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Abstract
There has been in the past decade a significantly growing interest in the use of flow-induced lift forces for a passive control 
of particle motion in microchannels. This nonlinear microfluidic technique can be implemented in both Newtonian and non-
Newtonian fluids. The motions of rigid particles in confined flows of viscoelastic fluids with and without shear-thinning 
effects have each been well studied in the literature. However, a comprehensive understanding of particle motion in inelastic 
shear-thinning fluids is still lacking. We present herein a systematic experimental study of the motion of rigid particles in 
the Poiseuille flow of pseudoplastic xanthan gum (XG) solutions through straight rectangular microchannels. We find that 
the number and location of particle equilibrium positions are both a strong function of channel dimension, particle size and 
XG concentration. We attempt to explain the experimental observations using the competition of inertial and elastic lift 
forces acting on particles. Our experimental results imply a potentially high throughput separation of rigid particles by size 
in XG solutions.
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1 Introduction

Since the development of polydimethylsiloxane (PDMS)-
based soft lithography technique (Duffy et al. 1998), micro-
fluidic devices have been widely used to focus (Xuan et al. 
2010), trap (Huang et al. 2017), concentrate (Nilsson et al. 
2009), and separate (Sajeesh and Sen 2014) particles (from 
biological cells to synthetic beads, rigid particles to soft 
drops etc.) for many chemical, biomedical and environmen-
tal applications (Karimi et al. 2013; Novo et al. 2016; Sib-
bitts et al. 2018). A variety of external force fields (e.g., 
acoustic (Connacher et al. 2018), electric (Lapizco-Encinas 
2018), magnetic (Munaz et al. 2018) and optical (Yang and 
Gijs 2018) fields) have thus far been demonstrated to actively 
control the motion of particles in these devices. However, 

there has recently been a significantly growing interest in 
the use of flow-induced inherent lift and/or drag forces for a 
passive control of particle motion in microchannels (Amini 
et al. 2014; Liu and Hu 2017). This nonlinear microfluidic 
technique (Stoecklein and Di Carlo 2018) has been imple-
mented in both Newtonian (Di Carlo 2009; Martel and Toner 
2014; Zhang et al. 2016a) and non-Newtonian (D’Avino and 
Maffettone 2015; Lu et al. 2017; Yuan et al. 2018) fluids. It 
has the capability to achieve a very high throughput with the 
advantages of simplicity and effectiveness (Hur et al. 2010; 
Lim et al. 2014a). Moreover, it has the potential to integrate 
with an active particle manipulation technique [e.g., dielec-
trophoresis (Kung et al. 2016) or magnetophoresis (Del Giu-
dice et al. 2015b; Kim et al. 2016; Zhang et al. 2016b; Zhou 
et al. 2017; and; Chen et al. 2017)] for enhanced sensitivity, 
specificity and flexibility (Yan et al. 2017).

The lift forces on particles in passive microfluidic tech-
niques can be induced by three different effects: fluid iner-
tia, fluid non-Newtonian rheology, and particle deformation 
(Leal 1980). The inertia of fluid causes rigid particles to 
move across the flow towards specific lateral positions in 
Newtonian fluids (Segre and Silberberg 1961; Ho and Leal 
1974). Such an inertial focusing is the foundation of the so-
called inertial microfluidics (Di Carlo 2009) that has found 
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wide applications (Zhang et al. 2016a; Gou et al. 2018; 
Stoecklein and Di Carlo 2018) since its first demonstra-
tion in PDMS-based rectangular microchannels (Di Carlo 
et al. 2007). The non-Newtonian properties of fluid yield 
an elastic lift (Karnis et al. 1963; Karnis and Mason 1966) 
because of the gradients in normal stress differences, which 
directs particles towards the low shear rate regions in the 
absence of fluid inertia (Ho and Leal 1976; Leal 1979). The 
shape change causes deformable particles to move towards 
either the channel center or walls depending on the ratio of 
the dispersed-to-continuous fluid viscosity (Mortazavi and 
Tryggvason 2000; Takemura et al. 2009; Geislinger and 
Franke 2014).

The motion of rigid particles in the flow of non-New-
tonian fluids through microchannels has been increasingly 
studied (D’Avino et al. 2017; Lu et al. 2017; Yuan et al. 
2018) since the work of Leshansky et al. (2007). A range of 
viscoelastic polymer solutions [e.g., polyvinylpyrrolidone 
(PVP) (Romeo et al. 2013; Del Giudice et al. 2013; Xiang 
et al. 2016a, 2018), polyethylene oxide (PEO) (Lee et al. 
2013; Li et al. 2016, 2018; Liu et al. 2015, 2017; Lu and 
Xuan 2015; Lu et al. 2015; Tian et al. 2018; Yuan et al. 
2015, 2016; Xiang et al. 2016b), and polyacrylamide (PAA) 
(Leshansky et al. 2007; Lim et al. 2014b)] and biological 
fluids [e.g., hyaluronic acid (HA) (Lim et al. 2014a; Nam 
et al. 2015; Asghari et al. 2017) and DNA solutions (Kang 
et al. 2013; Kim and Kim 2016)] have been tested, where 
fluid elasticity and shear thinning are each found to play a 
significant role in the lateral particle migration. Specifically, 
the fluid elasticity effect causes particles to move to the 
region(s) of the lowest shear rate (Yang et al. 2012; Villone 
et al. 2013; Seo et al. 2014b), which is, however, strongly 
influenced by the fluid inertial effect (Yang et al. 2011; Vil-
lone et al. 2013; Li et al. 2015). The fluid shear-thinning 
effect promotes the particle migration away from the channel 
centerline (Huang and Joseph 2000; D’Avino et al. 2012; Seo 
et al. 2014a; Del Giudice et al. 2015a, 2017; Liu et al. 2016; 
Song et al. 2016).

In a recent study, we performed a systematic experimen-
tal study of both the individual and the combined effects of 
fluid inertia, elasticity and shear thinning on the motion of 
rigid spherical particles in a straight rectangular microchan-
nel (Li and Xuan 2018). We tested the particle motion in 
four types of non-Newtonian fluids with distinct rheological 
properties: strongly elastic PVP solution with a negligible 
shear-thinning effect (Liu et al. 2015), inelastic xanthan gum 
(XG) solution with a strong shear-thinning effect (Japper-
Jaafar et al. 2010), moderately elastic PEO solution with a 
relatively weak shear-thinning effect (Rodd et al. 2005; De 
Santo et al. 2014), and strongly elastic PAA solution with 
a strong shear-thinning effect (Poole and Escudier 2004). 
As noted above, the motions of rigid particles in confined 
flows of viscoelastic PVP, PEO and PAA solutions as well as 

viscoelastic DNA and HA solutions with varying parameters 
have each been investigated in the literature (Liu and Hu 
2017; Lu et al. 2017; Yuan et al. 2018). However, a compre-
hensive understanding of particle motion in inelastic shear-
thinning [i.e., pseudoplastic (Gauthier et al. 1971a, b)] fluids 
is still lacking. We, therefore, perform in this work a detailed 
parametric study of the effects of channel dimension, par-
ticle size and polymer concentration on the motion of rigid 
particles in the Poiseuille flow of XG solutions through 
straight rectangular microchannels. We wish this work along 
with other recent papers as reviewed above would improve 
our understanding of how fluid rheological properties affect 
particle motion in microchannels.

2  Experiment

2.1  Particle suspensions

Three concentrations of XG solutions were used in our 
experiments: 500 ppm, 2000 ppm and 3750 ppm. They 
were each prepared by dissolving a certain amount of XG 
powders (Tokyo Chemical Industry) into deionized water 
(Fisher Scientific). XG solutions have been long known to be 
strongly shear thinning with little elasticity (Dhahir and Wal-
ters 1989; Lindner et al. 2000; Aytouna et al. 2013; Haase 
et al. 2017). The rheological properties of our prepared XG 
solutions are listed in Table 1, which are extracted from the 
literature (Japper-Jaafar et al. 2010) due to the lack of meas-
uring equipment in our lab. Their viscosities, � , can be esti-
mated using the Carreau-Yasuda model (Yasuda et al. 1981) 
based on the average fluid shear rate across the microchannel 
width, ̄̇𝛾 = 2V∕w,

In the above, V is the average fluid velocity, w is the chan-
nel width, �∞ is the infinite-shear-rate viscosity, �0 is the 
zero-shear-rate viscosity, �CY is a time constant, n is the 
power-law index, and a is a fitting parameter. The values 
of these parameters for the three types of XG solutions are 

(1)
𝜂 − 𝜂∞

𝜂0 − 𝜂∞
=
[

1 +
(

𝜆CY ̄̇𝛾
)a](n−1)∕a

Table 1  Rheological properties (refer to Eq. (1) for the definitions of 
symbols) of the prepared XG solutions at 20 °C

All values are extracted from Japper-Jaafar et al. (2010)

XG concen-
tration (ppm)

n �
0
 (Pa s) �∞ (Pa s) �

CY
 (s) a

500 0.58 1.97 × 10−2 1.13 × 10−3 3.88 × 10−1 2.10
2000 0.34 3.68 2.24 × 10−3 2.15 × 10+ 1 0.81
3750 0.19 2.85 × 10+ 2 4.60 × 10−3 4.14 × 10+ 2 1.47
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given in Table 1. Spherical fluorescent (green) polystyrene 
particles of 10 µm in diameter (Thermo Scientific) were re-
suspended in each of the prepared solutions for the study of 
XG concentration effect. Additionally, spherical fluorescent 
particles of 5 µm (Thermo Scientific) and 20 µm (Phospho-
rex) in diameter were re-suspended into 2000 ppm XG solu-
tion for the study of particle size effect.

2.2  Experimental setup

Figure 1a shows a picture of the straight rectangular micro-
channel, which was fabricated with polydimethylsiloxane 
(PDMS) using a custom-modified soft lithography tech-
nique as described elsewhere (Liang et al. 2011). The chan-
nel was measured 2 cm long with a fixed width of 68 (± 2) 
µm. It was, however, made to have three different depths, 
i.e., 30 µm, 54 µm and 127 µm, for the study of channel 
aspect ratio effect on particle motion in XG solutions. At 
each end of the microchannel was there an expansion region 
with an array of patterned posts for the filtration of any 
debris. We used a right-angle prism (NT 32-526, Edmund 
Optics Inc.) to visualize the particle motion in the vertical 
plane of the microchannel (i.e., side view), which comple-
mented the view in the horizontal plane (i.e., top view). The 
prism was pre-embedded into the PDMS slab and placed 
right before the outlet expansion with a 400 µm distance 
from the channel edge. The prepared particle suspension 
was driven through the microchannel using a syringe pump 
(KD Scientific). Particle motion was recorded through an 

inverted fluorescent microscope (Nikon Eclipse TE2000U, 
Nikon Instrument) with a CCD camera (Nikon DS-Qi1Mc) 
at a rate of around 15 frame/s. Particle streak images were 
generated by stacking a sequence of snapshot images with 
the maximum intensity projection in Nikon imaging soft-
ware (NIS-Elements AR 2.30). Particle intensity plots were 
obtained from reading the values of gray scale intensity of 
particle images in  MATLAB®, which were then scaled (after 
the background intensity was subtracted) and plotted over 
the channel width or depth.

3  Theory

3.1  Force analysis

Figure 1b shows schematically the inertial and elastic lift 
forces acting on a neutrally buoyant spherical particle in the 
flow of XG solutions through a straight rectangular micro-
channel. The fluid inertia-driven lift, �iL , can be broken 
into two competing components: the wall-induced inertial 
lift, �iL_w , pushes the particle away from any channel walls 
because of the pressure increase in the particle–wall gap; the 
shear gradient-induced inertial lift, �iL_s , directs the particle 
towards the high shear-rate region, i.e., the center of each 
face (see the contour of fluid shear rate in Fig. 1b), because 
of the curvature of fluid velocity profile (Ho and Leal 1974; 
Leal 1980; Di Carlo 2009). The following formula has been 
often suggested to evaluate the total inertial lift (Asmolov 
1999),

where ρ is the fluid density, d is the particle diameter, and �̇� 
is the local fluid shear rate.

The fluid elasticity-driven lift, �eL , results from the non-
uniform normal stress differences in non-Newtonian fluid 
flows (Leal 1979; D’Avino et al. 2017). As the magnitude of 
second normal stress difference, N2 , is usually much smaller 
than that of the first normal stress difference, N1 , in polymer 
solutions (Bird et al. 1987), �eL can be viewed proportional 
to the variation of N1 over the size of the particle (Leshansky 
et al. 2007), i.e.,

Similar to other diluted solutions of high molecular 
weight polymers (Barnes et al. 1989), N1 of XG solutions, 
though small, has been demonstrated (Escudier and Smith 
1999; Won and Kim 2004) to exhibit a power-law behavior, 
N1 = A�̇�m, where A and m are both fluid-dependent constants 
with m typically in the range 1 < m ⩽ 2 (Barnes et al. 1989). 
Hence, Eq. (3) can be rewritten as:

(2)�iL = �iL_w + �iL_s ∼ 𝜌d4�̇�2,

(3)�eL ∼ d3∇N1

(4)�eL ∼ d3A∇�̇�m,
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Fig. 1  a Picture of a straight rectangular microchannel with a right-
angle prism embedded before the outlet expansion for viewing the 
particle motion from the side; b schematic illustration of the inertial 
and elastic lift forces acting on a particle in the flow of XG solution 
through a straight rectangular microchannel, where the background 
color shows the contour of fluid shear rate, �̇� (the darker the larger 
magnitude), in the cross-section; c widthwise profile of the flow 
velocity, u(x, y) (scaled by the maximum velocity, umax ), for Newto-
nian ( n = 1 ) and shear-thinning ( n = 0.3 ) fluids at varying values of 
Re in a straight rectangular microchannel
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where �eL points towards the low shear rate region, i.e., the 
center and four corners of the channel cross-section (see the 
shear rate contour in Fig. 1b).

Due to their strong dependences on the local shear rate, 
�̇� , the inertial and elastic lift forces are both affected by the 
fluid velocity profile. As viewed from the plot in Fig. 1c, the 
velocity profile of a shear-thinning fluid flow ( n = 0.3 as an 
example) gets flat near the channel center in the absence of 
inertia, in contrast to the parabolic profile of a Newtonian fluid 
flow ( n = 1 ). Therefore, the shear gradient-induced inertial lift, 
�iL_s , may become different near the channel center in the flow 
of XG solutions. Such a variation should work with the addi-
tional elastic lift, �eL , to shift the equilibrium particle positions 
in XG solutions as compared to those in Newtonian fluids, 
which has been demonstrated in our recent study (Li and Xuan 
2018). Specifically, we observed that 10 µm particles migrate 
to both the channel center and corners (i.e., the lowest shear 
rate region, see the background color in Fig. 1b) in an inertia-
less flow of 2000 ppm XG solution through a nearly square 
microchannel. Increasing the fluid inertia shifts particles away 
from both the center and corner equilibrium positions towards 
a mid-plane in between.

3.2  Dimensionless numbers

The inertial and elastic lift forces are both a strong function of 
the (channel) Reynolds number,

where Dh is the hydraulic diameter of the microchannel, 𝜂
(

̄̇𝛾
)

 
is the fluid viscosity estimated via Eq. (1) using the average 
fluid shear rate across the channel width, Q is the volumet-
ric flow rate, and h is the channel height. The value of Re is 
used to study the flow rate effect, and that of the power-law 
index, n , in Eq. (1) is used to study the XG concentration 
effect. The particle size effect is studied using the confine-
ment ratio,

and the channel dimension effect is studied using the aspect 
ratio,

Another dimensionless number that is often used to char-
acterize the inertial lift is the particle Reynolds number (Di 
Carlo 2009),

Note that Rep > 0.1 has been suggested as one crite-
rion for effective inertial focusing of particles in straight 

(5)Re =
𝜌VDh

𝜂
(

̄̇𝛾
) =

2𝜌Q

𝜂
(

̄̇𝛾
)

(w + h)
,

(6)� = d∕Dh,

(7)AR = w∕h.

(8)Rep = �2Re.

rectangular microchannels (Amini et al. 2014; Martel and 
Toner 2014).

4  Results and discussion

4.1  Effect of channel depth

Figure 2 illustrates the motions of 10 µm particles in the 
flow of 2000 ppm XG solution through straight rectangular 
microchannels of 30 µm ( AR = 2.27 ), 54 µm ( AR = 1.26 ) 
and 127 µm ( AR = 0.54 ) depths, respectively, within the 
same range of flow rates. In a roughly square microchannel 
with AR = 1.26 , particles are seen from the top- and side-
view images in Fig. 2b to travel near the channel center and 
corners when the flow rate is no higher than 1 mL/h (at 
which Re = 0.78 ). This migration is primarily a result of 
the elastic lift, �eL , which, in the absence of inertial focus-
ing (because of Rep < 0.02 ) (Di Carlo 2009), should direct 
particles towards the low shear rate regions over the channel 
cross-section (see the contour of fluid shear rate in the right-
most schematic of Fig. 2b). Increasing the flow rate leads to 
an enhanced inertial lift, which, as reported in our previous 
study (Li and Xuan 2018), acts to push particles away from 
both the channel center (due to the shear gradient-induced 
inertial lift component, �iL_s ; see Fig.  1b) and corners 
(due to the wall-induced inertial lift component, �iL_w ; see 
Fig. 1b) towards a mid-plane in between. It also enhances 
the elastic lift though at a smaller rate as viewed from the 
dissimilar shear rate dependences of the two lift forces in 
Eq. (2) and Eq. (4), respectively. It is important to note that 
the velocity profile of shear-thinning fluids becomes closer 
to that of Newtonian fluids with the increase of flow rate as 
demonstrated in Fig. 1c. Therefore, �iL_s though vanishingly 
small near the channel centerline at a small Re because of the 
locally zero-shear rate, grows with increasing Re . The elasto-
inertial equilibrium positions at the flow rate of 10 mL/h are 
schematically shown in the cross-sectional view of Fig. 2b.

In a shallower microchannel with a larger AR = 2.27 
(Fig. 2a), the inertial effect starts altering the elastic equi-
librium positions near the channel center and corners at the 
flow rate of 1 mL/h (at which Re = 1.39 ) because of the 
increase in both Re and particle confinement ratio ( � = 0.24 ) 
as compared to the roughly square microchannel (where 
Re = 0.78 and � = 0.17 ) in Fig. 2b. This phenomenon takes 
place even earlier (at 0.4 mL/h in Fig. 2a) in the vertical 
plane of the microchannel, where the elastic and inertial 
lift forces both increase due to the greater shear rate and 
shear rate gradients therein. The equilibrium particle posi-
tions at higher flow rates turn out to be similar to those in 
the microchannel with AR = 1.26 in Fig. 2b, except that the 
elasto-inertial particle focusing in the former is visually bet-
ter (particularly in the depth direction, see the images at 
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10 mL/h in Fig. 2a) due to the greater particle confinement 
ratio therein. In the deepest microchannel with AR = 0.54 , 
particles are not observed from the images in Fig. 2c to move 
away from the channel center or corners in the entire range 
of flow rates under test. Moreover, those particles trave-
ling around the channel center do not exhibit an apparent 
focusing trend like that in the two shallower microchannels 
(Fig. 2a, b). Three factors could possibly play a role in these 
observations. Firstly, the fluid inertia is the weakest in the 
deepest channel at the same flow rate, which reduces both 
the elastic and inertial lift forces. Secondly, the low shear 
rate region significantly expands as compared to the shal-
lower microchannels, especially at the channel corners (see 
the contour of fluid shear rate in the right-most schematic 
of Fig. 2c), which increases the elastic force towards the 
corners while decreasing that towards the channel center. 
Thirdly, the particle confinement ratio becomes the smallest 
( � = 0.11 ) among the three microchannels, which should 
also weaken both of the flow-induced lift forces.

The above trends for particle motion in XG solutions 
through microchannels of varying depths are quantitatively 
illustrated by the plots of particle intensity in Fig. 3. The 

intensity values were obtained directly from the particle 
images in Fig. 2, and further scaled to different levels for 
distinguishing the curves at different flow rates (specifically, 
0.8, 0.5, and 0.2 for 0.1 mL/h, 1 mL/h and 10 mL/h, respec-
tively). It is seen from the intensity curves in the horizontal 
plane (Fig. 3a) that particles are overall pushed away from 
the walls when the channel depth decreases or the flow rate 
increases. Two primary particle positions, which should 
be (approximately) symmetric with respect to the channel 
center, are observed in each depth of microchannel. Their 
separation distance, however, appears to become smaller in a 
shallower channel. The intensity curves in the vertical plane 
(Fig. 3b) demonstrate a similar trend to that in the horizontal 
plane. However, the number of equilibrium particle positions 
reduces to one at the channel center in the two shallower 
microchannels if the flow rate is sufficiently high.

4.2  Effect of particle size

Figure 4 compares the motions of 5 µm, 10 µm and 20 µm 
particles in the flow of 2000 ppm XG solution through a 
54 µm deep rectangular channel ( AR = 1.26 ) in the same 

Top view
AR = 2.27

Side view
30 µm deep

C-S view

0.1 mL/h          0.4 mL/h             1 mL/h              4 mL/h            10 mL/h 

Re = 0.051 Re = 0.399 Re = 1.39 Re = 7.79 Re = 22.17

Re = 0.011 Re = 0.097 Re = 0.38 Re = 2.67 Re = 8.61

(a)

Re = 0.024 Re = 0.20 Re = 0.78 Re = 5.07 Re = 15.62

(b)

(c)

AR = 1.26

54 µm deep

AR = 0.54

127 µm deep

Fig. 2  Migration of 10  µm particles in the flow of 2000  ppm XG 
solution through straight rectangular microchannels of varying 
depths: a 30 µm deep (with an aspect ratio of AR = 2.27 ); b 54 µm 
deep ( AR = 1.26 ); c 127 µm deep ( AR = 0.54 ). The volumetric flow 
rate increases from 0.1 mL/h to 10 mL/h and the corresponding val-
ues of Re are highlighted below the images. The particle images in 
the upper and lower rows of (a–c) represent the top and side views, 

respectively, at the channel outlet. The schematics in the right-most 
column illustrate the equilibrium particle positions over the cross-
section (C-S) of each microchannel (estimated from the top and side 
view images at 10 mL/h, drawn to scale), where the background color 
shows the contour of fluid shear rate (the darker the larger magnitude) 
in the XG solution
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range of flow rates. When the flow rate is not higher than 
1 mL/h (at which Re = 0.78 and hence inertial effects are 
still insignificant), both 5 µm (Fig. 4a) and 20 µm (Fig. 4c) 
particles behave similar to 10 µm ones (Fig. 4b). They all 
travel near the channel center and corners in the top-view 
images at the channel outlet because of the primary action 
of the elastic lift. With the further increase of flow rate, 
inertial lift starts playing a role in the motion of each type of 
particles. However, as the elastic lift in Eq. (4) is a weaker 

function of particle size than the inertial lift in Eq. (2), their 
relative magnitude (i.e., elastic to inertial ratio) increases for 
smaller particles. Therefore, the elastic effect should remain 
dominant for 5 µm particles at increasing flow rates, which 
explains why their motion does not change strongly with 
flow rate in Fig. 4a. Moreover, similar to 10 µm particles in 
the 127 µm deep microchannel (Fig. 2c), those 5 µm parti-
cles that travel around the channel center do not achieve a 
noticeable focusing because of the small confinement ratio, 
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Fig. 3  Scaled intensity plots for 10  µm particles in the flow of 
2000 ppm XG solution through microchannels of 30 µm, 54 µm and 
127 µm depths at the flow rates of 0.1 mL/h, 1 mL/h and 10 mL/h, 

respectively: a in the horizontal plane of the channel; b in the vertical 
plane of the channel. The intensity values in a and b were obtained 
from the top- and side-view particle images, respectively, in Fig. 2

5 µm
(β = 0.08)

0.1 mL/h           0.4 mL/h            1 mL/h               4 mL/h 10 mL/h 

Re = 0.024 Re = 0.20 Re = 0.78 Re = 5.07 Re = 15.62

C-S view(a)

(b)

(c)

10 µm
(β = 0.17)

20 µm
(β = 0.33)

Fig. 4  Migration of 5 µm (with a confinement ratio of � = 0.08 , a), 
10 µm ( � = 0.17 , b) and 20 µm ( � = 0.33 , c) particles in the flow of 
2000  ppm XG solution through a 54  µm deep straight rectangular 
microchannel under varying flow rates. The corresponding values of 
Re (independent of particle size) are highlighted below the particle 

images (top view) at the channel outlet. The schematics in the right-
most column illustrate the equilibrium particle positions over the 
channel cross-section (C-S) (estimated from the images at 10 mL/h, 
drawn to scale), where the background color shows the contour of 
fluid shear rate (the darker the larger magnitude) in the XG solution
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� = 0.08 (see the schematic in Fig. 4a, where the particles 
and channel are drawn to scale). We did not test even smaller 
particles than 5 µm, but estimated the smallest manipulat-
able particles in XG solutions may be comparable to those 
in Newtonian fluids, i.e., with a confinement ratio of the 
order of 0.1 (Di Carlo 2009; Martel and Toner 2014; Zhang 
et al. 2016a).

In contrast, as the inertial effect increases faster than the 
elastic lift for larger particles, 20 µm particles are observed 
from the top-view images in Fig. 4c to move away from the 
channel center at the flow rate of 4 mL/h and above. How-
ever, they are not directed towards a mid-plane in between 
the channel center and corners like 10 µm particles (Fig. 4b). 
Instead, 20 µm particles sustain the near-corner equilibrium 
positions in the range of flow rates under test, which seems 
to resemble the near-wall (more specifically, near the center 
of each face) motion of large particles in confined inertial 
flows (Di Carlo et al. 2009) because of the fairly large con-
finement ratio, � = 0.33 (see the schematic in Fig. 4c. It is 
important to note from Fig. 4b,c that we may separate 20 µm 
and 10 µm particles via the differential elasto-inertial focus-
ing in 2000 ppm XG solution. The motions of the three types 
of particles in Fig. 4 are also quantitatively demonstrated 
using the scaled particle intensity plots in Fig. 5. With the 
decrease of particle size, the primary elasto-inertial equilib-
rium positions in the horizontal plane shift from two near 
the corners to one along the channel center. Moreover, par-
ticles of any sizes are overall pushed away from the channel 
walls when the flow rate increases, which is similar to that 
of 10 µm particles in microchannels of different depths (see 
Fig. 3) because of the increasing inertial effect.

4.3  Effect of XG concentration

Figure 6 shows the motions of 10 µm particles in the 
flow of 500  ppm, 2000  ppm and 3750  ppm XG solu-
tions, respectively, through a 54 µm deep microchannel 

( AR = 1.26 ) in the same range of flow rates. Increasing the 
XG concentration enhances the fluid shear-thinning effect, 
which is reflected by the decreasing power-law index from 
n = 0.58 to 0.34 and 0.19 (see Table 1). When the flow rate 
is less than 1 mL/h, the inertial effect is weak compared to 
the elastic effect such that particles travel near the channel 
center and corners in all three XG solutions. Increasing 
the flow rate enhances both the elastic and inertial lift 
forces, between which the latter increases at a greater rate 
because of its stronger dependence on fluid shear rate [see 
Eq. (2) vs. Equation (4)]. This leads to the observed shift-
ing of 10 µm particles towards an equilibrium mid-plane 
between the channel center and corners in 2000 ppm XG 
solution as noted above (see Fig. 6b). Reducing the XG 
concentration to 500 ppm decreases the elastic lift while 
increasing the inertial lift at the same flow rate because of 
the decrease in fluid viscosity (see Table 1) and in turn the 
increase in Re . It also changes the shear rate distribution 
(see the right-most schematic of Fig. 6a) and hence the 
flow-induced lift forces. The result is a significantly weak-
ened two-stream focusing of particles near the channel 
center with a very small portion of them retained near the 
corners. In contrast, increasing the XG concentration to 
3750 ppm enhances the elastic lift and decreases the iner-
tial lift, yielding a single equilibrium particle position at 
the channel center (Fig. 6c). Figure 7 compares the particle 
intensity plots in the three XG solutions. With the increase 
of flow rate, particles are again observed to move away 
from the channel walls because of the enhanced inertial 
effect. Moreover, their equilibrium positions shift further 
towards the channel center when the XG concentration 
increases because of the enhanced elastic effect.
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Fig. 5  Scaled intensity plots for 5 µm, 10 µm and 20 µm particles in the flow of 2000 ppm XG solution through a 54 µm deep microchannel at 
the flow rates of 0.1 mL/h, 1 mL/h and 10 mL/h, respectively. The intensity values were obtained from the particle images in Fig. 4
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5  Conclusions

We have conducted a systematic experimental study of the 
parametric effects on rigid particle motion in pseudoplastic 
XG solutions through straight rectangular microchannels. 
We find that when the flow rate is low, particles travel 
out of the channel near both the corners and centerline 
in all cases because of the sole action of elastic lift. With 
the increase of flow rate, nearly all the near-corner par-
ticles move away from the channel walls because of the 
enhanced wall-induced inertial lift. The only exception 
is the largest 20 µm particles that stay near the corners 
in the entire range of flow rates under test because of the 
mutual actions of strong elastic lift and strong inertial lift. 

Meanwhile, those near-centerline particles migrate out-
ward because of the enhanced shear gradient-induced iner-
tial lift unless the microchannel is too deep (127 µm depth 
in our test, which expands the low shear rate region and 
reduces the elastic and inertial lift forces), or the particle 
is too small (5 µm particles in our test, which experience 
an insufficient inertial lift), or the XG concentration is too 
high (3750 ppm in our test, which exhibits a strong elastic 
effect). Interestingly, these observed phenomena imply a 
potentially high throughout separation of rigid particles 
based on the difference in size in the flow of XG solutions 
through simple straight rectangular microchannels. We 
will study the feasibility of such a continuous sheath- and 
label-free particle separation in future work.

500 ppm
(n = 0.58)

3750 ppm
(n = 0.19)

0.1 mL/h            0.4 mL/h           1 mL/h               4 mL/h 10 mL/h 

Re = 0.107 Re = 0.64 Re = 1.99 Re = 10.47 Re = 29.92

Re = 0.011 Re = 0.11 Re = 0.46 Re = 2.97 Re = 8.80

Re = 0.024 Re = 0.20 Re = 0.78 Re = 5.07 Re = 15.62

2000 ppm
(n = 0.34)

C-S view(a)

(b)

(c)

Fig. 6  Migration of 10  µm particles in the flow of 500  ppm (with 
a power-law index of n = 0.58 , a), 2000  ppm ( n = 0.34 , b) and 
3750 ppm ( n = 0.19 , c) XG solutions through a 54 µm deep straight 
rectangular microchannel under varying flow rates. The correspond-
ing values of Re (strong function of XG concentration) are high-
lighted below the particle images (top view) at the channel outlet. The 

schematics in the right-most column illustrate the equilibrium par-
ticle positions over the channel cross-section (C-S) (estimated from 
the images at 10 mL/h, drawn to scale), where the background color 
shows the contour of fluid shear rate (the darker the larger magnitude) 
in the corresponding XG solution
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Fig. 7  Scaled intensity plots for 10 µm particles in the flow of 500 ppm, 2000 ppm and 3750 ppm XG solutions through a 54 µm deep micro-
channel at the flow rates of 0.1 mL/h, 1 mL/h and 10 mL/h, respectively. The intensity values were obtained from the particle images in Fig. 6
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