process. From this 
comparison, we can also conclude that our computational 
domain is sufficiently large, because of the good agreement 
with the boundary integral method which assumes a velocity 
field imposed at infinity.

4.3 � Effect of viscoelasticity on the film drainage

Although there is limited literature regarding the film drainage 
during head-on collision of drops suspended in a viscoelastic 
matrix, it has been reported that the viscoelasticity promotes 
coalescence; i.e., it speeds up the film drainage (Yue et al. 
2005). Yue et al. used a two-dimensional implementation of 
the diffuse-interface formulation to study the effect of viscoe-
lasticity on the film drainage. As they mentioned, the observed 
speedup is a result of two stages with different effects. Initially, 
the viscoelastic stresses are negligible and thus the drops are 
allowed to move faster than the Newtonian case. In the sec-
ond stage, the viscoelastic stresses are fully developed and 
the movement of the drops slows down. The first stage domi-
nates the dynamics, and it is the one that is responsible for the 
speedup.

In our simulations, apart from the first stage that contributes 
to the speedup, we also observed that the complex nature of 
the flow between the two drops can lead to faster drainage 
depending on the Ca number. Noticeably, a third stage that 
contributes to the speedup can be identified, when the drop 
interfaces are close to each other. At that moment, the local 
strain rates are minor and thus the viscoelastic stresses of the 
fluid inside the film layer are small. To better understand the 
dynamics during this process, in Fig. 10 we plot the viscoelas-
tic stress magnitude 

√
�p ∶ �p for the case of Ca = 0.05 and 

Wi = 0.2 at different times. Initially, in Fig. 10a, it can be seen 
that at time t𝜖̇ = 0.3 the stresses are low, since we start from 
a stress-free condition. When the drops approach each other, 
the stresses start to build up as it can be seen in Fig. 10b at 
time t𝜖̇ = 1.5 . Finally, in the last stage where the drops start to 
slow down, the viscoelastic stresses in the thin layer between 
the drop interfaces relax as shown in Fig. 10c.

Thus, the dynamics between the drops are governed not 
only by the global Weissenberg number which is defined by 
the macroscopic imposed strain rates, but also by the local 
strain rates that the moving interfaces enforce. We therefore 
define a local Weissenberg number as:

herein 𝜖̇cent is the local strain rate imposed by the drop inter-
faces given by

(35)Wicent = 𝜆𝜖̇cent,

(36)𝜖̇cent =
ucent

hcent
,

−1

−0.75

−0.5
N1/σ̃

Fig. 7   Plotting the ratio of N1∕𝜎̃ while using eight elements between 
the drop interfaces at time t𝜖̇ = 0.3 . The dimensionless parameters are 
Ca = 0.1 , Wi = 0.1 , and D = 3
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−0.75

−0.5
N1/σ̃

Fig. 8   Plotting the ratio of N1∕𝜎̃ while using 16 elements between 
the drop interfaces at time t𝜖̇ = 0.3 . The dimensionless parameters are 
Ca = 0.1 , Wi = 0.1 , and D = 3
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Fig. 9   Comparison of the hcent and hmin with results obtained using 
the boundary integral method (Janssen et al. 2006). The dimension-
less parameters are Ca = 0.05 and D = 0.5
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where ucent is the magnitude of the velocity of the approach-
ing interfaces at the centerline. In Fig. 11, the increase in 
the Wicent is plotted over time, for the case of Wi = 0.4 and 
a range of Ca . It can be seen that the local Weissenberg 
number Wicent is increasing, as the drops are approaching 
each other. A maximum value is found for each Ca which 
increases with decreasing Ca . This is expected since stiffer 
drops, i.e., small Ca , deform less and thus impose higher 
strains on the matrix fluid. For the case of the smallest 
Ca = 0.005 that we studied, the maximum value of Wicent is 
more than ten times larger than the macroscopically applied 
strain rate. Finally, at the last stage where the drops slow 
down, the value of Wicent significantly decreases.

The speedup of the film drainage can be also identified 
by looking at the local Wicent that the drop interfaces impose 
for different Wi numbers and a constant Ca . As shown in 
Fig. 12, for Ca = 0.1 the scaled Wicent with the global Wi 
increases with increasing Wi , meaning that the drop inter-
faces move faster toward each other and thus enforcing 
higher local strains. The small bump that is observed after 
t𝜖̇ = 3.75 is related to the drop interfaces stop moving toward 
each other locally and start to divert, forming the dimple 
shape as shown in Fig. 3. Looking at the velocity profiles in 
the thin film between the drops, it can be seen that higher Wi 
leads to larger velocities as expected (Fig. 13).

The effect that viscoelasticity has on the drainage 
time is summarized in Figs. 14, 15, 16, 17, 18. For drops 
with a large Ca , this effect is significant, as it can be 
seen in Fig. 14 for the case of Ca = 0.2 , but diminishes 
with decreasing Ca . For values of Ca < 0.05 , we could 

(a)

0.1

1.5

3

√
τp : τp

(b)

(c)

Fig. 10   Viscoelastic stress magnitude for Ca = 0.05 and Wi = 0.2 
at a t𝜖̇ = 0.3 , b t𝜖̇ = 1.5 and c t𝜖̇ = 3.0 with the insert showing the 
region inside the red rectangle

Fig. 11   Local Wicent as a function of time for a range of Ca and 
Wi = 0.4 . Insert shows a zoomed-in section for 1 < t𝜖̇ < 10
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Fig. 12   Scaled local Wicent with the global Wi as a function of time 
for a range of Wi and Ca = 0.1
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Fig. 13   Velocity profiles for the draining flow on the line y = 0.015 at 
t𝜖̇ = 2.5 for a range of Wi and Ca = 0.05
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not observe any considerable differences as shown in 
Figs. 17 and 18. It is worth noting that for the cases where 
Ca < 0.05 , due to the increasing computational costs, 
we could not reach the point where the dimple shape of 
the interface starts to form and the interface distances 
might start to differ. One of the reasons why the viscoe-
lastic effect gets smaller with decreasing Ca is the dras-
tic increase in terms of Wicent as shown in Fig. 11. This 
increase would also lead to increased viscoelastic stresses 
and thus contribute to the aforementioned slowdown of 
the film drainage for higher Wi . Similar effects have been 
reported in the literature by Dreher et al. (1999) where 
they presented experimental results for different sizes of 
droplets showing that larger drops reduce drainage time, 
whereas smaller drops had a slower film drainage than the 
Newtonian case.

10−4

10−3

10−2

10−1

100

10−3 10−2 10−1 100 101 102

h

h

h
d0

tε̇

Fig. 14   Scaled interface distance h∕d0 as a function of time for a 
range of Wi and Ca = 0.2
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Fig. 15   Scaled interface distance h∕d0 as a function of time for a 
range of Wi and Ca = 0.1
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Fig. 16   Scaled interface distance h∕d0 as a function of time for a 
range of Wi and Ca = 0.05
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Fig. 17   Scaled interface distance h∕d0 as a function of time for a 
range of Wi and Ca = 0.01
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Fig. 18   Scaled interface distance h∕d0 as a function of time for a 
range of Wi and Ca = 0.005
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5 � Conclusions

We have presented direct numerical simulation of New-
tonian drops in viscoelastic matrices under biaxial 
extensional flow using the Giesekus model and imposed 
axisymmetry. The model was validated for the case of a 
Newtonian matrix with the implementation of Janssen 
et al. (2006). The influence of viscoelasticity on the drain-
age time was investigated for a range of Wi numbers to 
study the effect of viscoelasticity. It was shown that vis-
coelasticity reduces the drainage time, which is a result 
of three different stages. In the first stage, the viscoelastic 
stresses are negligible and thus the drops are moving faster 
than the Newtonian case. During the second stage, the 
stresses start to build up, but for Ca numbers above 0.01 
they were not sufficient in order to slow down the drops. 
On the contrary, the drops move faster with increasing Wi 
number. For small Ca, there was no significant effect of 
viscoelasticity up to the interface distances that we were 
able to study. Finally, in the third stage, when the drop 
interfaces are close to each other, the local strain rates are 
small and thus the viscoelastic stresses of the fluid inside 
the film layer are negligible. It is worth noting that for 
smaller Ca numbers and interface distances than the ones 
presented in this work, different effects might be present.
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