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Abstract
Most bio-micro/nanoparticles, including cells, platelets, bacteria, and extracellular vesicles, are inherently suspended in 
biofluids (i.e., blood) with non-Newtonian fluid characteristics. Understanding migration behaviors of bioparticles in non-
Newtonian microfluidics is of significance in label-free manipulation of bioparticles, playing important roles in cell analysis 
and disease diagnostics. This review presents recent advances in focusing and sorting of bio-micro/nanoparticles by non-
Newtonian microfluidics. Principle and examples for passive and active manipulation of bioparticles in non-Newtonian and 
non-Newtonian/Newtonian hybrid microflows are highlighted. Limitations and perspectives of non-Newtonian microfluidics 
for clinical applications are discussed.

1  Introduction

Precise manipulation of bio-micro/nanoparticles, i.e., cells, 
platelets, bacteria, and extracellular vesicles, is critical for 
cell analysis, infectious disease detection, and tumor diag-
nostics and prognostics (Gay and Felding-Habermann 2011; 
Liu et al. 2019a, b; Plaks et al. 2013; Poudineh et al. 2018; 

van Niel et al. 2018). In microfluidics, it is feasible to manip-
ulate bio-micro/nanoparticles with sizes comparable to the 
microchannel dimension under predominantly laminar flow 
conditions (Ahmed et al. 2017; Sun et al. 2018; Xue et al. 
2015; Zhang et al. 2018b; Zhu and Yang 2017). In particu-
lar, microfluidics enables label-free sorting of bio-micro/
nanoparticles both passively and actively, relying on the 
physical differences in the properties of bioparticles. Passive 
microfluidic methods exploit solely hydrodynamic effects, 
such as fluid inertia effects, to focus and sort particles based 
on size, shape and so forth (Amini et al. 2014; Tang et al. 
2017; Wunsch et al. 2016; Xiang et al. 2014, 2016, 2018; 
Zhang et al. 2014, 2016a). Active microfluidic methods use 
external forces, including electric, acoustic, and magnetic 
forces, to compete with hydrodynamic forces, allowing for 
size-, elasticity-, and polarizability-dependent separation of 
particles (Hejazian et al. 2015; Kale et al. 2018; Karlsen 
et al. 2018; Laurell et al. 2007; Li et al. 2014; Wu et al. 2017; 
Yan et al. 2015; Zhang et al. 2018a). In most cases, particles 
are suspended in a Newtonian liquid (i.e., water and PBS) 
prior to microfluidic manipulation. In contrast, a majority 
of bio-micro/nanoparticles are immersed in biofluids (i.e., 
blood) with non-Newtonian fluid characteristics (Campo-
Deaño et al. 2013; Stickel and Powell 2005). Understand-
ing migration behaviors of bioparticles in non-Newtonian 
microflows is thus of profound importance for precise focus-
ing and sorting of particles in microfluidics.

The commonly used non-Newtonian fluids for microflu-
idic purposes are dilute polymer solutions and blood with 

This article is part of the topical collection “Particle motion in 
non-Newtonian microfluidics” guest edited by Xiangchun Xuan 
and Gaetano D’Avino.

 *	 Chao Liu 
	 liuc@nanoctr.cn

 *	 Tiejun Li 
	 li_tiejun@hebut.edu.cn

 *	 Jiashu Sun 
	 sunjs@nanoctr.cn

1	 School of Mechanical Engineering, Hebei University 
of Technology, Tianjin 300401, China

2	 CAS Key Laboratory of Standardization and Measurement 
for Nanotechnology, CAS Center for Excellence 
in Nanoscience, National Center for Nanoscience 
and Technology, Beijing 100190, China

3	 School of Mechanical Engineering, and Jiangsu Key 
Laboratory for Design and Manufacture of Micro‑Nano 
Biomedical Instruments, Southeast University, 
Nanjing 211189, China

4	 University of Chinese Academy of Sciences, Beijing 100049, 
China

http://orcid.org/0000-0003-4255-6202
http://crossmark.crossref.org/dialog/?doi=10.1007/s10404-019-2232-z&domain=pdf


	 Microfluidics and Nanofluidics (2019) 23:68

1 3

68  Page 2 of 9

intrinsic viscoelastic or shear-thinning effects (Del Giudice 
et al. 2015a; Kang et al. 2013; Lu et al. 2015; Yuan et al. 
2018). The particles suspended in non-Newtonian microflu-
idics experience an elastic lift force due to the fluid viscoe-
lasticity, which is not present in Newtonian microfluidics. 
This elastic lift force assists in manipulation of particles over 
a wide range of experimental conditions and particle sizes. 
In a microcapillary filled with dilute polymer solutions, elas-
tic forces arising from non-uniform normal stress differences 
are exerted on suspended microparticles, driving particles 
toward the center of the microcapillary where the shear rate 
is lowest (D’Avino et al. 2012; De Santo et al. 2014; Ho and 
Leal 1976; Leshansky et al. 2007; Xiang et al. 2018; Yang 
et al. 2011). To separate microparticles of different sizes 
within non-Newtonian microfluidics, three strategies are 
outlined. The first strategy is to explore the elasticity with 
or without the inertia of non-Newtonian fluids in microchan-
nels, which can lead to a size-dependent lateral migration of 
particles. The second one is to design a co-flow microfluidic 
system of non-Newtonian and Newtonian fluids that pro-
duces a stable fluid interface between two flows, allowing for 
a size-selective penetration of particles across the interface. 
The third one is to impose external force fields over non-
Newtonian microfluidics, such as electric and magnetic, so 
that particles could be sorted by size through a combined 
effect of hydrodynamics and electrophoresis or magneto-
phoresis. These methods facilitate precise manipulation of 
bio-micro/nanoparticles in non-Newtonian microfluidics.

This review summarizes recent progress in manipulation 
of bio-micro/nanoparticles including cells, platelets, bacte-
ria, and extracellular vesicles by non-Newtonian microflu-
idics. The principles of passive manipulation of bio-micro/
nanoparticles in purely viscoelastic fluids are described. 
Microfluidic co-flow of non-Newtonian and Newtonian flu-
ids is discussed for manipulation (including focusing, sepa-
ration, isolation, and enrichment) of a variety of bioparticles 
with improved resolution. Active manipulation of bioparti-
cles through applying an external force field, such as electric 
or magnetic, is presented. Finally, limitations and perspec-
tives of non-Newtonian microfluidic manipulation of biopar-
ticles for clinical applications are overviewed.

2 � Passive manipulation of bioparticles 
in non‑Newtonian microflows

Non-Newtonian microfluidics enables passive and precise 
particle manipulation in a continuous, label-free, and size-
dependent manner, by exploiting flow-induced lift forces 
in a viscoelastic carrier fluid. For example, the elastic lift 
force Fe (Fe ~ a3, in which a is the diameter of the particle) 
arising at non-vanishing Weissenberg number (Wi = λγ > 0, 
in which λ is the relaxation time of a viscoelastic fluid, 

and γ is the characteristic shear rate) tends to drive par-
ticles toward lateral positions with minimum shear rates, 
i.e., the centerline and four corners of a rectangular micro-
channel (D’Avino et al. 2017; Liu et al. 2016b; Lu et al. 
2017; Yang et al. 2012). Moreover, at moderate Reynolds 
number (Re = ρUD/η > 10, in which ρ is the fluid density, 
U is the characteristic flow speed, D is the dimension of 
microchannel cross section, and η is the dynamic viscosity), 
the inertial lift force Fi (Fi ~ a4) induces lateral migration 
of particles toward equilibrium positions between the cen-
terline and walls of a microchannel (Amini et al. 2014; Liu 
et al. 2015a; Lu and Xuan 2015; Xiang et al. 2014; Zhang 
et al. 2014, 2016a). The combined effects of Fe and Fi can 
reduce the multiple focusing positions of particles into a sin-
gle one along the centerline (elasto-inertial focusing), which 
have been extensively investigated for cell manipulation in 
Non-Newtonian microflows (Fig. 1a) (Lim et al. 2014; Liu 
et al. 2015b; Yang et al. 2011). For manipulation of bio-
nanoparticles by non-Newtonian microfluidics, Fe could 
play a dominate role over Fi by proper tuning of rheological 
properties of non-Newtonian fluids (Ciftlik et al. 2013; Kim 
et al. 2012).

2.1 � Cells

There are heterogeneous groups of bio-microparticles with 
diverse sizes, including circulating tumor cells (CTCs, 
15–25 μm), white blood cells (WBCs, 7–12 μm), red blood 
cells (RBCs, 6–8 μm), platelets (2–3 μm), and pathological 
bacteria (1–2 μm) (Bhagat et al. 2011; Tan et al. 2009; Wang 
et al. 2015). Non-Newtonian microfluidics featuring precise 
manipulation of particles over a wide size range provides a 
promising avenue for label-free separation of diverse bio-
microparticles (Li et al. 2018; Nam et al. 2012; Tan et al. 
2017; Yang et al. 2012). For example, a viscoelastic micro-
fluidic device has been designed to isolate MCF-7 cells 
(human breast cancer cell line) from lysed blood (Fig. 1b) 
(Nam et al. 2015). Using 0.1 wt% of hyaluronic acid (HA) 
as the additive in the lysed blood, MCF-7 cells and WBCs 
were pre-aligned into a single stream at the centerline of a 
circular capillary (inner diameter of 50 μm) by elasto-iner-
tial focusing, followed by size-dependent lateral separation 
induced by the elasto-inertial effect in bifurcated rectangular 
microchannels. At a high flow rate of 12 mL h−1 (2.4 × 107 
cells h−1), the device achieved a high separation efficiency 
of 94% and a high purity of 97% for MCF-7 cells with a 
size cutoff of 16 μm. This design was further adapted to 
isolate malaria parasites (1.5–2 μm) from lysed blood at a 
flow rate of 24 mL h−1 with a high recovery rate of 94% and 
a high purity of 99% (Nam et al. 2016). An efficient removal 
of WBCs and a 7-fold enrichment of malaria parasites 
allowed for sensitive PCR detection of malaria parasites. 
This elasto-inertial separation relies on a size-dependent 
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lateral migration speed of particles in non-Newtonian micro-
flows. Through optimization of the length of microchannel, 
accurate separation of a variety of bio-microparticles can 
be achieved.

In contrast to the typical focusing of particles along the 
centerline of microchannel in non-Newtonian microfluid-
ics, particles with a large blockage ratio (the ratio of parti-
cle diameter to channel diameter ≥ 0.25) tend to be focused 
toward the sidewalls due to the enhanced compressive elastic 
stress at the near-center part of the particle (Huang et al. 
1997; Li et al. 2016; Liu et al. 2015b). This strategy has been 
used for sheathless separation of MCF-7 cells from RBCs in 
a straight microchannel with 100 μm wide and 50 μm high 

(Fig. 1c) (Liu et al. 2015b). When using 0.2 wt % denatur-
ized poly(ethylene oxide) (PEO) solution as the carrier fluid, 
a separation efficiency of 91.4% and an enrichment ratio 
of 11.7 were obtained for MCF-7 cells at a throughput of 
3 × 108 cells h−1 (Liu et al. 2015b). This mechanism was 
extended to isolate E. coli bacteria from RBCs with 99.9% 
separation efficiency in a small microchannel with 40 μm 
wide and 10 μm high (Fig. 1c).

Moreover, the elasto-inertial focusing coupled with Dean 
flow in non-Newtonian microfluidics was exploited for sep-
aration of blood cells and plasma in diluted whole blood 
(Fig. 1d) (Lee et al. 2013; Yuan et al. 2016b). With the assis-
tance of PEO solutions, blood cells including WBCs, RBCs, 

Fig. 1   Bio-microparticle manipulation in viscoelastic fluids. a 
Elasto-inertial focusing of microparticles along the centreline of 
a microchannel. Fe is the elastic lift force, and Fi is the inertial lift 
force. Reproduced with permission (Liu et al. 2017). Copyright 2017, 
American Chemical Society. b Elasto-inertial separation of MCF-7 
cells from white blood cells with a cutoff size of 16  μm in a two-
stage microfluidic device. Reproduced with permission (Nam et  al. 

2015). Copyright 2015, Elsevier. c Separation of MCF-7 cells with 
a large blockage ratio in straight rectangular microchannels. Repro-
duced with permission (Liu et al. 2015b). Copyright 2015, American 
Chemical Society. d The elasto-inertial focusing coupled with Dean 
flow for plasma extraction. Reproduced with permission (Yuan et al. 
2016b). Copyright 2016, Royal Society of Chemistry
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and platelets were aligned at the middle plane within the 
microchannel by elasto-inertial focusing. Meanwhile, Dean 
vortices generated within the contraction–expansion trian-
gular cavities pushed the cells toward the opposite side of 
the cavities (Yuan et al. 2016b). After passing through the 
microchannel containing an array of asymmetrical cavities, 
the focused stream of cells was aligned toward the side out-
let, while the plasma was collected at all other outlets. Under 
the flow rate of 3 mL h−1 and PEO concentration of 0.1 wt%, 
this platform removed 99.99% of blood cells from the whole 
blood samples after two consecutive runs. The coupling of 
Dean flow with elasto-inertial focusing was also investigated 
in spiral microchannels (Liu et al. 2016a; Xiang et al. 2016). 
Systematic optimization of spiral channel geometry and flow 
conditions resulted in a three-dimensional single-line focus-
ing of particles in a single-spiral microchannel (Xiang et al. 
2016). In a double-spiral microchannel, a size-based separa-
tion of the mixture of λ-DNA molecules and blood platelets 
with efficiencies over 95% was demonstrated in PEO solu-
tions (Liu et al. 2016a).

2.2 � Extracellular vesicles

Extracellular vesicles (EVs), including exosomes 
(30–200 nm in diameter) and microvesicles (200–1000 nm 
in diameter), are membrane-bound phospholipid nanovesi-
cles actively secreted by mammalian cells into the circula-
tion (Peinado et al. 2012; Shao et al. 2018; Shurtleff et al. 
2018). EVs are extensively involved in intercellular com-
munication and pathological processes, serving as promising 
diagnostic or prognostic biomarkers of diseases (Colombo 
et al. 2014; Lee et al. 2018; Thery et al. 2002). Isolation of 
EVs from biofluids such as serum and plasma is a prerequi-
site for sensitive detection of EVs. However, it is challenging 
to manipulate EVs by conventional bulk methods owing to 
the small size of EVs (Contreras-Naranjo et al. 2017; Witwer 
et al. 2013).

Viscoelastic microfluidics has emerged as an efficient 
tool for focusing and separating bio-nanoparticles (De 
Santo et al. 2014). Using the PEO solution with minimized 
shear-thinning effect (molecular weight of 0.6 × 106 g/mol, 
and 0.6 wt%) as the carrier fluid in a spiral microchannel, 
a sheathless focusing of 100 nm particles and λ-DNA mol-
ecules with efficiency over 80% was demonstrated at a flow 
rate of 0.32 μL h−1 (Fig. 2a) (Liu et al. 2016a). A sheath 
flow design of viscoelastic microfluidics enabled separation 
of exosomes and microvesicles using PEO as the additive 
(0.1 wt%) in serum samples (Fig. 2b) (Liu et al. 2017). The 
viscoelastic sheath fluid was injected from the middle inlet 
to pre-align EVs into a tight stream along the sidewalls. The 
size-selective lateral migration of EVs driven by the elastic 
lift resulted in efficient separation of small exosomes and 
large microvesicles after passing through the microchannel. 

Under an optimal sample flow rate of 0.2 mL h−1, the iso-
lated exosomes by viscoelastic microfluidics had a high 
purity of > 90% and a high recovery rate of > 80%, much 
higher than the recovery rate of 5–25% by conventional 
gold-standard ultracentrifugation (Lamparski et al. 2002). 
These investigations suggest an important role of viscoelas-
tic microfluidics in manipulation of bio-nanoparticles.

3 � Passive manipulation of bioparticles 
in non‑Newtonian hybrid microflows

In recent years, microfluidic hybrid systems of non-New-
tonian and Newtonian fluids have been proposed for label-
free and high-resolution manipulation of bioparticles with 
improved capability for handling complex biofluids (Ha 
et al. 2016; Tian et al. 2017, 2018; Yuan et al. 2016c, 2017, 
2018). The microfluidic co-flow of viscoelastic (PEO solu-
tions) and Newtonian fluids (water or PBS) can generate a 
stable viscoelastic/Newtonian interface, inducing an interfa-
cial elastic lift force (Fe ~ a3) to compete with the inertial lift 
force (Fi ~ a4). The competition between the two forces led 
to lateral migration of bioparticles across the interface in a 
size-dependent manner (Fig. 3). This non-Newtonian hybrid 
microfluidics was applied to a variety of bio-microparticles 
including CTCs, WBCs, RBCs, platelets, and bacteria.

3.1 � Cells

Isolation of CTCs from untreated whole blood is a diffi-
cult task due to the extreme rarity and high heterogeneity of 
CTCs. The non-Newtonian hybrid microfluidics offered a 
new avenue for label-free size-based isolation of rare tumor 
cells from blood samples (Fig. 4) (Tian et al. 2018). Using 
a high flow rate ratio between viscoelastic fluid (PEO solu-
tions, 0.05 wt%) and whole blood, two shape flow interfaces 
were generated near the walls of a straight microchannel. 
Large tumor cells could pass through the interface due to the 
dominant Fi, whereas small blood cells were intercepted by 
the interface due to the dominant Fe. A separation efficiency 
of 95.1%, a recovery rate of 77.5%, and a cell viability of 
approximately 100% were achieved after microfluidic iso-
lation of tumor cells (50 cells mL−1) from untreated whole 
blood (Fig. 4a). A similar strategy based on the combined 
effect of Fi and Fe was also adapted to transport tumor cells 
from non-Newtonian fluid to Newtonian buffer with 92.8% 
efficiency (Ha et al. 2016; Yuan et al. 2016c, 2017).

3.2 � Bacteria

Rapid isolation and identification of infectious bacteria from 
whole blood can significantly improve the outcome of anti-
microbial treatment. Due to the similar sizes of bacteria and 
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platelets, precise manipulation methods, such as non-Newto-
nian hybrid microfluidics, are required for label-free separa-
tion of bacteria and platelets (Fig. 4b) (Tian et al. 2017). To 
generate stable flow interfaces in a straight microchannel of 
20 μm wide, the sample fluid was the mixture of Staphylo-
coccus aureus (1 μm) and platelets (2–3 μm) in PBS, and the 
sheath fluid was the viscoelastic PEO solution (0.01 wt%). 
The absence of elastic stresses at the Newtonian fluid (PBS) 
gave rise to an effective elastic lift force at the interface to 
compete with the inertial lift force on bioparticles, enabling 
size-selective separation of Staphylococcus aureus and plate-
lets with 97% separation efficiency. The non-Newtonian hybrid 
microfluidics provided a high-resolution tool for manipulating 
bioparticles with size range of 1–15 μm in complex biofluids.

4 � Active manipulation of bioparticles 
in non‑Newtonian microflows

Active microfluidic methods allow for precise manipula-
tion of bioparticles under an external electric or magnetic 
field, which are less dependent on channel design and flow 

Fig. 2   Manipulation of bio-nanoparticles in viscoelastic fluids. a 
Sheathless focusing of 100 nm particles and λ-DNA molecules using 
the PEO solution as the carrier fluid in a spiral microfluidic device. 
Reproduced with permission (Liu et  al. 2016a). Copyright 2016, 

American Chemical Society. b Label-free separation of exosomes and 
microvesicles with a viscoelastic sheath flow. Reproduced with per-
mission (Liu et al. 2017). Copyright 2017, American Chemical Soci-
ety

Fig. 3   Particle manipulation in microfluidic hybrid systems of non-
Newtonian and Newtonian fluids. The competition between interfa-
cial elastic lift force and inertial lift force led to lateral migration of 
particles across the interface in a size-dependent manner (Reproduced 
with permission (Tian et al. 2017). Copyright 2017, Royal Society of 
Chemistry)
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conditions. The coupling of active manipulation with non-
Newtonian microfluidics is expected to improve the perfor-
mance of particle focusing and separation in microchannels 
(Li and Xuan 2018; Yan et al. 2017; Yuan et al. 2016a).

4.1 � Electrophoresis

Electrophoresis refers to the particle motion relative to the 
ambient fluid induced by an electric field (Einarsson and 
Mehlig 2017; Ko et al. 2018). The integration of electro-
phoresis with viscoelastic fluids (PEO solutions) resulted in 
electrophoretic slip-tuned migration of microparticles in a 
straight microchannel (Fig. 5a) (Li and Xuan 2018). A lead-
ing (positive electrophoretic slip velocity) or lagging (nega-
tive electrophoretic slip velocity) particle in a combined 
pressure- and electric field-driven viscoelastic flow expe-
rienced an electrophoresis-induced extra lift force toward 
the microchannel sidewalls or the centreline. By tuning the 
direction and magnitude of a direct-current (DC) electric 
field, particles could be focused at the sidewalls or centreline 
of a straight microchannel filled with viscoelastic fluids (Li 
and Xuan 2018). The coupling of electrophoresis and vis-
coelastic focusing could be exploited for cell manipulation 

in a surface charge- and size-dependent manner in further 
studies (Abercrombie and Ambrose 1962; Chen et al. 2016).

4.2 � Magnetophoresis

Magnetophoresis is the particle motion induced by a non-
uniform magnetic field (Zhao et al. 2016). The hybridization 
of magnetophoresis and viscoelastic focusing was demon-
strated for particle separation with high efficiency. In an 
H-shaped microchannel, magnetic particles suspended in a 
viscoelastic, diamagnetic solution (0.5 wt% polyacrylamide) 
were pre-focused along the centreline of the microchannel, 
followed by being deflected toward a magnet placed at the 
side of microchannel by positive magnetophoresis (Del Giu-
dice et al. 2015b). The viscoelastic pre-focusing yielded a 
high deflection efficiency up to 96% for magnetic particles, 
which was much higher than that obtained without pre-
focusing on a Newtonian fluid. Using a similar separation 
strategy, negative magnetophoresis in a ferrofluid combined 
with viscoelastic focusing was applied to separate non-
magnetic particles (Zhang et al. 2016b). In a viscoelastic 
PEO solution (0.2 wt%) spiked with magnetite nanoparticles 
(0.11 wt%), a binary mixture of 5 μm and 13 μm particles 
was separated with purities up to 99.3% under an optimal 
flow rate of 0.9 mL h−1 (Fig. 5b). As ferrofluids showed 
good biocompatibility and remained stable in the presence 
of polymers, a hybrid platform combining ferrofluid-based 
negative magnetophoresis and viscoelastic focusing could 
allow for label-free cell manipulation with high efficiency 
and versatility.

5 � Conclusions and outlook

Passive and active non-Newtonian microfluidics has been 
exploited for label-free, size-dependent, and continuous 
manipulation of a variety of bioparticles including CTCs, 
WBCs, RBCs, platelets, bacteria, and EVs with high effi-
ciencies. Hybrid microfluidic systems containing both 
non-Newtonian and Newtonian fluids further improved the 
capability for handling complex biofluids and the size reso-
lution for separation of bioparticles. The coupling of active 
manipulation in non-Newtonian fluids could provide new 
avenues for label-free bioparticle manipulation with high 
efficiency and versatility. However, several challenges need 
to be tackled to further enable bioparticle manipulation in 
non-Newtonian microfluidics. The biocompatibility of the 
additive polymers, both synthetic and biological, to living 
cells should be investigated rigorously. The physical prop-
erties of cells, such as shape and deformability, may affect 
the manipulation task, but are rarely considered in non-
Newtonian microfluidics. To facilitate the cell analysis and 
disease diagnostics in practical clinical applications, further 

Fig. 4   The non-Newtonian hybrid microfluidics for high-resolu-
tion separation of bioparticles. a Isolation of rare tumor cells from 
untreated whole blood. Reproduced with permission (Tian et  al. 
2018). Copyright 2018, Royal Society of Chemistry. b Separation of 
Staphylococcus aureus and platelets. Reproduced with permission 
(Tian et al. 2017). Copyright 2017, Royal Society of Chemistry



Microfluidics and Nanofluidics (2019) 23:68	

1 3

Page 7 of 9  68

technical improvements would be required to improve the 
throughput and to integrate bioparticle purification and 
downstream analysis into a single microfluidic device. We 
believe that non-Newtonian microfluidics may become a 
promising tool for manipulation of bio-micro/nanoparticles 
in diverse biochemical fields.
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