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Abstract
The dynamics of two particles suspended in a viscoelastic fluid and aligned on the centerline of a microfluidic channel is 
investigated by direct numerical simulations. The shear-thinning elastic fluid is modeled by the Giesekus constitutive equa-
tion. The relative particle velocity is studied by varying the interparticle distance, the Deborah number, fluid shear thinning, 
confinement ratio, and particle shape. Concerning the latter aspect, spherical and spheroidal particles with different aspect 
ratios are considered. The regimes of particle attraction and repulsion as well as the equilibrium configurations are identified 
and correlated with the fluid rheological properties and particle shape. The observed dynamics is related to the distribution 
of the viscoelastic normal stresses in the fluid between the particles. The results reported here provide useful insights into 
design efficient microfluidics devices to achieve particle ordering, i.e., the formation of equally spaced particle structures.
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1 Introduction

The focusing of particles at the centerline of a microfluidic 
channel induced by fluid viscoelasticity has been of great 
interest over the last years (D’Avino et al. 2017; Lu et al. 
2017). As compared to other similar techniques (Xuan et al. 
2010), particle alignment in a viscoelastic medium can be 
achieved in a simple straight microchannel avoiding extra 
components and/or complex designs of the device. Several 
theoretical, experimental and numerical works have elu-
cidated the mechanism behind the focusing phenomenon 
as well as the role of fluid rheology, flow intensity, and 
geometry (shape of the channel cross section and confine-
ment ratio, i.e., the ratio between the particle size and the 
characteristic dimension of the channel) on the alignment 

efficiency (Leshansky et al. 2007; Yang et al. 2011; D’Avino 
et al. 2012; Lee et al. 2013; Kang et al. 2013; Del Giudice 
et al. 2013; Lim et al. 2014; Seo et al. 2014; Del Giudice 
et al. 2015; Yang et al. 2017; Yuan et al. 2018; Li and Xuan 
2018; Xiang et al. 2019). In brief, a particle suspended in a 
viscoelastic medium experiences a motion transversal to the 
main flow direction, firstly observed by Mason and co-work-
ers (Karnis and Mason 1966; Gauthier et al. 1971), induced 
by the fluid normal stresses (D’Avino and Maffettone 2015; 
D’Avino et al. 2017; Lu et al. 2017). Since the ‘migration 
velocity’ is 2–3 orders of magnitude lower than the main 
flow velocity, very long channels (compared to the cross-
section characteristic dimension) are required to achieve 
highly efficient alignment. Microfluidics is, then, a very 
well-suited framework to exploit the migration phenomenon, 
as demonstrated for the first time by Leshansky et al. (2007). 
To date, 3D particle focusing induced by fluid viscoelasticity 
is a well established, finely controllable technique to manip-
ulate trajectories of particles with spherical shape. Studies 
on non-spherical particle suspensions recently appeared 
(Lu et al. 2015; Lu and Xuan 2015; D’Avino et al. 2019). 
Specifically, numerical simulations have reported that the 
migration mechanism occurs for non-spherical particles as 
well and that, after reaching the axis channel, they slowly 

This article is part of the topical collection “Particle motion in 
non-Newtonian microfluidics” guest edited by Xiangchun Xuan 
and Gaetano D’Avino.

 * Gaetano D’Avino 
 gaetano.davino@unina.it

1 Dipartimento di Ingegneria Chimica, dei Materiali e della 
Produzione Industriale, Università di Napoli Federico II, P.le 
Tecchio 80, 80125 Naples, Italy

http://orcid.org/0000-0002-0333-6330
http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-019-2245-7&domain=pdf


 Microfluidics and Nanofluidics (2019) 23:82

1 3

82 Page 2 of 14

orient with their major axis along the main flow direction 
(D’Avino et al. 2019).

A step forward in particle focusing is the ordering of the 
aligned particles, i.e., the capability of forming a train of 
equally spaced particles. Very recent experiments and simu-
lations have shown that viscoelasticity is able to rearrange 
the microstructure and promote ordering (Del Giudice et al. 
2018). More specifically, the formation of a train of parti-
cles at approximately equal distances has been observed in a 
shear-thinning viscoelastic fluid, while no ordering has been 
reported for constant viscosity fluids. The ordering mecha-
nism has been confirmed by numerical simulations carried 
out in the same conditions explored in the experiments. A 
simple qualitative argument on the particle train stability 
able to explain the observed train dynamics has been also 
derived. A remarkable result of the proposed argument is 
that, although the evolution of the microstructure is due 
to complex hydrodynamic interactions of a multi-particle 
system, many features of the final particle arrangement can 
be predicted by simply analyzing the dynamics of only two 
particles.

The problem of the dynamics of a pair of spherical par-
ticles suspended in a viscoelastic fluid and aligned at the 
centerline of a cylindrical microchannel has been tackled 
by direct numerical simulations (D’Avino et al. 2013). The 
results can be summarized as follows: (i) the particles can 
reduce or increase their distance while traveling along the 
channel depending on the initial distance and the Deborah 
number (defined as the ratio between the fluid and flow 
characteristic time); (ii) a critical Deborah number Decr is 
identified such that, for De < Decr , two particles attract or 
repel depending on whether their initial distance is lower 
or higher than a critical distance; (iii) if De > Decr only 
repulsion dynamics occurs. These results, however, were 
obtained for a single fluid rheology. The effect of shear thin-
ning was investigated by fixing the Deborah number, mak-
ing difficult to draw general conclusions. Furthermore, all 

the simulations were limited to relatively small interparticle 
distances, whereas it has been shown that behavior at large 
distance is crucial in determining the final microstructure 
(Del Giudice et al. 2018).

In this work, we re-visit and extend the pair particle prob-
lem to a wide and fully combined parametric space of Deb-
orah number, fluid shear thinning, confinement ratio, and 
interparticle distance. We anticipate that new regimes of the 
pair dynamics appear in ranges of the investigated param-
eters that were not explored before. Furthermore, motivated 
by the recent results on focusing of non-spherical particles 
mentioned above, we consider the completely new problem 
of the dynamics of two aligned spheroidal particles.

The study is carried out by direct numerical simulations 
whereby the macroscopic governing equations, together with 
a viscoelastic constitutive equation, are solved. State dia-
grams reporting the relative particle velocity as a function 
of the investigated parameters are shown, giving a complete 
overview of the pair particle dynamics problem.

2  Governing equations and numerical 
method

The system investigated in this work is reported in Fig. 1a. 
A viscoelastic suspension of two spherical or spheroidal 
particles flows in a straight cylindrical microchannel. The 
centers of volume of the particles lie on the channel cen-
terline and, in case of non-spherical shape, the particles are 
oriented along the axis channel. As previously reported, this 
is, indeed, the stable equilibrium configuration of spheroidal 
particles in a viscoelastic fluid (D’Avino et al. 2019). We 
denote by a and b the particle semi-major and semi-minor 
axes, and with AR = a∕b the aspect ratio. For a sphere, 
a = b and AR = 1 . The channel diameter is denoted by D 
and the length by L. A Cartesian reference frame is selected 
with origin at the center of the channel inlet with z denoting 

(a)

(b)

Fig. 1  Schematic representation of the investigated system (a) and the corresponding computational domain (b)
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the flow direction. Because of the symmetry, the particles 
remain on the axis channel aligned along the flow direction. 
Their positions and velocities are z1 and z2 , and U1 and U2 , 
respectively, where ‘1’ and ‘2’ denote the trailing (left in 
Fig. 1) and leading (right in Fig. 1) particles. The distance 
between the surfaces of the two particles is d.

The channel wall is ��w , the inflow and outflow channel 
sections are ��in and ��out , respectively, and the bounda-
ries of the particles are �P1 and �P2 . Since the particles are 
aligned on the centerline, we can reduce the 3D domain to 
a 2D axisymmetric one, shown in Fig. 1b. The boundary 
��sym = ��sym1 ∪ ��sym2 ∪ ��sym3 is the axis of symmetry.

We assume incompressibility and negligible inertia for 
both solid and fluid. The governing equations are the mass 
and momentum balance equations:

where u is the fluid velocity and � is the total stress tensor, 
expressed as:

In Eq. (3), p, I , �s and D = (∇u + (∇u)T )∕2 are the pressure, 
the unity tensor, the viscosity of a Newtonian ‘solvent’ and 
the rate-of-deformation tensor, respectively. As in D’Avino 
et al. (2013), the Giesekus model is chosen as constitutive 
equation (Larson 1988):

where �p is the polymer viscosity, � is the fluid relaxation 
time, the symbol (∇) denotes the upper-convected time 
derivative:

and � is a constitutive parameter. We recall that, in shear 
flow, the Giesekus model predicts a non-zero first normal 
stress difference and, for 𝛼 > 0 , a shear-thinning viscosity 
and a non-zero second normal stress difference. The zero-
shear viscosity is defined as �0 = �s + �p.

Regarding the boundary conditions, no-slip is imposed 
at the channel wall:

and the rigid-body motion is imposed at the particle 
surfaces:

with i the particle number.
Axial symmetry is applied on the boundaries representing 

the axis of symmetry:

(1)∇ ⋅ u = 0,

(2)∇ ⋅ � = 0,

(3)� = −pI + 2�sD + � .

(4)�
∇
� +

��

�
� ⋅ � + � = 2�pD,

(5)
∇
� ≡ ��

�t
+ u ⋅ ∇� − (∇u)T ⋅ � − � ⋅ ∇u,

(6)u = 0 on ��w,

(7)u = (0,Ui) on �Pi(t),

(8)u ⋅ i = 0 on ��sym,

where i is the unit vector along the x-direction.
Periodic boundary conditions are prescribed between 

the inflow and outflow sections, together with a flow rate 
in inflow:

where k is the unit vector along the z-direction and �p is the 
pressure drop along the channel between ��in and ��out . 
The flow rate Q is imposed through a constraint where the 
associated Lagrange multiplier is identified as the unknown 
pressure difference �p (Bogaerds et al. 2004). Due to the 
periodicity along the z-direction, the domain length L must 
be chosen much larger than the channel diameter to avoid 
that the particles hydrodynamically interact with their 
images.

As inertia is neglected, no initial condition for the veloc-
ity field needs to be specified. On the other hand, since the 
time-derivative of the viscoelastic stress tensor appears 
in the constitutive equation, an initial condition for � is 
required. We assumed a stress-free initial condition, i.e., that 
the stress is zero everywhere in the fluid at the initial time:

Finally, the hydrodynamic force acting on the particles needs 
to be specified. Under the assumptions of the absence of 
particle inertia, and of no ‘external’ forces (force-free par-
ticle), the z-component of the total forces Fi on the particle 
surfaces must be zero:

where n is the outwardly directed unit normal vector on �Pi.
At each time step, the particle positions are updated by 

integrating the kinematic equations:

with initial conditions zi|t=0 = z0
i
.

The governing equations are solved by the finite ele-
ment method. To achieve convergent results at relatively 
high Deborah numbers, the DEVSS-G/SUPG formulation 
combined with a log representation for the conformation 
tensor is implemented (Guénette and Fortin 1995; Bogaerds 
et al. 2002; Brooks and Hughes 1982; Fattal and Kupfer-
man 2004; Hulsen et al. 2005). A boundary-fitted mesh 
with triangular elements is used with an adequate number 

(9)(� ⋅ i)|z = 0 on ��sym,

(10)u|��in
= u|��out

,

(11)(� ⋅ k)|��in
= (� ⋅ k)|��out

− �p k,

(12)∫
��in

u ⋅ k dS =Q,

(13)�|t=0 = 0.

(14)Fi = ∫
�Pi(t)

(� ⋅ n)|z dS = 0,

(15)
dzi

dt
= Ui
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of triangles between the particle surfaces where larger gra-
dients of the flow fields are expected. The mesh is generated 
by the Gmsh software (Geuzaine and Remacle 2009). The 
arbitrary Lagrangian–Eulerian (ALE) technique is employed 
to handle the particle motion (Hu et al. 2001). Further details 
on the numerical method used as well as mesh and time con-
vergence tests can be found elsewhere (D’Avino et al. 2013).

We made the equations dimensionless by choosing the 
channel diameter D as characteristic length, the average 
velocity ū = 4Q∕(𝜋D2) as characteristic velocity, and 𝜂0ū∕D 
as characteristic stress. The dimensionless parameters gov-
erning the problem are: the Deborah number De = 𝜆ū∕D 
that is the ratio between the fluid and flow characteristic 
time, the aspect ratio, AR = a∕b , the confinement ratio 
� = 2b∕D , the viscosity ratio �r = �s∕�0 , the constitutive 
parameter � , and the initial particle distance d0∕D.

In this work, we set the viscosity ratio to �r = 0.091 . 
In what follows, all the symbols refer to dimensionless 
quantities.

3  Results and discussion

Previous numerical simulations on the dynamics of two 
spheres aligned on the channel centerline and suspended in 
a viscoelastic fluid reported that the interparticle distance 
decreases or increases depending on the initial distance and 
the Deborah number (D’Avino et al. 2013). The effect of 
the parameter � was investigated for a single value of De 
and no qualitative change of the pair dynamics was found 
by increasing or reducing this constitutive parameter. Fur-
thermore, the simulations were limited to relatively small 
interparticle distances.

As previously remarked D’Avino et al. (2013), beyond 
an initial start-up due to the stress development, the trends 
of the relative particle velocity �U = U2 − U1 collapse on 
a single master curve when plotted as a function of the cur-
rent interparticle distance d. We can then directly consider 
the master trend obtained by running several simulations for 
different initial distances d0 and take the relative velocity 
after the transient. Hence, all the curves showing the rela-
tive velocity as a function of the interparticle distance are 
obtained by interpolating a set of data (d, �U ) taken after 
the start-up and corresponding to a specific d0 . Although the 
current interparticle distance d used to construct the master 
curves is not exactly equal to d0 , the two values are very 
similar because the stress development characteristic time 
(which is of the same order of magnitude of the fluid relaxa-
tion time) is much lower than the characteristic time to have 
appreciable variations of the relative particle positions.

To fully characterize the dynamics of the system under 
investigation, we carry out direct numerical simulations 
by covering the parametric space (d, De, � , � ) with ranges 

chosen in the following way. The interparticle distance 
interval corresponds to initial distances d0 selected between 
[d0,min, d0,max] = [0.01, 3] . The value of d0,min = 0.01 cor-
responds to an interparticle distance of 5% of the particle 
radius, i.e., the particles are almost in contact. Lower val-
ues are not feasible due to numerical instabilities and prob-
lems related to the meshing procedure. The maximum value 
d0,max = 3 is sufficiently large so that the particles do not 
interact anymore and behave like isolated objects. The range 
of distances is discretized by choosing a step of 0.02 up to 
a distance of 0.15. The step is then increased to 0.05 up 
to a distance of 0.4. Finally, the step is further increased 
to 0.1 up to d0,max . The Deborah number interval is set to 
[Demin,Demax] = [0.5, 3] . The lowest value corresponds to 
weak viscoelastic effects able, however, to produce a rela-
tive particle motion appreciable in real microfluidic devices 
(D’Avino et al. 2013). The maximum value denotes a sys-
tem characterized by significant elasticity. In this range, we 
consider two intermediate Deborah numbers, De = 1 and 
De = 2 , for a total of four values. Regarding the role of the 
constitutive parameter � , we recall that, for the model used 
in the present work, non-zero values of � produce both shear 
thinning and a second normal stress difference. To elucidate 
the importance of these two fluid properties on the pair par-
ticle dynamics, we have performed few simulations with a 
different constitutive equation (Phan–Thien Tanner model 
(Larson 1988)) that only predicts the first normal stress 
difference and shear thinning. Since the results are qualita-
tively similar to those obtained for the Giesekus model, we 
conclude that shear thinning plays the most relevant role in 
determining the pair particle dynamics. Hence, in what fol-
lows, different values of the constitutive parameter � will be 
connected to variations of the fluid shear-thinning degree. 
The range of � is chosen as [�min, �max] = [0.05, 0.4] where 
the lowest value corresponds to a fluid with a constant vis-
cosity over a wide range of shear rates, whereas the high-
est one is characteristic of a strong shear-thinning medium. 
Together with the extrema, two intermediate values in this 
interval are considered, i.e., � = 0.1 and � = 0.2 . Finally, 
two values of the confinement ratio are selected, � = 0.2 and 
� = 0.4 , that identify the range of confinement ratios typi-
cally used in viscoelastic microfluidics. Indeed, lower values 
would require extremely long channels to achieve particle 
focusing [the migration velocity scales as the third power of 
� (D’Avino et al. 2012)], whereas higher values could lead 
to channel clogging.

Before presenting the results of the pair dynamics by var-
ying these four parameters, it is useful to illustrate the pos-
sible regimes experienced by the pair. In Fig. 2, the relative 
particle velocity �U is reported as a function of the inter-
particle distance d. The parameters are De = 0.5 , � = 0.05 , 
� = 0.4 . We started with this specific case since the resulting 
pair particle dynamics shows the most complex behavior. As 
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visible in Fig. 2, depending on the interparticle distance d, 
the relative velocity can be negative or positive correspond-
ing to particle attraction or repulsion, respectively. Specifi-
cally, by increasing d, the particles first attract, then repel, 
and finally attract again. These three behaviors, highlighted 
by different colors and sketched on the top part of the dia-
gram, are delimited by the zeros of the black solid curve 
that correspond to equilibrium solutions. The first zero is 
the case at d = 0 , i.e., the two spheres are in contact. (The 
very first trend of this and the following curves are obtained 
by extrapolating the data points due to the aforementioned 
problems in simulating distances lower than 0.01.) This 
solution is stable as, by slightly increasing the interparticle 
distance, the relative velocity is negative and d decreases 
again.

On the contrary, the distance denoted by dz1 corresponds 
to an unstable equilibrium condition as small perturbations 
lead the system to move away from such configuration. The 
third zero denoted by dz2 is stable again. Hence, depending 
on the interparticle distance, at long times, the two particles 
can travel in contact (if d < dz1 ) or at a fixed distance dz2 (if 
d > dz1 ). It is worthwhile to mention that the stable solution 
at d = dz2 was not found in previous numerical simulations 
(D’Avino et al. 2013) due to the aforementioned limited set 
of investigated parameters.

An important piece information reported in Fig. 2 is the 
magnitude of the relative velocity that is related to the time 
scale over which a stable configuration is attained. For dis-
tances lower than dz2 (blue and red regions), �U is about 
three orders of magnitude lower than the main flow aver-
age velocity ū . Since the migration velocity (responsible for 
particle focusing) for similar parameters is approximately 
three orders of magnitude lower than ū as well (Villone 
et al. 2011), we conclude that a focusing length, generally 

corresponding to few centimeters, is sufficient to observe 
a significant change of the distance between two particles. 
On the contrary, the relative velocity in the green region 
is extremely low. This is not surprising as the very large 
distances lead to weak hydrodynamic interactions slowing 
down the pair particle dynamics. Hence, two particles ini-
tially positioned at d > dz2 travel at a nearly constant speed 
and significant variations of their distance are hardly detect-
able in standard microfluidic channels.

As discussed above, the distances corresponding to 
�U = 0 are equilibrium configurations for the pair dynam-
ics. However, when dealing with a multiparticle system, 
the extrema of the curve (in the case of Fig. 2 two minima 
and one maximum) can give useful information on the 
final microstructure. Indeed, as discussed in a recent work 
on particle ordering (Del Giudice et al. 2018), the position 
of the equilibrium distance deq with respect to the extrema 
of the relative velocity curve gives insight into the stability 
of an equally spaced train of particles. (The equilibrium 
distance is defined as the distance between equally spaced 
particles; it is related to the volume fraction by a geometri-
cal relationship.) Just as an example, let us assume that a 
train of equally spaced particles with distance deq has been 
formed, and only one particle is slightly displaced from 
the equilibrium position. Let us also assume that deq falls 
in the red region and that it is greater than the distance 
dmax corresponding to the maximum. Since the slope of 
the relative velocity curve is negative, two particles attract 
or repel depending on whether the interparticle distance 
is higher or lower than deq , respectively. In both cases, 
the displaced particle attains the equilibrium distance and 
ordering is restored. An opposite scenario occurs if deq 
corresponds to a point of the curve in Fig. 2 where the 
slope is positive (e.g., for a value in the red region lower 

Fig. 2  Relative particle velocity 
as a function of the interparticle 
distance for a pair of spheri-
cal particles aligned along the 
centerline of a cylindrical 
channel and suspended in a 
Giesekus fluid at De = 0.5 , 
� = 0.05 , � = 0.4 . The values 
of the distances corresponding 
to the minima, the maximum 
and the zeros of the function are 
highlighted in red. On the top of 
the figure, a schematic represen-
tation of the pair dynamics for 
the different regimes is shown 
(color figure online)
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than dmax . In this case, the particle displaced from the 
equally spaced configuration tends to approach the clos-
est particle and form a doublet (Del Giudice et al. 2018).

A second scenario is represented in Fig. 3. The param-
eters are De = 0.5 (as in the previous case), � = 0.2 , and 
� = 0.4 . As compared to the state diagram in Fig. 2, we 
observe that: (i) the zero at dz2 and the minimum at dmin2 
disappear and the curve asymptotically tends to the hori-
zontal axis from positive values; (ii) as a consequence of 
the previous point, only two dynamics are possible, i.e., 
pair attraction for d < dz1 (blue region) or repulsion for 
d > dz1 (red region), corresponding, at long times, to dou-
blet formation or two isolated particles, respectively; (iii) 
the magnitude of the relative velocity is lower than the pre-
vious case both in case of particle attraction and repulsion, 

requiring longer channels to observe significant changes 
of the interparticle distance.

Finally, the last possible scenario is depicted in Fig. 4 
where the parameters are De = 3 , � = 0.2 , and � = 0.4 . 
In this case, also the zero at d = dz1 and the minimum at 
d = dmin1 disappear and the relative velocity is positive for 
any interparticle distance. The dynamics is, then, repulsive, 
leading to the formation of isolated spheres at a distance 
such that the hydrodynamic interactions have a negligible 
effect on the relative particle motion.

3.1  State diagrams for spherical particles

The particle pair dynamics shown in Figs. 3 and 4 were 
also reported in D’Avino et  al. (2013). However, the 

Fig. 3  Relative particle velocity 
as a function of the interparticle 
distance for a pair of spheri-
cal particles aligned along the 
centerline of a cylindrical 
channel and suspended in a 
Giesekus fluid at De = 0.5 , 
� = 0.2 , � = 0.4 . The values 
of the distances corresponding 
to the minimum, the maximum 
and the zero of the function are 
highlighted in red. On the top of 
the figure, a schematic represen-
tation of the pair dynamics for 
the different regimes is shown 
(color figure online)

Fig. 4  Relative particle velocity 
as a function of the interparticle 
distance for a pair of spheri-
cal particles aligned along the 
centerline of a cylindrical 
channel and suspended in 
a Giesekus fluid at De = 3 , 
� = 0.2 , � = 0.4 . The value of 
the distances corresponding to 
the maximum of the function is 
highlighted in red. On the top 
of the figure, a schematic repre-
sentation of the pair dynamics is 
shown (color figure online)
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change from one behavior to the other was associated 
with a variation of the Deborah number only (a ‘critical 
Deborah number’ was introduced) as shear thinning did 
not produce any qualitative change of the relative velocity 
curve for the fixed value of the Deborah number consid-
ered ( De = 1 ). This is clearly not true if one compares 
Figs. 2 and 3 corresponding to the same value of De and 
two different � . To clarify this aspect, we now present the 
complete particle pair dynamics by varying d, De and � in 
the whole parametric space for two values of the confine-
ment ratio, highlighting how the magnitude of �U , the 

zeros, and the extrema of the relative velocity curve are 
affected.

In Fig. 5, the contour plots of the relative particle veloc-
ity �U as a function of the interparticle distance d and the 
Deborah number De for four values of the parameter � are 
reported. The confinement ratio is � = 0.4 . The black, red 
and blue lines are the curves corresponding to the zero, 
minimum and maximum values of the relative velocity. 
The magnitude of �U is given by the colors: the positive 
values increase from light to dark orange and the nega-
tive values increase from light to dark yellow. In these 

Fig. 5  Contours of the relative particle velocity as a function of the 
interparticle distance and the Deborah number for a pair of spherical 
particles ( AR = 1 ) for different values of � and for � = 0.4 . The blue, 
red and black lines correspond to the maximum, minimum and zero 
values of the relative particle velocity, respectively. The roman num-

bers denote the different pair dynamics: (I) attraction for d < dmin1 ; 
(II) attraction for d > dmin1 ; (III) repulsion for d < dmax ; (IV) repul-
sion for d > dmax ; (V) attraction for d < dmin2 ; (VI) attraction for 
d > dmin2 (color figure online)
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plots, the pair particle dynamics for any combination of 
the investigated parameters can be readily identified. For 
instance, the curve in Fig. 2 is obtained by ‘intersecting’ 
the upper-left plot of Fig. 5 with a vertical line at De = 0.5 . 
From these plots, the following general conclusions on 
the dynamics of two aligned spheres can be drawn: (i) the 
number of equilibrium points and, consequently, the long-
time regimes depend on both the Deborah number and 
the fluid shear thinning; (ii) for Deborah numbers lower 
than a critical value, the particles attract at small distances 
regardless of fluid shear thinning; such critical Deborah 
number, however, reduces with increasing � ; (iii) at small 
De-values, and for low or moderate shear-thinning fluids, a 
stable equilibrium regime appears at large distances (black 
line on the upper-left part of the plots); for sufficiently 
high � values, this regime is not present; the relative par-
ticle velocity near this equilibrium point is, however, very 
low, leading to extremely slow changes of the particle 
relative motion; (iv) the magnitude of the relative particle 
velocity is an increasing function of the Deborah number 
and a decreasing function of the parameter � ; hence, the 
fastest variation of the particle microstructure is obtained 
for highly elastic and nearly constant viscosity fluids; (v) 
the maximum relative velocity [which is related to the 
train stability (Del Giudice et al. 2018)] is nearly insensi-
tive to both the Deborah number and fluid shear thinning 
and its value is dmax ≈ 0.5.

From Fig. 5, it can be also noticed that the dynamics at 
low Deborah numbers ‘translates’ to the left for increas-
ing values of � (for instance, the black and red lines on 
the top-left part of the state diagram for � = 0.05 move at 
smaller De for � = 0.1 , and then disappear for higher � ). 
Indeed, even at high �-values, a plateau of viscosity exists 
at low Deborah numbers.

Hence, the pair dynamics observed for � = 0.05 can 
be considered as the typical behavior of two particles in 
viscoelastic fluids at small Deborah numbers (where the 
viscosity is constant). As such, the regions denoted by (V) 
and (VI) in Fig. 5 might be observed at higher � values as 
well but at Deborah numbers smaller than the one investi-
gated in this work ( Demin = 0.5).

In Fig. 6, the contours of the relative particle veloc-
ity are shown for a lower confinement ratio � = 0.2 . In 
agreement with previous results (D’Avino et al. 2013), the 
relative particle velocity is about one order of magnitude 
lower than the case at � = 0.4 (compare the scales between 
Figs. 5, 6), resulting in a slower re-arrangement of the 
microstructure. Furthermore, the attraction region at large 
distances is not present for any of the � values investigated. 
Finally, the attraction region at small distances is observed 
for almost all the � and De values. Only at De = 3 and for a 
strong shear-thinning fluid such region disappears.

3.2  State diagrams for non‑spherical particles

All the results presented so far refer to particles with spheri-
cal shape. As recently reported D’Avino et al. (2019), sphe-
roidal particles immersed in a viscoelastic fluid undergo a 
focusing dynamics similar to spheres, attaining a final equi-
librium orientation with major axis along the main flow 
direction. We, then, investigated the dynamics of a pair of 
spheroids with center of volume on the microchannel cen-
terline and aligned along the cylinder axis, as depicted in 
Fig. 1. We start with the confinement ratio � = 0.4 . The par-
ticle aspect ratio is set to AR = 2 . Notice that, fixing the con-
finement ratio implies that non-spherical particles ( AR > 1 ) 
have a volume larger than spheres ( AR = 1 ). Figure 7 reports 
the contours of the relative particle velocity as a function of 
the other parameters. A behavior very similar to that found 
for spherical particles is observed. The most relevant quan-
titative difference concerns the attraction region at small dis-
tances (the black and red lines in the lower part of the plots): 
for spheroids, the critical Deborah number is slightly lower 
and, more importantly, the black and red lines are closer to 
the x-axis, i.e., the attraction region is narrower than the 
spherical particle case. A behavior similar to spherical par-
ticles is also observed when the confinement ratio is reduced 
to � = 0.2 , as shown in Fig. 8. The attraction region at large 
distances is never observed whereas attraction at small dis-
tances is always present except for high values of � and De.

In Fig. 9, the contours of the relative particle velocity 
for spheroids with AR = 4 and � = 0.4 are shown. Notice 
that, for the confinement ratio and aspect ratio chosen, the 
particles are not free to perform full rotations through the 
gap. In this sense, such configuration is a bit artificial and 
might be unreliable due, for instance, to clogging issues. 
On the other hand, one could think of a microchannel with 
a contraction geometry where focusing is achieved in a 
large channel followed by a smaller one where the parti-
cles enter already aligned. In the present context, however, 
we consider this configuration to evaluate the effect of an 
elongated particle shape on the pair dynamics.

As compared to the previous cases, a relevant qualita-
tive difference is readily observed: the attraction region at 
small distances is not present for any value of the param-
eter � in the investigated range, i.e., the relative particle 
velocity is always positive at small interparticle distances. 
Hence, regardless of the Deborah number and the fluid 
shear thinning, two close spheroids always repel and reach 
an equilibrium distance given by the black line, if present, 
or a sufficiently large distance such that hydrodynamic 
interactions become negligible. Notice also that the maxi-
mum relative velocity is still relatively insensitive to the 
Deborah number and fluid shear thinning. However, its 
value ( dmax ≈ 0.3 ) is lower than the previous cases.
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3.3  Local stress distribution

A possible explanation for the attraction/repulsion dynam-
ics at small distances can be based on the local stress field 
in the fluid domain around the particles reported in Fig. 10. 
The colors refer to the quantity �zz − �zz,∞ where �zz is the 
zz-component of the viscoelastic stress tensor � (see Eq. (4)) 
and �zz,∞ is the same component of the fluid without parti-
cles. Hence, the plotted quantity gives the perturbation of the 
axial viscoelastic normal stress due to the presence of the 
particles. In analogy with the particle migration mechanism 
where the viscoelastic normal stress along the migration 

direction causes the transversal particle motion, the zz-com-
ponent might be responsible for the relative particle motion 
along the flow direction.

We examine three cases: (a) spherical particles at a distance 
d = 0.1 , (b) spherical particles at a distance d = 0.4 , (c) sphe-
roidal particles with AR = 4 at d = 0.1 . The other parameters 
are De = 1 , � = 0.2 , and � = 0.4 . For the sake of comparison, 
the stress field around a single particle are plotted in panel 
(d). In the first case, the particles attract, whereas they repel 
for the other two cases. First of all, we observe from Fig. 10a, 
b that the stress fields on the left of the trailing particle and 
on the right of the leading one do not depend on the distance. 

Fig. 6  Contours of the relative particle velocity as a function of the 
interparticle distance and the Deborah number for a pair of spherical 
particles ( AR = 1 ) for different values of � and for � = 0.2 . The blue, 
red and black lines correspond to the maximum, minimum and zero 

values of the relative particle velocity, respectively. The roman num-
bers denote the different pair dynamics: (I) attraction for d < dmin1 ; 
(II) attraction for d > dmin1 ; (III) repulsion for d < dmax ; (IV) repul-
sion for d > dmax (color figure online)
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This is somewhat expected since both particles are ‘isolated’ 
in one direction and the stress field in these regions is equal to 
that around a single particle reported in Fig. 10d. A similarity 
is also observed for spheroidal particles where the fields are 
just more ‘stretched’ due to the elongated shape. A significant 
difference is, instead, observed in the fluid between the par-
ticles. In Fig. 10b, the stress field between the two spheres is 
qualitatively similar to the one expected for an isolated par-
ticle. Indeed, a high stress region (red) appears on the right 
of the trailing particle (similar to the red region on the right 
of the leading particle) and a low stress zone (blue) can be 

observed on the left of the leading particle (similar to the blue 
region on the left of the trailing particle). The stress distri-
bution is, of course, quantitatively different from the isolated 
case because the particles are still relatively close one to each 
other. On the contrary, in Fig. 10a the interparticle distance is 
much lower and the normal stress is more uniform in the gap. 
In this case, indeed, the fluid between the two particles travels 
at approximately the same velocity of the particles leading 
to a small velocity gradient that, in turn, produces low vis-
coelastic stresses. In the former case (Fig. 10b), the normal 
stress gradient at the internal particle surfaces counteracts the 

Fig. 7  Contours of the relative particle velocity as a function of the 
interparticle distance and the Deborah number for a pair of spheroi-
dal particles with AR = 2 for different values of � and for � = 0.4 . 
The blue, red and black lines correspond to the maximum, minimum 
and zero values of the relative particle velocity, respectively. The 

roman numbers denote the different pair dynamics: (I) attraction for 
d < dmin1 ; (II) attraction for d > dmin1 ; (III) repulsion for d < dmax ; 
(IV) repulsion for d > dmax ; (V) attraction for d < dmin2 ; (VI) attrac-
tion for d > dmin2 (color figure online)
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stress around the external part of the particles, giving rise to 
a net force that pushes the particles away. On the other hand, 
the weak stress gradient between the particles in the case of 
Fig. 10a is not able to contrast the external stresses result-
ing in particles attraction. The local stress field for spheroidal 
particles shown in Fig. 10c confirms this argument. We recall 
that, in this case, the two particles repel. By comparing the 
stress distribution within the gap with Fig. 10a (where the 
distance between the particle surfaces is the same), a red and 
cyan region can be observed, i.e., the shear rate (and, in turn, 
the stress) is not uniform. This is likely due to the particle 
shape and, more specifically, to the large curvature near the 

tips of the spheroids. Such effect is similar to what observed 
for the lateral migration of a spheroid where, around the tip, 
the normal stresses are larger as compared to spherical parti-
cles, leading to wall repulsion even when the spheroid is very 
close to the wall (D’Avino et al. 2019).

4  Conclusions

In this work, the dynamics of a pair of spherical and sphe-
roidal particles aligned at the centerline of a cylindrical 
microchannel and suspended in a viscoelastic fluid is studied 

Fig. 8  Contours of the relative particle velocity as a function of the 
interparticle distance and the Deborah number for a pair of spheroi-
dal particles with AR = 2 for different values of � and for � = 0.2 . 
The blue, red and black lines correspond to the maximum, minimum 

and zero values of the relative particle velocity, respectively. The 
roman numbers denote the different pair dynamics: (I) attraction for 
d < dmin1 ; (II) attraction for d > dmin1 ; (III) repulsion for d < dmax ; 
(IV) repulsion for d > dmax (color figure online)
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by numerical simulations. The relative particle velocity is 
investigated by varying the interparticle distance, the Debo-
rah number, the fluid shear thinning, and the confinement 
ratio.

At a moderate confinement ratio, spherical and spheroidal 
particles with small aspect ratio attract at small distances 
regardless of fluid shear thinning for Deborah numbers lower 
than a critical value. For small De values, and for low or 
moderate shear-thinning fluids, a stable equilibrium regime 
also appears at large distances. Such regime, however, dis-
appears by increasing the fluid shear thinning. The magni-
tude of the relative particle velocity increases by increasing 

the Deborah number and by decreasing the shear thinning. 
Hence, the fastest variation of the particle microstructure 
is observed for highly elastic and nearly constant viscosity 
fluids. The maximum relative velocity is nearly insensitive 
to both the Deborah number and fluid shear thinning. For 
particles with spheroidal shape and large aspect ratios, the 
attraction region at small distances is not present, reducing 
the formation of doublets. Finally, by reducing the confine-
ment ratio, the pair dynamics significantly slows down and 
the attraction region at short distances is always present. The 
normal stress field in the fluid region between the particles 
justifies the observed dynamics.

Fig. 9  Contours of the relative particle velocity as a function of the 
interparticle distance and the Deborah number for a pair of spheroi-
dal particles with AR = 4 for different values of � and for � = 0.4 . 
The blue, red and black lines correspond to the maximum, minimum 

and zero values of the relative particle velocity, respectively. The 
roman numbers denote the different pair dynamics: (III) repulsion 
for d < dmax ; (IV) repulsion for d > dmax ; (V) attraction for d < dmin2 ; 
(VI) attraction for d > dmin2 (color figure online)
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The simulation results presented in this paper are use-
ful to design and optimize microfluidics devices aimed at 
ordering particles. Indeed, as recently reported (Del Giu-
dice et al. 2018), the dynamics of two particles gives useful 
information in terms of train stability and doublet formation. 
Since the present work explores the detailed pair dynamics 
in a wide range of the relevant fluid, flow, and geometrical 
parameters, useful indications in selecting the proper viscoe-
lastic fluid and operating conditions are provided. Of course, 
the selection of a specific fluid rheology and flow rate must 
also assure an efficient focusing mechanism, which is the 
preliminary step to achieve particle ordering.
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