
Vol.:(0123456789)1 3

Microfluidics and Nanofluidics (2019) 23:89 
https://doi.org/10.1007/s10404-019-2253-7

RESEARCH PAPER

Numerical simulations of the motion of ellipsoids in planar Couette 
flow of Giesekus viscoelastic fluids

Yelong Wang1 · Zhaosheng Yu1   · Jianzhong Lin1

Received: 31 January 2019 / Accepted: 18 May 2019 / Published online: 11 June 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The motion of neutrally buoyant ellipsoids in a planar Couette flow of Giesekus viscoelastic fluids between two narrowly set 
plates is numerically simulated with a fictitious domain method. The aspect ratio of the ellipsoid is 4 (i.e., prolate spheroids) 
and the Deborah number (De) ranges from 0 to 4.0. For a single ellipsoid initially placed in the mid-plane between the two 
plates, the ellipsoid major axis rotates around the vorticity axis in a kayaking mode at relatively low Deborah numbers, and 
is tilted in the flow-vorticity plane when the Deborah number exceeds a critical value, with the orientation being closer to 
the flow direction for a larger De. For a single ellipsoid initially not placed in the mid-plane, the ellipsoid undergoes lateral 
migration toward the nearby wall, and it is interesting that the ellipsoid turns its orientation to the vorticity axis at relatively 
small De and a direction close to the vorticity axis at large De (above 3.0), in contrast to the ellipsoid placed in the mid-
plane without lateral migration, whose terminal orientation exhibits a kayaking motion at relatively small De and is close 
to the flow direction for De > 3. As a result, for the multiple-ellipsoid case, there exists a transient stage where the average 
orientation of the ellipsoids turns toward the vorticity axis for all nonzero Deborah numbers studied, and the orientation 
close to the vorticity axis can be often observed for the isolated ellipsoids. Both the particle interactions and the wall effect 
promote the ellipsoids to align with the flow direction. Particle aggregation and the dynamic aligning structures are observed 
at large Deborah numbers.
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1  Introduction

The motion of particles in a fluid is a topic of extensive stud-
ies. In many applications particles are non-spherical, like 
ellipsoids or cylinders. The motion of a non-spherical parti-
cle in fluids is complicated because the particle rotation or 
orientation is strongly coupled with its translational motion 
due to the shape anisotropy. The dynamics becomes even 
more complex when the suspending fluid is a non-Newtonian 

fluid. The orientation distribution of non-spherical particles 
influences significantly the final properties of the product. 
Understanding the dynamics of the orientation distribution 
of non-spherical particles suspended in non-Newtonian flu-
ids is important to the production process optimization and 
the novel technology development for particle manipulation.

For the motion of an ellipsoidal particle in a Newtonian 
fluid, a closed trajectory called the Jeffery orbit (Jeffery 
1922) was found for the orientation under the condition of 
Stokes flow. The orientation of a spheroid in Couette flow 
at moderately high Reynolds numbers was studied by vari-
ous groups (e.g., Qi and Luo 2003; Yu et al. 2007; Huang 
et al. 2012; Rosén et al. 2015), and it was observed that the 
orientation of the spheroid experienced the transitions, as 
the Reynolds number was increased. The motion of a single 
neutrally suspending ellipsoid in a three-dimensional pipe 
was studied by Karnis et al. (1966), Pan et al. (2008) and 
Huang and Lu (2017).

The dynamics of non-spherical particles in non-Newto-
nian fluids has attracted much attention over the past few 
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decades (D’Avino and Maffettone 2015). There were many 
works on the motion of ellipsoidal particles in the uncon-
fined shear flow without particle side migration (Saffman 
1956; Gauthier et al. 1971; Bartram et al. 1975). It was found 
that the rotation of ellipsoids was slower than that in Newto-
nian fluids at moderate to small shear rates, and the rod-like 
particles drifted to a log-rolling orbit gradually, while the 
disk-like particles drifted to a tumbling orbit with the axis 
of revolution lying in the flow-gradient plane and rotating 
(Bartram et al. 1975; Leal 1975; Harlen and Koch 1993). 
It was experimentally validated that this conclusion was 
still valid in simple shear flow of semi-dilute fiber suspen-
sion (Iso et al. 1996a) or carbon nanotubes in polymer melt 
(Hobbie et al. 2003). Brunn (1980) used the second-order 
fluid model to analyze the migration of dumbbell and three-
dumbbell particles in the simple shear flow field. Cohen 
et al. (1987) considered the influence of Brownian motion 
and found that the orientation distribution function for dilute 
suspensions had bimodal. Particles either remained on Jef-
fery orbits or ended up in a log-rolling state. A model of 
short fiber suspensions in second-order fluids was proposed 
by Borzacchiello et al. (2016). Férec et al. (2017) derived 
a complete rheological constitutive equation for dilute and 
semi-dilute slender rod suspensions in a viscoelastic fluid 
with low elasticity.

For higher shear or elastic effects, the direction of the 
major axis of the prolate ellipsoid or fibers tended to change 
from the vorticity direction to the flow direction (Bartram 
et al. 1975; Iso et al. 1996b). The principal axis of the pro-
late ellipsoid could stabilize in some directions between 
the vorticity direction and the flow direction (Johnson et al. 
1990). The direction of the major axis of a disk with an 
aspect ratio of 0.68 was found to keep rotating in different 
equilibrium orbits at moderate shear rates in Couette flow of 
2.5% polyacrylamide in water solution (Bartram et al. 1975). 
The orientation of a prolate ellipsoidal particle in viscoelas-
tic shear flow field without inertial effect was investigated 
numerically by D’Avino et al. (2014). They identified four 
different regimes, depending on the Deborah number: the 
particle major axis is drifted toward the vorticity axis (i.e., 
log-rolling) at relatively low De (region I); the major axis is 
tilted in the flow-vorticity plane, with the orientation closer 
to the flow direction for a higher De (region II); both tilted 
and flow alignment orientations exist at the same De (region 
III with bistability scenario), and only alignment along the 
flow direction is stable at high De (region IV). The rheology 
of a dilute viscoelastic suspension of spheroids subjected to 
unconfined shear flow was studied numerically by D’Avino 
et al. (2015), who adopted two viscoelastic constitutive equa-
tions, i.e., the Giesekus and the Phan-Thien–Tanner (PTT) 
models, to examine the effects of the suspending fluid rhe-
ology. Their results indicated that for a spheroid suspended 
in the PTT fluid for the Deborah number ranging from 0 to 

4, only first two regimes were identified, i.e., the log-rolling 
motion (region I), and the tilted orientation (region II). The 
flow-induced orientation of spheroidal particles in viscoe-
lastic fluids covering a wide range of rotational Peclet and 
Weissenberg numbers was experimentally studied by Gunes 
et al. (2008), and the particles were observed to be spinning 
in Jeffery orbits, a ‘log-rolling’ state, reorienting in the flow 
direction, as the shear rate increased.

Numerous works have been devoted to the particle 
dynamics in the viscoelastic flows with wall confinement 
(D’Avino et al. 2017;  Lu et al. 2017). The lateral motion of a 
circular particle in viscoelastic Couette and Poiseuille flows 
was studied by Huang et al. (1997), and it was found that 
the shear-thinning enhanced the migration toward the wall. 
The motion of a particle in the Giesekus viscoelastic Couette 
flow was simulated in two-dimensional and three-dimen-
sional cases, respectively, and the particle lateral migra-
tion toward the wall was revealed (D’Avino et al. 2010a, 
b), which was later confirmed experimentally (Caserta et al. 
2010). The effects of particle surface slip and wall slip on 
the dynamics of a spherical particle in Newtonian and vis-
coelastic fluids subjected to shear and Poiseuille flows were 
studied by Trofa et al. (2016a, b). The lateral migration of 
a neutrally buoyant spherical particle in a pressure-driven 
rectangular-shaped channel flow of Giesekus viscoelastic 
fluids was numerically investigated by Wang et al. (2018). 
Lin et al. (2018) examined the effects of Stokes number, 
Weissenberg number, particle aspect ratio and particle-to-
fluid density ratio on the mixing and orientation distribu-
tions of cylindrical particles in a mixing layer of an Oldroyd-
B fluid. A fractionation technique for non-Brownian rod-like 
particle suspensions based on the control of the threshold for 
motion in a yield stress fluid was explored by Madani et al. 
(2010). D’Avino et al. (2019) investigated the dynamics of 
a spheroidal particle with an aspect ratio of 2 suspended in 
a viscoelastic, shear-thinning liquid flowing in a wide-slit 
pressure-driven micro-channel at low and moderate Weis-
senberg numbers, and observed that the particle always 
tended to align along the flow direction while migrating 
toward the center-plane of the channel.

The chaining of particles in non-Newtonian oscillating 
shear flow was early studied by Michele et al. (1977). The 
formed ‘chains’ were found to be longer, as the number of 
inversion cycles of the plates and the shear rate increased. 
The chaining of particles in shear-thinning viscoelastic 
fluids was studied by Won and Kim (2004) and Scirocco 
et al. (2004). The shear-thinning was regarded as a condi-
tion for particle aggregation. No alignment was observed 
in highly elastic Boger fluids without shear-thinning effect 
(Scirocco et al. 2004). Necklaces of particles aligned in 
the flow direction were observed, while the role of parti-
cle migration was found to be important (Pasquino et al. 
2010). The degree of alignment increased with increasing 
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shear rate and particle size and with decreasing gap. Parti-
cles migrated toward the plates, where the particles assem-
bled and aligned in strings in the flow direction. For the 
small particles, the formation of particle doublets or short 
strings along the vorticity direction was observed at low 
shear rates, which flipped to the flow direction and grew 
into longer strings at higher shear rates (Pasquino et al. 
2010). Pasquino et al. (2013) investigated experimentally 
the microstructure formation of dilute sphere suspensions 
in a viscoelastic fluid by optical microscopy techniques at 
volume fractions ranging between 0.1 and 1.0%, and the 
results showed that the particle strings grew faster and 
longer, as the shear rate or the particle volume fraction 
increased. The migration and chaining of non-colloidal 
spheres in a worm-like micellar, viscoelastic solution in 
shear flow were studied experimentally and by 2D numeri-
cal simulations (Pasquino et al. 2014). Their experimental 
results showed the formation of particle chains in the bulk 
region, along with migration of a considerable fraction 
of spheres to the walls. Numerical simulations with the 
Giesekus viscoelastic constitutive equation reproduced 
the same phenomena observed experimentally, both in 
terms of fast particle migration to the wall and bulk chain 
stability. No alignment was found in simulations with a 
constant-viscosity, elastic fluid (Oldroyd-B model), in 
agreement with previous experimental results with Boger 
fluids of Scirocco et al. (2004). Alignment and segrega-
tion of bidisperse colloids in a shear-thinning viscoelas-
tic fluid under shear flow was numerically investigated 
by de Oliveira et al. (2013). When the distance between 
the plates was much larger than the of the particle diam-
eter, the large and small particles were chained separately, 
unlike a narrow plate system, where the large and small 
particles were chained together (Lyon et al. 2001). Jaens-
son et al. (2016) presented for the first time 3D direct 
numerical simulations of the alignment of two and three 
rigid, non-Brownian spherical particles in a viscoelastic 
shear flow, and showed that alignment was mainly gov-
erned by the value of the elasticity parameter S, defined as 
half of the ratio between the first normal stress difference 
and shear stress of the suspending fluid. The experimental 
results of Gunes et al. (2008) indicated that it was more 
difficult for the prolate spheroids to form aggregates in the 
shear flow of viscoelastic fluids, compared to the spherical 
particles.

In the present study, the motion of spheroids in a Cou-
ette flow of Giesekus viscoelastic fluids at low Reynolds 
numbers is examined with direct numerical simulations. 
In Sect. 2, the fictitious domain method used, the colli-
sion model and the simulation set-up are described. In 
Sect. 3, the results on a single spheroid with its center 
fixed in the mid-plane without migration, a single spheroid 
released at an off-center position with migration, and the 

multiple-particles are reported and discussed. The con-
cluding remarks are given in the final section.

2 � Numerical model

2.1 � Fictitious domain method

The direct-forcing fictitious domain (DF/FD) method (Yu 
and Shao 2007) is employed to simulate the motion of 
ellipsoids in Couette flow. This method is an improved 
version of the earlier distributed-Lagrange-multiplier/
fictitious domain (DLM/FD) code (Yu et al. 2002, 2006; 
Yu and Wachs 2007) which was originally developed 
by Glowinski et al. (1999). We only briefly describe the 
method used in the following, and the reader is referred 
to Yu and Shao (2007) for further details of the method. 
Let Ω the entire domain including interior and exterior of 
the solid body and P(t) represent the solid domain. The 
fluid density is ρf. The ellipsoidal particle density, vol-
ume, moment of inertia, translational velocity, and angular 
velocity are ρs, Vp, J, U and ωs, respectively. Suppose that 
the fluid solvent viscosity and polymer viscosity are ηs and 
ηp, respectively. By introducing the following scales for 
the nondimensionalization: H for length, Uc for velocity, 
H/Uc for time, ρfUc

2 for the pressure, and ρfUc
2/H for the 

pseudo body force, the dimensionless FD formulation for 
an incompressible Giesekus viscoelastic fluid suspended 
with neutrally buoyant ellipsoids comprises the following 
three parts:

a.	 Continuity equation

b.	 Combined momentum equations

c.	 Giesekus constitutive equation

(1)∇ ⋅ � = 0 in Ω

(2)
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In the above equations, u represents the fluid velocity, p 
the fluid pressure, f the Lagrange multiplier that is defined 
in the solid domain P(t), r the position vector with respect to 
the mass center of the particle, ρr the particle–fluid density 
ratio defined by ρr = ρs/ρf, Re the Reynolds number defined 
by Re = ρfUcH/η0 (η0 being the total zero shear-rate viscos-
ity of the fluid η0 = ηs + ηp), V*

p the dimensionless particle 
volume define by V*

p = Vp/H3, J* the dimensionless moment 
of inertia defined by J* = J/ρsH5, ηr = ηs/η0, De the Deborah 
number defined as De = λUc/H (λ being the fluid relaxation 
time), B the polymer configuration tensor which is related to 
the polymer stress tensor τ via τ = ηp(B − I)/λ and α a param-
eter in the Giesekus model, which reduces to the Oldroyd-B 
model for α = 0.

A fractional-step time scheme is used to decouple sys-
tems (1)–(6) into the following three sub-problems.

a.	 Fluid sub-problem for u* and p

	 

where � = −� ⋅ ∇� + [(1 − �r)∕ReDe]∇ ⋅ � . This sub-
problem is essentially the solution of the Navier–Stokes 
equation. An efficient finite-difference-based projec-
tion method on a homogeneous half-staggered grid is 
employed (Yu and Shao 2007). All spatial derivatives 
are discretized with the second-order central difference 
scheme.

b.	 Particle sub-problem for �n+1 , �n+1
s

Note that the above equations have been reformulated 
so that all the right-hand side terms are known quanti-
ties and consequently the particle velocities �n+1 , �n+1

s
 are 

obtained without iteration. Then, the Lagrange multipliers 
defined at the Lagrangian nodes are determined from:

Finally, the fluid velocities �n+1 at the Eulerian nodes 
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In the above manipulations, the tri-linear function is 
used to transfer the fluid velocity from the Eulerian nodes 
to the Lagrangian nodes, and distribute the pseudo body 
force from the Lagrangian nodes to the Eulerian nodes.

The orientation of the ellipsoids is calculated using the 
quaternions. Quaternions are real numbers (q1, q2, q3, q4). 
The time-evolution of the quaternions is related to the angular 
velocity ωs:

The transform matrix A from the ellipsoid’s body coordi-
nate frame to the space-fixed coordinate frame is:

c.	 Constitutive equation sub-problem for B

un+1 in the above equation has been obtained from the fluid 
sub-problem. For simplicity, only the first-order time scheme 
is used for the constitutive equation. For the spatial schemes, 
the convective term is discretized with a third-order upwind-
ing MUSCL scheme (Leer 1979) and the velocity gradient is 
discretized with the central difference scheme.

2.2 � Collision strategy

A particle–particle collision model is required to prevent the 
mutual penetration of particles. A discrete element model 
(DEM) is used to deal with collision. Our collision model for 
the spheroids is obtained from the modification of DEM for 
the spherical particle. In the following, we first describe the 
collision model for the spheres. The basic idea of DEM is to 
simulate the interactions between particles using springs, vis-
cous pots and other elements, taking into account the normal 
and tangential effects between particles (Crowe et al. 2011). 
For spherical particles, the normal and tangential forces are 
as follows:

(12)�
n+1

= �
∗
+ Δt

(

�
n+1

− �
n
)

(13)

⎛

⎜

⎜

⎜

⎜

⎝

q̇1

q̇2

q̇3

q̇4

⎞

⎟

⎟

⎟

⎟

⎠

=
1

2

⎛

⎜

⎜

⎜

⎝

q4 −q3 −q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝜔sx

𝜔sy

𝜔sz

0

⎞

⎟

⎟

⎟

⎟

⎠

(14)A = 2

⎛

⎜

⎜

⎝

q2
1
+ q2

4
− 1∕2 q1q2 + q3q4 q1q3 − q2q4

q1q2 − q3q4 q2
2
+ q2

4
− 1∕2 q2q3 + q1q4

q1q3 + q2q4 q2q3 − q1q4 q2
3
+ q2

4
− 1∕2

⎞

⎟

⎟

⎠

(15)

�n+1 − �n

Δt
+ �

n+1
⋅ ∇�

n
−
(

∇�
n+1

)T

⋅ �
n
− �

n
⋅ ∇�

n+1

+
�

De
(�

n
− �)

2
+

�n+1 − �

De
= 0

(16)�n =
(

−kn�
3∕2
n

− �n� ⋅ �
)

�



Microfluidics and Nanofluidics (2019) 23:89	

1 3

Page 5 of 16  89

n is the unit normal vector of the action. Fn, δn, kn, ηn are 
the normal force acting on particle 1, the normal overlap 
distance, the normal spring coefficient and the normal vis-
cous pot coefficient are, respectively applied, where Ft, δt, 
kt, ηt are the corresponding tangent vectors. G is the relative 
velocity of two particle centers of mass; vector Gct is the slip 
velocity, which is defined as follows:

r1, r2 represent the radii of two particle, and ωs1 and ωs2 are 
angular velocities of two particle. The normal and tangen-
tial forces are assumed to satisfy the friction theorem. The 
friction coefficient is 0.3 for the collision between particles 
and 0.2 between particles and walls, respectively. The spring 
coefficient is given by Hertzian contact theory:

where E is Young’s modulus and σ is the Poisson ratio. The 
coefficients kt is given by Mindlin’s theory:

where G is the shear modulus of particles, which is related to 
Young’s modulus and Poisson’s ratio of particles: G =

E

2(1+�)
 . 

In the above equations, �n = 2
√

Mkn �t = 2
√

Mkt . M is the 
mass of the particles.

For ellipsoids, we assume that collision is activated 
when the distance between the surfaces of two spheroids 
is smaller than a critical value dc = h , where h is the mesh 
spacing used. We adopt an efficient iterative method pro-
posed by Lin and Han (2002) to determine the positions 
of two points of shortest distance between two spheroids 
and then take the connector of these two points as the 
normal direction. The radii of spherical particles in the 
corresponding formula are replaced by the equivalent 
radius re of ellipsoidal particles. The equivalent radius of 
an ellipsoidal particle is taken as the average of the radii of 
the three principal axes of an ellipsoid. Young’s modulus 
and Poisson’s ratio are taken as E = 3 × 104 and � = 0.33 . 
The time step of discrete element model is Δt∕10 , where 
Δt is the time step for the solution of the flow.

The purpose of the collision model is to prevent the 
particle mutual penetration. DEM allows slight penetra-
tion between particles, but this does not cause any problem 
both physically (slight penetration means particle defor-
mation) and numerically for our FD method. The particle 
motion is mainly dominated by the hydrodynamic force, 
rather than the collision.

(17)�t = −kt�t − �t�ct

(18)�ct = � − (� ⋅ �)� + r1�s1 × � + r2�s2 × �

(19)kn =
4

3

(

1 − �2
i

Ei

+

1 − �2
j

Ej

)−1
(

r1 + r2

r1r2

)−1∕2

(20)kt = 8

(

2 − �i

Gi

+
2 − �j

Gj

)−1(
r1 + r2

r1r2

)−1∕2

�1∕2
n

2.3 � Simulation setup

The physical model studied is shown in Fig. 1. The upper 
and lower walls are flat plates with opposite velocity Uc/2. 
The distance between two plates is H. The computational 
domain is a cubic cell [0, H] × [− H/2, H/2] × [0, H]. The 
periodic boundary conditions are imposed in the directions 
of flow (x) and vorticity (z). The semi-major axis of the 
ellipsoid is a = H/6, the semi-minor axis is b = H/24, and 
the aspect ratio is Ar = a/b = 4. We take Uc and H as the 
characteristic velocity and length, respectively, thus the 
time is scaled as the inverse of the shear rate.

The ratio of the length of ellipsoid major axis to the 
distance between the two plates is defined as the blockage 

Z

Uc/2

H

Y

X
O

Uc/2

p

p

p’

θ

φ
a

b b

Fig. 1   Schematic diagram of a prolate ellipsoid suspended in planar 
Couette flow

Fig. 2   Orbits described by the orientation vector for the ellipsoid 
(green line) for De = 1.0 (a1, a2), De = 2.7 (b1, b2). The initial orien-
tation vector for the left two panels is (0, 0.31, 0.95), while the initial 
orientation vector for the right two panels is (0, 0.95, 0.31). The black 
vector represents the terminal orientation vector for the ellipsoid 
(color figure online)
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ratio, β = 2a/H = 1/3. The number of the ellipsoids in the 
cubic cell is denoted by Np. The Reynolds number based 
on Uc and H is set to be Re = 0.5, as an approximation 
to the Stokes flow. Note that the particle Reynolds num-
ber measuring the fluid inertial effect on the particle in a 
shear flow is Rep = 𝜌f (2a)

2𝛾̇∕𝜂0 = Re(2a∕H)2 ≈ 0.055 . It 
was shown that a prolate followed the Jeffery orbit well 
at Rep = 0.5 (Yu et al. 2007). Therefore, the fluid inertial 
effect is expected to be negligibly small for Re = 0.5. The 
mesh size is h = H/128, and the time step is Δt = 5 × 10−4. 
The computational cost is high due to millions of time steps 
required, and it typically took several months CPU time to 
run a case. For the Giesekus model used, the parameters 
are α = 0.2, and ηr = 0.091, following D’Avino et al. (2014).

3 � Results and discussion

The motion of neutrally suspended ellipsoids with the aspect 
ratio Ar = 4 in planar Couette flow of Giesekus viscoelastic 
fluid is simulated for Np = 1, 18, 54 respectively. In the fol-
lowing, (xp, yp, zp) is used to represent the coordinates of 
an ellipsoid center, and (px, py, pz) is used to represent the 
ellipsoid orientation vector .

3.1 � Motion of a single ellipsoid

a.	 Initially placed in the mid-plane between the two plates

The motion of a single ellipsoid initially placed in the 
mid-plane between the two plates is first simulated. Due to 

the geometric symmetry and the zero velocity of the flow 
field in the mid-plane, the position of the ellipsoid remains 
unchanged.

For the Newtonian fluid at De = 0, the ellipsoid rotates 
continuously in the shear flow along the Jeffery orbit (Jef-
fery 1922). At De = 1, the orientation of the ellipsoid first 
drifts toward the vorticity direction, but it will not reach 
the log-rolling mode, instead, its stable mode is a kayaking 
motion, as shown in Fig. 2a. As De is increased beyond 
a critical value Dec (1.8 < Dec < 2), the ellipsoid turns its 

Fig. 3   a The value of z-component of the orientation vector as a function of time for different Deborah numbers, and b the average value of 
z-component of the orientation vector as a function of Deborah number at stable or steady state

Fig. 4   Evolutions of dimensionless lateral positions of an ellipsoid 
suspended in Couette flow of a viscoelastic fluid for different Debo-
rah numbers. The ellipsoid has an initial orientation of (0, 0.31, 0.95)
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major axis into the flow-vorticity plane (i.e., x–z plane), and 
keeps moving in this plane till it reaches a stable orientation. 
The stable orientation becomes closer to the flow direction, 
as De increases. The terminal orientation is independent of 
the initial orientation, as shown in Fig. 2. Figure 3a shows 
the evolutions of the z-component of the orientation vector 
for different Deborah numbers, demonstrating the periodic 
kayaking motion for De ≤ 1.8 , and the stable orientation for 
De ≥ 2.0 . The average z-component of the orientation vector 
as a function of Deborah number at stable or steady state is 
plotted in Fig. 3b.

D’Avino et al. (2014) computed the orientation of a pro-
late ellipsoidal particle in unbounded shear flow of Giesekus 
fluids without inertial effect. They identified four different 
modes, depending on the Deborah number: log-rolling mode 
(region I); tilted orientation in the flow-vorticity plane, with 

the orientation closer to the flow direction for a higher De 
(region II); co-existence of tilted and flow alignment ori-
entations (region III with bistability scenario), and only 
alignment along the flow direction (region IV). Instead of 
the log-rolling mode, our results show the kayaking mode 
around the vorticity axis for relatively low Deborah num-
bers. The regimes of the bistability and the alignment in the 
flow direction in D’Avino et al. (2014) are also not observed 
in our simulations. Our critical Deborah number for the tran-
sition between the kayaking and tilted orientations is close 
to that of D’Avino et al. (2014) for the transition between 
the log-rolling and tilted orientations (i.e., around 2.0). The 
main difference in two models lies in the boundary con-
dition: we adopt a relatively narrow Couette system with 
periodic boundary conditions in the streamwise and span-
wise directions, whereas D’Avino et al. (2014) considered a 

Fig. 5   Time developments of three components of the ellipsoid orientation vector for different Deborah numbers with the same initial orienta-
tion vector (0, 0.31, 0.95). a De = 0.1, b De = 1.0, c De = 3.0, d De = 4.0. The insert in b shows the grid-independence test for early time
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large computational domain with the undisturbed boundary 
conditions on the outer boundaries, i.e., unbounded shear 
flow. In addition, Re = 0 in D’Avino et al. (2014). It is also 
possible that the discrepancy is caused by the inaccuracy 
of our fictitious domain method, since it is a non-bound-
ary-fitted method. The non-boundary-fitted method has the 
inherent drawback of lower accuracy, but has the advan-
tage of easily dealing with many particles, compared to the 

boundary-fitted finite element method. The good agreement 
between two results on the critical Deborah number indi-
cates that the accuracy of our simulations is reasonable and 
acceptable. Our results below for De > 3 are probably not 
quantitatively accurate, but are expected to be qualitatively 
reliable, in the sense that the results might correspond to 
those for the Giesekus fluid at a lower Deborah number or 
for the PTT fluid.

b.	 Initially not placed in the mid-plane

The motion of a single ellipsoid initially not placed in 
the mid-plane between two plates is considered. The ini-
tial position of the ellipsoid is (0.5, 0.2, 0.5), and the initial 
major axis is in the yz plane (the angle with the z-axis is 
0.1π or 0.4π). The Deborah number is 0.1, 0.5, 1.0, 3.0, 
4.0, respectively. The ellipsoid released not in the mid-plane 
migrates laterally toward the side wall, as shown in Fig. 4, 
like a spherical particle (D’Avino et al. 2010b). The lateral 
migration is slow at De = 0.1, and becomes much faster 
at De ≥ 0.5 . The migration rate is not sensitive to De for 
De ≥ 1.0 . The time developments of three components of 
the ellipsoid orientation vector for different Deborah num-
bers and initial orientation vectors are shown in Fig. 5. 
The ellipsoid tends to align with the vorticity direction for 
De = 0.1 and 1.0 or a direction near the vorticity direction in 
the flow-vorticity plane for De = 3.0 and 4.0 after its major 
axis turns into the flow-vorticity plane. The stable orienta-
tion can be achieved after the particle reaches the wall, and 
is shown to be independent of the initial orientation in Fig. 6 
for De = 3.0 and 4.0. It is surprising that the lateral migra-
tion (i.e., the lateral position) has significant effects on the 
particle orientation. First, the kayaking mode for the prolate 

Fig. 6   Orbits described by the orientation vector for the ellipsoid 
(green line) at De = 3.0 (a1, a2), De = 4.0 (b1, b2). The initial orien-
tation vector for the left two panels is (0, 0.31, 0.95), while the initial 
orientation vector for the right two panels is (0, 0.95, 0.31). The black 
vector represents the terminal orientation vector for the ellipsoid 
(color figure online)

Fig. 7   The time developments of the average dimensionless lateral positions of all ellipsoids with random initial distributions and orientations 
for different Deborah numbers and two particle numbers, a Np = 18, b Np = 54
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ellipsoid located in the mid-plane is turned into the log-roll-
ing mode for the ellipsoid near the wall at De = 0.1 and 1.0. 
Second, the flow alignment in the mid-plane for De = 3.0 and 
4.0, as shown in Fig. 3 (note that cos 45° ≈ 0.71 ), is turned 
into the vorticity alignment near the wall. For the present 
case of a single particle, the wall effect appears to push the 
particle to align with the vorticity direction. In contrast, for 
the multiple-particle case, the wall effect tends to lead the 
particles to align with the flow direction, as shown later. At 
the moment, we cannot provide a clear explanation for the 
discrepancy. Further studies are required.

3.2 � Motion of multiple ellipsoids

The cases for two particle numbers Np = 18 and 54, with cor-
responding particle volume fractions of 2.18% and 6.54%, 
respectively, are simulated. Five Deborah numbers De = 0, 
0.1, 1.0, 3.0, 4.0 are considered. De = 0 represents the New-
tonian fluid case. The initial orientations of the ellipsoids are 
generated randomly with θ in 0–π, and ϕ in 0–2π, where θ and 
ϕ are shown in Fig. 1. The initial positions of the ellipsoids are 
also generated randomly without overlap between particles.

For the multiple ellipsoids, we are concerned with the 
evolutions of their average lateral position ||

|

yp
|

|

|

 and orienta-

tions |
|

px
|

|

 , ||
|

py
|

|

|

 , |
|

pz
|

|

.

Fig. 8   The time developments of the average orientation components of 18 ellipsoids with random initial distributions and orientations for four 
Deborah numbers, a De = 0, b De = 0.1, c De = 1.0, d De = 3.0
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The time developments of ||
|

yp
|

|

|

 at different Deborah num-
bers for 18 and 54 ellipsoids are shown in Fig. 7a, b, respec-
tively. For the Newtonian fluid case, ||

|

yp
|

|

|

 do not change much 
with time for both Np, while for the cases of viscoelastic 

fluids, the increases in ||
|

yp
|

|

|

 with time are clear, indicating the 
particle lateral migrations. Consistent with the single parti-
cle case, the increase of ||

|

yp
|

|

|

 with time is slow for De = 0.1, 
and much faster for De = 1.0, 3.0 and 4.0. For the same 
Deborah number, it takes more time for multiple ellipsoids 
to migrate to the walls than for a single ellipsoid. The 

increase rate of ||
|

yp
|

|

|

 for 54 ellipsoids is smaller than that for 

18 ellipsoids, and the maximum value of ||
|

yp
|

|

|

 for 54 ellip-
soids is also relatively smaller. This is because that almost 
all 18 ellipsoids can move into the particle layer adjacent to 
the wall with the thickness of one particle lateral size 
(Fig. 13), whereas for the case of Np = 54 multiple particle 
layers form near wall, as shown in Fig. 16.

The time development of |
|

px
|

|

 , ||
|

py
|

|

|

 , |
|

pz
|

|

 at different De 
for 18 and 54 ellipsoids are shown in Figs. 8 and 9, respec-
tively. Fluctuations in the orientations can be seen in two 
figures. For De = 0.0 and De = 0.1, the rotational periods of 

Fig. 9   The time developments of the average orientation components of 54 ellipsoids with random initial distributions and orientations for four 
Deborah numbers, a De = 0, b De = 0.1, c De = 1.0, d De = 3.0
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individual ellipsoids in shear flow are relatively small 
(Fig. 5a) so that the average orientations of the ellipsoids 
also fluctuate with high frequencies. For De = 1.0, the 

rotational periods of individual ellipsoids becomes relatively 
large (Fig. 5b), and for De = 3.0, there is no persistently peri-
odic rotational motion (Fig. 5c), therefore, the average 

Fig. 10   The probability distribution function (PDF) of the angle 
between the ellipsoid major axis and the flow direction for four Debo-
rah numbers and two particle numbers a Np = 18, b Np = 54, obtained 

from the last 50 simulation time units. The PDF is computed for the 
angle interval of every 10°

Fig. 11   The probability distribution function of the angle between the ellipsoids major axis and the flow direction in several time intervals for 18 
ellipsoids at different Deborah numbers a De = 0.1, b De = 1.0, c De = 3.0, d De = 4.0
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orientations of the ellipsoids fluctuate with relatively low 
frequencies for De = 1.0 and 3.0. Even for the periodic rota-
tion at low Deborah numbers, the particle major axis stays 
much longer when it moves through the flow-vorticity plane 
than through the shear-vorticity plane, thus ||

|

py
|

|

|

 are always 
small for all case and all times except the initial time in 
Figs. 8 and 9. For both Np = 18 and 54 at De = 0.0, |

|

px
|

|

 
increase at the initial time stage and then fluctuate around 
the average value of around 0.8. This flow alignment is 
expected to be mainly resulted from the particle interactions. 
For the viscoelastic fluid cases at De = 0.1, 1.0 and 3.0 and 
Np = 18, |

|

pz
|

|

 increase and |
|

px
|

|

 decrease at initial stages. This 
can be explained by the earlier observation that a single 
ellipsoid undergoing lateral migration turns toward the vor-
ticity direction (Figs. 5 and 6). Note that for De = 3.0, the 
increase in |

|

px
|

|

 can be seen at very early time before it drops 
in Fig. 8d, which is probably caused by the initial turning of 
ellipsoids toward the flow-vorticity plane; the turning time 
is larger for a higher De. With more particles migrating to 
the wall region, |

|

pz
|

|

 begin to decrease and |
|

px
|

|

 increase, 
which indicates that the particle interactions and the wall 
effect render the particles to align with the flow direction. 
The terminal average orientation is closer to the flow direc-
tion for a higher Deborah number. The results for Np = 54 are 
similar, however, the enhanced effect of the particle interac-
tions leads to weaker turning of the particles toward the vor-
ticity direction at the initial stage and stronger alignment in 
the flow direction for most times.

The wall confinement can directly affect the particle ori-
entation, and on the other hand can affect the orientation 
indirectly via the particle interactions. As more particles 
migrate to the wall region, the particle volume fraction in 
the wall region increases, which makes the particles more 
strongly aligned in the flow direction. A single migrating 
ellipsoid tends to align itself with the vorticity direction 
(Figs. 5 and 6). It can be observed that for the multiple-
particle case, the isolated ellipsoids are often aligned in the 
vorticity direction (see Figs. 12 and 13), like the single par-
ticle case. At the initial stage, the particles are distributed 
in the space almost homogeneously, and thus the possibility 
of the occurrence of isolated particles is higher, resulting in 
the shift of the average orientation toward the vorticity direc-
tion. With more particles migrating to the wall region, the 
possibility of the occurrence of isolated particles becomes 
lower, which could be partly responsible for the shift of the 
average orientation toward the flow direction.

The probability density functions (PDF) of the angle 
between the ellipsoid major axis and the flow direction, 
α, computed from the last 50 time units for Np = 18 and 
Np = 54, are plotted in Fig. 10a, b, respectively. The angle 
is defined in the range of 0 ≤ � ≤ 90 °, and the PDF is com-
puted for nine intervals of each 10°. For the Newtonian 

fluid, the PDF of α is largest in the interval of 10°–20° 
and the particle number does not have a significant effect 
on the probability distribution. For De = 0.1, the PDF of 
α is largest in 80°–90° for the case of Np = 18, but has 
relatively large values in 0°–30° for Np = 54, indicating 
that the particle interactions can lead to the change of the 
preferential orientation from the spanwise direction to the 
flow direction. For De = 1.0 and 3.0, the probabilities of 
α near the flow direction ( 0 ≤ � ≤ 20 °) are large, which 

Fig. 12   Snapshots of the ellipsoids at different times for Np = 18, 
De = 0.1 (view in the vorticity direction). The color represents the 
y-position (color figure online)

Fig. 13   Snapshots of the ellipsoids at different times for Np = 18 and 
De = 4.0 (view in the vorticity direction). The color represents the 
y-position (color figure online)
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means the flow alignment. The flow alignment at De = 3.0 
is stronger than at De = 1.0.

The PDFs of the angle between the ellipsoids major axis 
and the flow direction for several time intervals and 18 ellip-
soids at different Deborah numbers are shown in Fig. 11. 
Figure 8 shows that |

|

pz
|

|

 increase and |
|

px
|

|

 decrease at initial 
stages for De = 0.1, 1.0 and 3.0, which can be explained by 
the turning of the isolated ellipsoids toward the vorticity 
direction. From Fig. 11, in the second stage (the green bars, 
t = 550–600 for De = 0.1 and t is around 150 for other De), 
the increase in |

|

pz
|

|

 is mainly caused by the increase in large 
α of 60°–90° for De = 0.1 and 1.0, in both intermediate α of 
30°–50° and large α of 60°–90° for De = 3.0, and in inter-
mediate α of 30°–50° for De = 4.0, as compared to the first 
stage of t = 0–50 (the red bars in Fig. 11). In the third stage 
for De = 1.0, 3.0 and 4.0 (t = 550–600), the PDFs of small 
α of 0°–10° become large, as most particles migrate to the 
wall region (Fig. 13) and many particles are aligned along 
the flow direction due to the wall effect and the particle 

interactions. The flow alignment is further enhanced in the 
fourth stage when the particles are closer to the wall.

The snapshots of the ellipsoids at several times are shown 
in Fig. 12 for Np = 18 and De = 0.1, in Figs. 13 and 14 for 
Np = 18 and De = 4.0, Fig. 15 for Np = 54 and De = 0.1, and 
Figs. 16 and 17 for Np = 54 and De = 4.0. Figure 12 shows 
that for Np = 18 and De = 0.1, the ellipsoids tend to turn the 
major axes from the initial random orientations toward the 
vorticity direction, and the particles near the wall in cluster 
tend to turn toward the flow direction. Figure 13 shows more 
clearly that the isolated particles are more likely to align 
in the vorticity direction, whereas the aggregated particles 
near the wall are more likely to align in the flow direction, 
for Np = 18 and De = 4.0.

The snapshots from the view of the shear direction in 
Figs. 14 and 17 show the spanwise aggregation of the parti-
cles. The end-to-end aggregation of the particles (i.e., par-
ticle chain) is not observed, unlike the spherical particles. 
The aligning structure with two slightly tilted ellipsoids 
aggregated in the spanwise direction, as shown in Fig. 14, 

Fig. 14   Snapshots of the ellipsoids at different times for Np = 18 and De = 4.0 in our simulations (a–d), and of the experiments of Gunes et al. 
(2008) for a highly viscoelastic fluid (e) (view in the shear direction). Figure e is taken from Gunes et al. (2008) with permission
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can exist for a relatively long time. Such structure is similar 
to that observed in the experiment of Gunes et al. (2008), as 
shown in Fig. 14e.

The distributions of the particle volume fractions of 54 
ellipsoids along the shear direction at different times for 
De = 0.1 and De = 4.0 are given in Fig. 18, which shows 
the slow migration of the ellipsoids at De = 0.1 and the 
fast migration at De = 4.0. For t > 1000 and De = 4.0, two 
peaks in the particle volume fraction near each wall can be 
observed in Fig. 18b, corresponding to two particle layers 
forming near each wall, as shown in Fig. 16.

Only one aspect ratio of 4 is studied. A more slender 
particle has a larger rotational period and stays longer when 
its orientation is turning close to the flow direction. It was 
shown that the transition from the log-rolling mode to the 
flow alignment occurred at a smaller Deborah number for 
a more slender particle (D’Avino et al. 2014). Therefore, 
stronger flow alignment is expected for more slender parti-
cles at the same Deborah number.

4 � Conclusions

The motion of neutrally buoyant ellipsoids with a block-
age ratio of β = 1/3 and an aspect ratio of Ar = 4 in a planar 
Couette flow of a Giesekus viscoelastic fluid with negligibly 
small inertial effects has been simulated with a fictitious 
domain method. From our results, the following conclusions 
can be drawn:

1.	 For a single ellipsoid initially placed in the mid-plane 
between the two plates, the ellipsoid major axis rotates 
around the vorticity axis in a kayaking mode at relatively 
low Deborah numbers, and is tilted in the flow-vorticity 
plane when the Deborah number exceeds a critical value, 
with the orientation being closer to the flow direction for 
a larger De.

2.	 For a single ellipsoid initially not placed in the mid-
plane, the ellipsoid undergoes lateral migration toward 
the nearby wall, and turns its orientation to the vorticity 
axis (log-rolling) at relatively low Deborah numbers and 
to a direction close to the vorticity axis at large Deborah 
numbers, unlike the ellipsoid placed in the mid-plane 
without lateral migration.

3.	 For the multiple-ellipsoid case, there exists a transient 
stage where the average orientation of the ellipsoids 
turns toward the vorticity axis for all nonzero Deborah 
numbers studied. The isolated ellipsoids are more likely 
to align with the vorticity direction even for De = 4, and 
both the particle interactions and the wall effect drive 
the ellipsoids to align with the flow direction. Particle 
aggregation and the dynamic aligning structures are 
observed at large Deborah numbers.

Limited by our computer resources, only a small Couette 
cell is considered. The interactions of the multiple particles 

Fig. 15   Snapshots of the ellipsoids at different times for Np = 54 and 
De = 0.1 (view in the vorticity direction). The color represents the 
y-position (color figure online)

Fig. 16   Snapshots of the ellipsoids at different times for Np = 54 and 
De = 4.0 (view in the vorticity direction). The color represents the 
y-position (color figure online)

Fig. 17   Snapshots of the ellipsoids at different times for Np = 54 
and De = 4.0 (view in the shear direction). The color represents the 
y-position (color figure online)
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in a large system and the motion of the ellipsoids in the 
Oldroyd-B fluid may be worthy of further study.
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