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Abstract
In this paper, we study a suspension of cells at a moderate volume fraction flowing in a microchannel filled with Newtonian 
or viscoelastic fluids and investigate the role of cell size, cell volume fraction, inertia, deformability, and fluid elasticity on the 
cell distribution. Our results suggest that the use of constant-viscosity viscoelastic fluid pushes the cells toward the channel 
centerline which can be used in microfluidic devices used for cell focusing such as cytometers. The cell-free layer increases 
which provides larger gap for separating rare cells in microfluidic devices. Furthermore, we show that the volumetric flow 
rate can be significantly enhanced with the addition of polymers in the suspending fluid. This effect enhances the processing 
speed which is of interest in designing microfluidic devices. This fundamental study can provide insight on the role of rheo-
logical properties of the fluid that can be tuned to control the motion of the cells for efficient design of microfluidic devices.

Keywords  Cell migration in polymeric fluids · Cell focusing · Elasto-inertial cell migration

1  Introduction

The motion of synthetic capsules and living cells in micro-
channels has been the subject of numerous studies in the last 
decade due to its significance in engineering and biomedi-
cal applications (Popel and Johnson 2005; Pozrikidis 2003; 
Cooley et al. 2018). Cell sorting and separation are common 
processes that are used for various purposes such as separation 
of leukocytes from blood used in DNA sequencing (Gossett 
et al. 2010). Early diagnosis of lethal diseases such as cancer 
(van de Stolpe et al. 2011) can be conducted by isolation of 
rare cells in blood, which is a complex suspension of cells. 
Furthermore, fractionated healthy blood components are used 
for different therapeutic applications such as platelet transfu-
sion (Sethu et al. 2006). Cell isolation and enrichment provide 

a better platform to biologists to study and analyze various 
properties of living cells (Karimi et al. 2013; Gossett et al. 
2010). In this regard, microfluidic devices provide a platform 
to achieve aforementioned needs while overcoming challenges 
such as sample contamination, cost, and complexity of the pro-
cedures (Paiè et al. 2017). Besides, these devices offer higher 
accuracy for analysis and increased automation of the process 
(Chung and Kim 2007; Godin et al. 2008). Accordingly, there 
is a high demand for developing techniques to precisely control 
trajectories of cells and manipulate them in a desired manner. 
Some of the proposed techniques employ external factors such 
as electric (Pethig 2010), magnetic (Pamme 2006), and acous-
tic (Friend and Yeo 2011) fields and sheath flows (Sundara-
rajan et al. 2004; Lancaster et al. 2005; Howell Jr et al. 2008). 
Even though they can offer high-throughput sample process-
ing, the complexity of the procedure and high-cost limits their 
utilization in clinical applications (Gossett et al. 2010). Fur-
thermore, these methods require cell manipulation that may 
change biological properties of the cells (Del Giudice et al. 
2017). Hence, there is a growing interest in employing label-
free techniques that take advantage of physical properties of 
the cells such as size, shape, and deformability to control their 
trajectories in microfluidic devices (Paiè et al. 2017; Del Giu-
dice et al. 2017; Gossett et al. 2010). Inertial microfluidics 
are among the proposed techniques that use inertial forces to 
induce cell migration in microchannels (Di Carlo et al. 2007, 
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2009; Choi et al. 2011). In this technique, cells focus at an 
equilibrium position depending on their physical proper-
ties (Hur et al. 2010; Kunze et al. 2015; Di Carlo 2009). The 
particles flowing in a Newtonian fluid follow the streamlines 
without any transversal migration for low Reynolds numbers 
(Ho and Leal 1974). With increasing the Reynolds number, 
the inertial force becomes important and the cross-streamline 
migration of particles is observed (Leshansky et al. 2007; Lee 
et al. 2013). In this case, the particle experiences two opposing 
forces: (1) shear-gradient induced force that pushes the parti-
cle toward the wall (Asmolov 1999) and (2) the wall-induced 
repulsive force that drives it toward the channel center (Zeng 
et al. 2005). The balance between these two forces determines 
the equilibrium position of the flowing particle in the chan-
nel cross section (Li et al. 2015). This phenomenon was first 
observed by Segre (1961). In their experiments, randomly 
distributed particles at tube inlet assembled at an annulus 
with radius of 0.6 times the radius of the tube. This result was 
later confirmed numerically (Feng et al. 1994), analytically 
(Schonberg and Hinch 1989), and experimentally (Karnis et al. 
1966). Previous investigations show that the deformability of 
the cell can affect its trajectory in the microchannel (Raffiee 
et al. 2017b; Schaaf and Stark 2017; Kilimnik et al. 2011; 
Saadat et al. 2018). Due to deformability of cell membrane, 
a deformability-induced force is generated and the interplay 
of all the above forces governs the equilibrium position of 
the flowing cells (Raffiee et al. 2017b). In our previous work 
(Raffiee et al. 2017b), we studied the effect of cell deformabil-
ity on the equilibrium position of a single deformable cell. Our 
results show that deformability-induced force drives the cells 
toward the channel centerline in a Newtonian fluid. Recent 
studies on microfluidic devices introduced an alternative way 
for cell focusing by adding a polymer to the suspending fluid 
(Lu et al. 2017; D’Avino et al. 2017; Faridi et al. 2017). In 
this method, the polymer chains in the fluid are stretched and 
generate an uneven normal stress on the flowing particles. This 
phenomenon leads to a net elastic force that interacts with the 
inertial force and affects the migration dynamics and equilib-
rium position of the particle (Del Giudice et al. 2015, 2017). 
This phenomenon has been experimentally and analytically 
(Leshansky et al. 2007; Yang et al. 2011; D’Avino et al. 2012; 
Li et al. 2015) observed. The particle migration depends on 
the fluid rheology, cell size, channel geometry, and volumet-
ric flow rate (Villone et al. 2013; Li et al. 2015). There are 
several experimental studies that showed promising results 
for cell separation and focusing using polymeric fluid as the 
suspending fluid. Lim et al. (2014) used hyaluronic acid (HA) 
in the suspending fluid and successfully focused solid particles 
and leukocytes at the channel center. Furthermore, the same 
method was used to separate human breast carcinoma and 
leukocyte cells in a straight microchannel (Nam et al. 2015) 
which highlights the effect of cell size and deformability on 
the particle migration flowing in a viscoelastic polymeric fluid. 

The effect of size and deformability was also observed Liu 
et al. (2015), where solid particles, living cells, and bacteria 
were separated by focusing in different locations in the chan-
nel cross section. Previous studies (Seo et al. 2014; Leshansky 
et al. 2007; Romeo et al. 2013; Raffiee et al. 2017b) show 
that fluid rheological properties are important on the dynam-
ics of cell migration in microchannels. In our previous work 
(Raffiee et al. 2017b), we have shown that the focusing posi-
tion of the cell in a constant-viscosity fluid is closer to the 
centerline compared to that in a Newtonian fluid. However, the 
shear-thinning properties of a Geisekus fluid can significantly 
modify the equilibrium position. The equilibrium position of 
cell also depends on the cell size, deformability, and volumet-
ric flow rate.

Despite the importance of the dynamics of cell suspensions 
in a microchannel, the previous experimental and computa-
tional studies focus on the migration of cells in a dilute regime. 
This limitation prevents us to evaluate the performance of the 
developed techniques for rich samples such as blood which 
has higher cell concentrations. The optical techniques cannot 
be effectively used for quantification of samples at high cell 
concentrations. To overcome this limitation, we focus on a 
suspension of deformable cells in Newtonian and polymeric 
fluids in semidilute and concentrated regimes and investigate 
the role of various factors including cell size, deformability, 
inertia, and viscoelasticity of the suspending fluid. Our results 
provide fundamental understanding of the dynamics of sus-
pension of cells in a straight microchannel used in various 
microfluidic devices.

2 � Methodology

2.1 � Governing equations

Dynamics of the deformable cells flowing in a microchannel is 
governed by the momentum and continuity equations. In this 
study, we assume that the inner fluid of the cell and suspending 
fluid is incompressible. Therefore, we have

Here, � is the density of the fluid, t denotes the time, u 
is the velocity vector, and p and � represent pressure and 
stress tensor, respectively. The stress tensor in a Newtonian 
fluid is a function of fluid viscosity � and strain rate ten-
sor � = ∇� + ∇�T , where � = �� . We use a front-tracking 
(Unverdi and Tryggvason 1992) method to track the inter-
face and capture the change in fluid properties across the 
membrane. In this method, a single set of equations is solved 
in the entire computational domain. In Eq. (2), � represents 

(1)∇.� = 0,

(2)
�(��)

�t
+ ∇.(���) = −∇p + ∇.� + �.
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the smoothed elastic force generated due to the deformation 
of cell membrane which can be obtained as

Here, f  is the membrane resistive force exerted on the fluid. 
This force is zero everywhere in the domain except for the 
membrane interface. In Eq. (3), � and �i denote an arbitrary 
point in the computational domain and a point on the cell 
membrane, respectively. Furthermore, � and V are the Dirac 
delta function and volume, respectively. To distribute the 
resistive force on Eulerian grid points surrounding the mem-
brane, a smoothed delta function is employed:

where � is the Eulerian grid size. To simulate the cell mem-
brane, we use the Skalak et al. (1973) model. Ramanujan and 
Pozrikidis (1998) showed that the Skalak model can capture 
the behavior of deformable cells under various conditions 
and their results agreed well with experiments (Chang and 
Olbricht 1993). In this model, the cell is assumed to behave 
as a deformable capsule that has a resistance against shear 
deformation and area dilatation. Accordingly, a strain energy 
function is assigned to the membrane as follows:

where Es and Ea denote shear and dilatation moduli and �1 
and �2 are principal strains. In this study, we consider Ea

Es

= 2 
following Krüger et al. (2014). For the range of Reynolds 
and Laplace numbers used in this study, the area extension 
is less than 8%. We use a finite-element method (Charrier 
et al. 1989) to obtain the force � in Eq. (3). The validation of 
this model against previously published results is presented 
in our previous work (Raffiee et  al. 2017a). The 
Navier–Stokes equations are solved using a finite-volume 
method. The time derivatives are discretized using an 
explicit Euler scheme and discretization for the convective 
and diffusive terms is conducted using Quadratic Upstream 
Interpolation for Convective Kinematics (Leonard 1979) 
(QUICK) and central difference schemes, respectively. The 
pressure–velocity coupling is conducted using a projection 
method (Chorin 1968).

To solve for a viscoelastic suspending fluid, the total 
stress � is split into two parts: (1) solvent stress tensor �s 
and (2) polymeric stress tensor �p as follows:

(3)�(�, t) = ∫
�B

f (�i, t)�(� − �i)dV .

(4)𝛿(�) = D̃(x)D̃(y)D̃(z),

(5)D̃(x) =
1

4𝛥

(
1 + cos

(
𝜋

2𝛥
x
))

, |x| ≤ 2𝛥,

(6)

W =
Es

12
((�2

1
+ �2

2
− 2)2 + 2(�2

1
+ �2

2
− 2) − 2(�2

1
�2
2
− 1))

+
Ea

12
(�2

1
�2
2
− 1)2,

(7)� = �s + �p.

Here, �s can be written as

where �s is the solvent viscosity. In this study, the Oldroyd-B 
constitutive equation is used to represent the stress tensor:

In this equation, �p is the polymer viscosity and � represents 
the fluid relaxation time. Equation (9) models a constant-
viscosity viscoelastic fluid. Here, 

▽
� p is the upper convected 

time derivative defined as

The details of the numerical scheme used to solve Eq. (9) 
and its validation are explained in our previous work (Raffiee 
et al. 2017a).

2.2 � Problem setup

In this work, the computational domain is a straight squared 
channel, as illustrated in Fig. 1. The edge of the channel is 
2W and the channel length is set to be 4W. We applied a 
periodic boundary condition in x direction and a no-slip 
boundary condition is implemented in y and z directions. In 
this problem, W and U0 (the undisturbed centerline velocity 
of the channel in the absence of capsules) are used as the 
characteristic length and velocity scales, respectively. Here, 
in this work, dimensionless variables are defined as t∗ = tU0

W
 

(time), �∗ = �

W
 (position), �∗ = �

U0

 (velocity), and P∗ =
pW

�U0

 
(pressure). Hence, the dimensionless numbers governing the 
problem are: (1) the Reynolds number Re = �U02W

�
 that rep-

(8)�s = �s�,

(9)�
▽
� p + �� = �p�,

(10)
▽
� p =

��p

�t
+ �.∇�p − ∇��p − �p∇�

T.

4W
2W

2W

x y

z

2a

Fig. 1   Schematic of problem setup
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resents the ratio of inertial to the viscous forces; (2) the 
Laplace number La =

2�Esa

�2
 denoting the deformability of the 

cell; (3) � that shows the volume fraction of cells in the 
microchannel; (4) the Weissenberg number Wi =

�U0

W
 show-

ing the ratio of elastic to viscous forces; (5) � =
�p

�
 represent-

ing the ratio of the polymer viscosity to total viscosity 
( � = �s + �p ); and finally (6) the aspect ratio AR = a

W
 that 

shows the blockage ratio in the microchannel. We assume 
that the inner fluid of the cells is a Newtonian fluid with a 
density and viscosity equal to those of the outer fluid 
( (�s + �p)outer = (�s)inner and �inner = �outer ). Unless other-
wise stated, � is set to 0.9 and the cells are initially spherical. 
The computational domain and cell membrane are discre-
tized using 128 × 76 × 76 Eulerian grid points in x, y, and z 
directions and 20,000 Lagrangian grid points. The mesh and 
domain size independency tests are provided in the 
“Appendix”.

3 � Results and discussion

3.1 � Newtonian fluid

In this section, the migration of cells flowing in a Newtonian 
fluid is investigated and the effects of various factors includ-
ing deformability (La), cell volume fraction ( � ), inertia (Re), 
and cell size ( a

W
 ) on the cell distribution are explored. The 

computational domain is filled with a homogeneous suspen-
sion of randomly distributed cells (cells with the same size 
and deformability) along the channel. A constant pressure 
gradient is applied to generate a flow in the microchannel 
and cells flow and migrate across the microchannel due to 
cell–cell and cell–fluid interactions. The simulation is run 
long enough that the suspension reach a statistically steady 
state. The Reynolds number is set to 37.8 unless otherwise 
stated.

Figure  2 illustrates the cell suspension at two time 
instances t∗ = 0 and t∗ = 1336 for La = 1 , � = 10% and 
a

W
= 0.2 . The cells interact and deform in the channel. Due to 

the low shear rate in the central region of the channel, cells 
maintain their initial spherical shape, while cell deformation 
is more significant as the cells get closer to the wall, where 
the shear rate is higher. Cells migrate in the cross-stream 
direction and accumulate near the center of the channel. This 
migration behavior toward the centerline is caused by the 
deformability-induced force acting on the cells. The inter-
play between this force, inertial lift force, and wall-induced 
force determines the focal location of cells (Raffiee et al. 
2017b; Schaaf and Stark 2017; Kilimnik et al. 2011) in the 
microchannel. In addition to the above-mentioned forces, 
the cell–cell interaction becomes important when we con-
sider cell suspensions at a moderate volume fraction. The 

migration of cells toward the center can also be observed by 
comparing cell distribution at two different time instances, 
as shown in Fig. 2, where the accumulation of cells near the 
center of channel is significant. To study the motion of a sus-
pension of cells, the ensemble average of cell distance from 
the centerline ⟨r∗⟩ is computed. Figure 3 shows the tem-
poral evolution of average distance of cells from the chan-
nel centerline for various La numbers at � = 10% , a

W
= 0.3 . 

According to this figure, ⟨r∗⟩ initially decreases and reaches 
a quasi-steady state. The initial decrease in ⟨r∗⟩ shows the net 
migration of cells toward the centerline due to the deform-
ability-induced force acting on the cells. The steady value 
of cell position is computed by temporally averaging ⟨r∗⟩ 

(a)

(b)

Fig. 2   Distribution of cells at a t∗ = 0 and b  at t∗ = 1336 for 
� = 10% , a

W
= 0.2 , La = 1 and Re = 37.8
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over the time period during which statistically steady state 
is reached (see Fig. 4 for Re = 37.8 ). The cell distance from 
centerline increases with increasing La number (decreasing 
deformability) which is in agreement with the behavior of 
a single cell in a microchannel (Raffiee et al. 2017b; Schaaf 
and Stark 2017; Kilimnik et al. 2011). This change is attrib-
uted to the effect of La number on the deformability-induced 
force. As La increases, this force gets weaker and the inertial 
and wall-induced forces become dominant factors. Hence, 
the location of cells with a high Laplace number is close to 
that of solid particle flowing in a microchannel. Figure 4 
also exhibits that increasing the cell volume fraction leads 
to increase in the cell distance from the channel centerline. 
This behavior is due to the increase in the cell–cell interac-
tion as the number of cells flowing in the channel increases. 
Furthermore, the cell size has an important role on the net 
motion of cells. Comparing the average distance for differ-
ent blockage ratios ( a

W
= 0.2 and 0.3) indicates that bigger 

cells get closer to the centerline. According to Schaaf et al. 
Schaaf and Stark (2017), the deformability-induced forces 
scale proportionally with the size of the cells. Hence, bigger 
cells experience a larger force towards the centerline. To 
study the quasi-steady distribution of cells in a microchan-
nel, two quantities including radial volume fraction ( �r ) and 
local volume fraction ( �l ) are defined. The local volume 
fraction represents the cell distribution across the micro-
channel and is defined as the fraction of volume �y�zLx ( Lx 
is the channel length in x direction) occupied by the cells at 
different y and z across the channel cross section. To find �r , 
Eq. (11) is introduced:

(11)�r =
1

Ar,r+�r
∫

r+�r

r

�l2�rdr,

In this equation, r is the distance from the channel cen-
terline and Ar,r+�r is the area between r and r + �r . Hence, 
the radial volume fraction ( �r ) is the fraction of microchan-
nel volume between r and r + �r that is occupied by cells. 
The radial volume fraction for � = 10% , a

W
= 0.3 is plotted 

for various Laplace number in Fig. 5a. According to this 
figure, the cells are not evenly distributed across the chan-
nel. The results show that the radial volume fraction of cells 
decreases with the distance from the channel centerline and 
it reaches to zero at a particular radius. The region in the 
microchannel in which the radial volume fraction is zero 
is called cell-free layer (CFL). The formation of this layer 
has been numerically and experimentally observed in the 
previous studies (Pranay et al. 2012; Zhao et al. 2012). Fur-
thermore, the same phenomenon occurs in blood vessels, 
where the concentration of the red blood cells close to the 
vessel wall is far less than its value in the core region (Fed-
osov et al. 2010). The thickness of this layer is an important 
factor in designing microfluidic devices as it specifies the 
gap between the wall and suspending cells in the sample, 
where the rare cells should move to easier get separated. 
One of the important factors affecting the thickness of CFL 
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is La number. The thickness of CFL increases with decreas-
ing La number (Fig. 5a). The reason for this behavior is 
the tendency of deformable cells to migrate toward the core 
region and this tendency is enhanced by decreasing La num-
ber. Hence, the concentration of cells is higher in the cen-
tral region leading to a thicker cell-depleted layer near the 
wall. The maximum radial volume fraction of cells at La = 1 
occurs at the centerline and it decreases monotonously with 
the distance. The occurrence of the peak at the centerline 
is caused by two factors: (1) cell migration toward the cen-
terline that yields to a significant cell accumulation in that 
region and (2) the small area of the region ( Ar,r+�r ) over 
which the radial volume fraction is computed in the central 
region. As the Laplace number increases, an off-center peak 
in the radial volume fraction occurs, although the maximum 
radial volume fraction still occurs at the centerline due to 
the aforementioned reasons. To better understand this trend 
in cell distribution, the effect of deformability on the focal 
position of cells should be considered. Increasing the La 
number pushes the focal position of cells toward the wall 
of a microchannel (Raffiee et al. 2017b; Schaaf and Stark 
2017). Therefore, a significant increase in the local volume 
fraction of cells is observed at off-center locations in the 
cross section. This rise in the local volume fraction leads 
to the second peak in the radial volume fraction in Fig. 5a. 
The effect of the cell volume fraction ( � ) and the cell size 
on the cell distribution is plotted in Fig. 5b. The thickness of 
CFL decreases with � due to the increase in the number of 
cells and their interaction. Hence, the cells are more spread 
across the channel cross section leading to a decrease in CFL 
thickness. Furthermore, decrease in the cell size results in 
decrease in the CFL thickness. This effect is attributed to 
the role of the cell size on the equilibrium position of cells, 
as shown in Fig. 4. The formation of the second peak is also 
observed for all the cases, as shown in Fig. 5b. To elaborate 
the formation of the second peak in the radial volume frac-
tion in details, the local volume fraction of cells ( �l ) in the 
channel cross section at � = 20% , La = 10 , and a

W
= 0.3 is 

plotted in Fig. 6. The blue region near the channel wall with 
zero concentration of cells is the cell-free layer. According 
to this figure, �l has its maximum values at the center and at 
off-center locations shown by red regions. The off-center red 
regions in the channel cross section lead to the formation of 
the second peak in radial volume fraction ( �r ) in Fig. 5. This 
phenomenon is also observed in the previous studies (Pranay 
et al. 2012; Li and Pozrikidis 2000) in which suspension of 
droplets and capsules was studied.

One of the important factors in evaluating the perfor-
mance of microfluidic devices is the sample throughput. 
Hence, we plot the dimensionless volumetric flow rate of 
the suspension exiting the microchannel ( Q∗ ) for various 
Laplace numbers, as shown in Fig. 7. Our results show that 
the volumetric flow rate decreases with increasing Laplace 

number. This effect can be elaborated by considering the 
single-cell dynamics in a microchannel. According to our 
previous study (Raffiee et al. 2017b), a single-cell flow-
ing in the microchannel lags the surrounding fluid and its 
velocity is smaller than the local velocity of the fluid in the 
absence of the cell. This effect becomes more significant, as 
the Laplace increases. Hence, the reduction of volumetric 
flow rate with increase in La is expected. To quantify the 
effect of the cell deformability on the flow field, the veloc-
ity profile in the cross section of microchannel is plotted for 
various La in Fig. 8. Our results show that decreasing the 
cell deformability results in decrease in the velocity across 
the cross section. Furthermore, the velocity profiles for vari-
ous La numbers are identical in the cell-depleted region, 
while they are different in the regions occupied by the flow-
ing cells. Figure 7 shows that the volumetric flow rate is 
also influenced by the cell volume fraction ( � ) and the cell 
size. Accordingly, the reduction in the volumetric flow rate 
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is observed with increasing the volume fraction ( � ), while 
increasing the cell size ( a

W
 ) enhances Q∗ . Here, we also study 

the effect of Reynolds number on the cell migration in the 
microchannel. In this work, we simulate the motion of cells 
at � = 10% , La = 500 and two different cell sizes ( a

W
= 0.2 

and 0.3) for various Re numbers. The average distance of 
the cells ( ⟨r∗⟩ ) is plotted in Fig. 9. Our result shows that the 
average cell distance is not influenced by Reynolds number. 
This behavior is in agreement with previous studies (Li et al. 
2015; Raffiee et al. 2017b) that investigated the dynamics of 
a solid particle and a deformable capsule with high La num-
ber in a microchannel. Furthermore, the radial volume frac-
tion distribution ( �r ) for the cell suspension with a

W
= 0.2 

is plotted in Fig. 10. This result also emphasizes that the 
steady spatial distribution of flowing cells is not affected by 
the Reynolds number and the change in the CFL thickness 
is negligible.

3.2 � Viscoelastic fluid

In this section, the effect of the polymeric fluid on the 
cell migration behavior is investigated. As it is mentioned 
in Sect. 3.1, the migration of the cells is governed by the 

interplay between inertial lift force, deformability-induced 
force, wall-induced force, and cell–cell interaction. How-
ever, the cells flowing in a polymeric fluid experience an 
elastic force in addition to other forces. The elastic force is 
generated due to the deformation of polymer chains in the 
channel flow. The interplay between various forces deter-
mines the cell distribution in the channel. The motion and 
consequently the time-averaged distance of cells suspended 
in a polymeric fluid is significantly influenced by the fluid 
elasticity.  

Figure 11 plots the temporal evolution of the average cell 
distance from the channel centerline at � = 10% , La = 500 
and a

W
= 0.3 for various Wi numbers ( Wi = 0 corresponds to 

a Newtonian fluid). Our results show that the cell distance 
decreases as Wi number increases. Therefore, a constant-vis-
cosity viscoelastic fluid pushes the cells toward the channel 
centerline. This behavior is in agreement with the previous 
numerical and experimental studies (Raffiee et al. 2017b; Li 
et al. 2015; Lim et al. 2014) for an isolated cell. This result 
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suggests that the polymeric fluid can be used as a passive 
method in devices in which the main goal is cell focusing at 
the centerline such as cytometers. Furthermore, this method 
adds another variable to be tuned by the user to control the 
focal position of the cells in microfluidic devices. According 
to the results, the deformability-induced force and elastic 
force have reinforcing effect that drives the cells toward the 
centerline, while the inertial force has the opposite effect 
that pushes the cells toward the channel wall. Therefore, 
for a low Wi number, the inertial force is dominant and the 
resulting average cell distance is close to that of cells flow-
ing in a Newtonian fluid, while for a high Wi number, the 
elastic force has a significant effect and the cells accumulate 
near the centerline. To observe the effect of the polymeric 
fluid, the cell-fraction distribution of the cells with a

W
= 0.2 , 

La = 500 and � = 10% is plotted in Fig. 12. This figure 
shows the extent to which the cells are distributed across 
the microchannel. The fraction of cells located close to the 
centerline increases and the fraction of the cells close to 
the wall decreases significantly with increasing the Wi num-
ber. The cell fraction at r∗ = 1.38 and 1.12 reaches nearly to 
zero. Furthermore, the location at which the maximum cell 
fraction occurs approaches to the centerline when polymers 
are added to the flowing fluid. The polymeric effect is also 
exhibited in Fig. 13, which shows the cell configuration for 
� = 10% , La = 500 and a

W
= 0.2 for two different values 

of Weissenberg number ( Wi = 0 and 2). According to this 
figure, the cells flowing in a constant-viscosity viscoelastic 
fluid (Fig. 13b) focus more near the centerline compared to 
the cells flowing in a Newtonian fluid (Fig. 13a). To quantify 
the effect of polymeric fluid, the time-averaged cell distance 
for various cell sizes and volume fractions is plotted as a 
function of Wi number in Fig. 14. The cell distance from the 
centerline decreases with increase in Wi number for various 
� and a

W
 . The decrease in time-averaged cell distance con-

tinues until the Wi number reaches a critical value above 
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which the cell distance does not reduce further and reaches 
a plateau. This behavior is attributed to the cell–cell inter-
action that has an opposing effect against elastic effect and 
does not allow the cells to focus at the centerline. In other 
words, the cells are accumulated in the core region and the 
distance between the cells cannot be further reduced. This 
effect can be seen in Fig. 13b that illustrates the distribu-
tion of cells in the central region. As it is shown in Fig. 14, 
the cell distance is not computed for Wi above 2 for two 
cases ( � = 20% , a

W
= 0.3 and � = 10% , a

W
= 0.2 ). The lack 

of data for these cases is due to the numerical instability 
occurring for larger Wi numbers and volume fractions. The 
effect of the cell volume fraction ( � ) and the cell size ( a

W
 ) 

is similar to their effect in a Newtonian fluid. Increasing the 
volume fraction increases the cell distance and increasing 
the cell size decreases the cell distance from the centerline. 
To study the effect of elasticity on CFL thickness, the radial 
volume fraction is plotted in Fig. 15 for � = 10% , a

W
= 0.3 , 

and Re = 37.8 . The thickness of the CFL increases with 
increasing Wi number. This change is attributed to the poly-
mer chains driving the cells more effectively toward the cen-
terline with increasing Wi number. Hence, a larger region in 
the vicinity of channel walls remain depleted from the cells. 
Furthermore, the location of the off-center peak in the radial 
volume fraction of the cells approaches to the centerline as 
the elasticity of the suspending fluid increases which is also 
due to the enhanced tendency of the cells in accumulating 
in the core region. The effect of the polymeric fluid on the 
throughput of microfluidic devices is also studied in this 
section. The volumetric flow rate of the exiting suspension 
is measured under various Wi numbers and constant pres-
sure gradient at � = 10% , a

W
= 0.3 , and Re = 37.8 and is 

plotted in Fig. 16a. Our results show that the volumetric flow 
rate increases with increasing Wi number. To elaborate this 
effect, the velocity profile of the corresponding cases in the 
channel cross section is plotted in Fig. 16b. As Wi number 

increases, the velocity at centerline ( r∗ = 0 ) increases and 
the velocity profile becomes flatter in the central region. 
Therefore, the change in the velocity distribution across the 
microchannel due to the change in fluid elasticity results 
in the enhanced sample throughput in microfluidic devices. 
Furthermore, Fig. 16a shows that there is a critical Wic num-
ber above which the volumetric flow rate reaches a plateau. 
This change is attributed to the accumulation of cells in the 
core region, where cells cannot be more compact above the 
critical Wic number. Besides, the effect of Reynolds number 
on the performance of the microfluidic devices in presence 
of polymeric fluids is investigated. The time-averaged cell 
distance is plotted for various Re numbers at � = 10% , 
La = 500 and Wi = 2 in Fig. 17. As it is shown, the distance 
of the cells from the centerline increases with increasing the 
Re number. This finding is in agreement with the previous 
studies (Raffiee et al. 2017b; Li et al. 2015) in which the 
dynamics of an isolated solid and deformable particle were 
studied in a microchannel. This behavior can be elaborated 
according to the strong dependence of inertial and elastic 
forces on Re number. The interaction between various forces 
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such as inertial and elastic forces determines the final posi-
tion of cells in the microchannel. The inertial effect is the 
dominant factor when Re ≫ Wi and the cells are expected to 
be driven toward the walls, while for the case with Wi ≫ Re , 
the elastic force becomes dominant and the cells tend to 
accumulate in the central region of the microchannel.   

4 � Conclusions

In this work, the dynamics of a cell suspension flowing in 
Newtonian and viscoelastic fluids is investigated. We study 
the effect of the cell size ( a

W
 ), cell volume fraction ( � ), iner-

tia (Re), deformability (La), and fluid elasticity (Wi) on the 
motion of cell suspension and the performance of the micro-
fluidic devices composed of a straight microchannel. The 
variation of the aformentioned factors modulates the gov-
erning forces and influences the distribution of cells in the 
microchannel. Our results show that increasing the La num-
ber leads to the increase in the cell distance from the channel 
centerline ( r∗ ) and reduction in the volumetric flow rate of 
the exiting flow ( Q∗ ). These variables are also affected by 
the cell size and cell volume fraction. Decreasing the cell 
size pushes the cells further toward the wall and this effect 
can be reinforced by increasing the cell volume fraction. 
However, the increase in a

W
 and � has an opposite effect on 

the volumetric flow rate and causes the decrease in Q∗ . Our 
findings suggest that adding a polymer in suspending fluid 
pushes the cells further toward the centerline compared to a 
Newtonian fluid and can be used in devices that require cen-
terline focusing of the cells such as cytometers. It is shown 
that increasing fluid elasticity (Wi) yields the reduction in 
cell distance from the centerline, while it increases the volu-
metric flow rate of the exiting flow. Furthermore, the effect 
of the inertia (Re) is investigated for both Newtonian and 
viscoelastic fluids. The results indicate that the change in the 

Reynolds number does not significantly affect the suspen-
sion dynamics, while an opposite behavior is observed in a 
viscoelastic fluid in which the cells are driven further toward 
the wall due to increase in the inertial effects.
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 Appendix

To check the mesh and the domain size independency of the 
computational results, we follow the method used in Doddi 
and Bagchi (2009), where the volumetric flow rate of the 
flow is investigated for various grid and domain sizes. Fig-
ure 18a shows the volumetric flow rate of the cell suspension 
in a Newtonian fluid at Re = 100 , � = 10% and a

W
= 0.3 for 

various La numbers with 128 × 76 × 76 and 200 × 133 × 133 
grid points in x, y, and z directions, respectively. The maxi-
mum error between two different grid sizes is 2.44% . Hence, 
our results indicate that the numerical simulation performed 
in this study is independent of the mesh sizes. The results 
for the domain independency of the simulation are also plot-
ted in Fig. 18b. The variation of the volumetric flow rate at 
Re = 100 , � = 10% , and a

W
= 0.3 for two different domain 

sizes ( Lx = 4W  and 8W) in the x direction along which the 
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periodic boundary condition is considered. The maximum 
error between two channel geometries is 0.71% that proves 
the independency of the numerical results against the com-
putational domain size.

References

Asmolov ES (1999) The inertial lift on a spherical particle in a plane 
poiseuille flow at large channel Reynolds number. J Fluid Mech 
381:63–87

Chang K-S, Olbricht WL (1993) Experimental studies of the deforma-
tion and breakup of a synthetic capsule in steady and unsteady 
simple shear flow. J Fluid Mech 250:609–633

Charrier J, Shrivastava S, Wu R (1989) Free and constrained inflation 
of elastic membranes in relation to thermoforming non-axisym-
metric problems. J Strain Anal Eng Des 24(2):55–74

Choi Y-S, Seo K-W, Lee S-J (2011) Lateral and cross-lateral focus-
ing of spherical particles in a square microchannel. Lab Chip 
11(3):460–465

Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. 
Math Comput 22(104):745–762

Chung TD, Kim HC (2007) Recent advances in miniaturized 
microfluidic flow cytometry for clinical use. Electrophoresis 
28(24):4511–4520

Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Gupta AS 
(2018) Influence of particle size and shape on their margination 
and wall-adhesion: implications in drug delivery vehicle design 
across nano-to-micro scale. Nanoscale 10(32):15350–15364

D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone 
PL (2012) Single line particle focusing induced by viscoelastic-
ity of the suspending liquid: theory, experiments and simulations 
to design a micropipe flow-focuser. Lab Chip 12(9):1638–1645

D’Avino G, Greco F, Maffettone PL (2017) Particle migration due to 
viscoelasticity of the suspending liquid and its relevance in micro-
fluidic devices. Annu Rev Fluid Mech 49:341–360

Del Giudice F, DAvino G, Greco F, Netti PA, Maffettone PL (2015) 
Effect of fluid rheology on particle migration in a square-shaped 
microchannel. Microfluid Nanofluid 19(1):95–104

Del Giudice F, Sathish S, DAvino G, Shen AQ (2017) From the edge 
to the center: viscoelastic migration of particles and cells in a 
strongly shear-thinning liquid flowing in a microchannel. Anal 
Chemi

Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046
Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous iner-

tial focusing, ordering, and separation of particles in microchan-
nels. Proc Natl Acad Sci 104(48):18892–18897

Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Parti-
cle segregation and dynamics in confined flows. Phys Rev Lett 
102(9):094503

Doddi SK, Bagchi P (2009) Three-dimensional computational mod-
eling of multiple deformable cells flowing in microvessels. Phys 
Rev E 79(4):046318

Faridi MA, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Rus-
som A (2017) Elasto-inertial microfluidics for bacteria separation 
from whole blood for sepsis diagnostics. J Nanobiotechnol 15(1):3

Fedosov DA, Caswell B, Popel AS, Karniadakis GE (2010) Blood 
flow and cell-free layer in microvessels. Microcirculation 
17(8):615–628

Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value 
problems for the motion of solid bodies in a newtonian fluid part 
1. Sedimentation. J Fluid Mech 261:95–134

Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics 
driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647

Godin J, Chen C-H, Cho SH, Qiao W, Tsai F, Lo Y-H (2008) Micro-
fluidics and photonics for bio-system-on-a-chip: a review of 
advancements in technology towards a microfluidic flow cytom-
etry chip. J Biophoton 1(5):355–376

Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, 
Amini H, Di Carlo D (2010) Label-free cell separation 
and sorting in microfluidic systems. Anal Bioanal Chem 
397(8):3249–3267

Ho B, Leal L (1974) Inertial migration of rigid spheres in two-dimen-
sional unidirectional flows. J Fluid Mech 65(2):365–400

Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS 
(2008) Two simple and rugged designs for creating microfluidic 
sheath flow. Lab Chip 8(7):1097–1103

Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering 
for extreme throughput flow cytometry. Lab Chip 10(3):274–280

Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms 
of cell and particle trapping in microfluidics. Biomicrofluidics 
7(2):021501

Karnis A, Goldsmith H, Mason S (1966) The flow of suspensions 
through tubes: V. inertial effects. Can J Chem Eng 44(4):181–193

Kilimnik A, Mao W, Alexeev A (2011) Inertial migration of deform-
able capsules in channel flow. Phys Fluids 23(12):123302

Krüger T, Kaoui B, Harting J (2014) Interplay of inertia and deform-
ability on rheological properties of a suspension of capsules. J 
Fluid Mech 751:725–745

Kunze A, Che J, Karimi A, Di Carlo D (2015) Research highlights: 
cell separation at the bench and beyond. Lab Chip 15(3):605–609

Lancaster C, Kokoris M, Nabavi M, Clemmens J, Maloney P, 
Capadanno J, Gerdes J, Battrell C (2005) Rare cancer cell analyzer 
for whole blood applications: microcytometer cell counting and 
sorting subcircuits. Methods 37(1):120–127

Lee DJ, Brenner H, Youn JR, Song YS (2013) Multiplex particle focus-
ing via hydrodynamic force in viscoelastic fluids. Sci Repo:3

Leonard BP (1979) A stable and accurate convective modelling proce-
dure based on quadratic upstream interpolation. Comput Methods 
Appl Mech Eng 19(1):59–98

Leshansky A, Bransky A, Korin N, Dinnar U (2007) Tunable nonlin-
ear viscoelastic focusing in a microfluidic device. Phys Rev Lett 
98(23):234501

Li X, Pozrikidis C (2000) Wall-bounded shear flow and chan-
nel flow of suspensions of liquid drops. Int J Multiphase Flow 
26(8):1247–1279

Li G, McKinley GH, Ardekani AM (2015) Dynamics of particle 
migration in channel flow of viscoelastic fluids. J Fluid Mech 
785:486–505

Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, 
McKinley GH, Toner M (2014) Inertio-elastic focusing of biopar-
ticles in microchannels at high throughput. Nat Commun 2014:5

Liu C, Xue C, Chen X, Shan L, Tian Y, Hu G (2015) Size-based separa-
tion of particles and cells utilizing viscoelastic effects in straight 
microchannels. Anal Chem 87(12):6041–6048

Lu X, Liu C, Hu G, Xuan X (2017) Particle manipulations in non-New-
tonian microfluidics: a review. J Colloid Interface Sci 500:182

Nam J, Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S 
(2015) Hybrid capillary-inserted microfluidic device for sheath-
less particle focusing and separation in viscoelastic flow. Biomi-
crofluidics 9(6):064117

Paiè P, Bragheri F, Di Carlo D, Osellame R (2017) Particle focusing by 
3D inertial microfluidics. Microsyst Nanoeng 3:17027

Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38
Pethig R (2010) Dielectrophoresis: status of the theory, technology, 

and applications. Biomicrofluidics 4(2):022811
Popel AS, Johnson PC (2005) Microcirculation and hemorheology. 

Annu Rev Fluid Mech 37:43–69
Pozrikidis C (2003) Modeling and simulation of capsules and biologi-

cal cells. CRC Press, Boca Raton



	 Microfluidics and Nanofluidics (2019) 23:22

1 3

22  Page 12 of 12

Pranay P, Henríquez-Rivera RG, Graham MD (2012) Depletion layer 
formation in suspensions of elastic capsules in newtonian and 
viscoelastic fluids. Phys Fluids 24(6):061902

Raffiee AH, Dabiri S, Ardekani AM (2017a) Deformation and buck-
ling of microcapsules in a viscoelastic matrix. Phys Rev E 
96(3):032603

Raffiee AH, Dabiri S, Ardekani AM (2017b) Elasto-inertial migra-
tion of deformable capsules in a microchannel. Biomicrofluidics 
11(6):064113

Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules 
enclosed by elastic membranes in simple shear flow: large 
deformations and the effect of fluid viscosities. J Fluid Mech 
361:117–143

Romeo G, D’Avino G, Greco F, Netti PA, Maffettone PL (2013) Vis-
coelastic flow-focusing in microchannels: scaling properties of the 
particle radial distributions. Lab Chip 13(14):2802–2807

Saadat A, Guido CJ, Iaccarino G, Shaqfeh ESG (2018) Immersed-
finite-element method for deformable particle suspensions in vis-
cous and viscoelastic media. Phys Rev E 98(6):063316

Schaaf C, Stark H (2017) Inertial migration and axial control of 
deformable capsules. Soft Matter

Schonberg JA, Hinch E (1989) Inertial migration of a sphere in Poi-
seuille flow. J Fluid Mech 203:517–524

Segre G (1961) Radial particle displacements in poiseuille flow of 
suspensions. Nature 189:209–210

Seo KW, Kang YJ, Lee SJ (2014) Lateral migration and focusing of 
microspheres in a microchannel flow of viscoelastic fluids. Phys 
Fluids 26(6):063301

Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apher-
esis (leukapheresis). Lab Chip 6(1):83–89

Skalak R, Tozeren A, Zarda R, Chien S (1973) Strain energy function 
of red blood cell membranes. Biophys J 13(3):245–264

Sundararajan N, Pio MS, Lee LP, Berlin AA (2004) Three-dimensional 
hydrodynamic focusing in polydimethylsiloxane (PDMS) micro-
channels. J Microelectromech Syst 13(4):559–567

Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, 
incompressible, multi-fluid flows. J Comput Phys 100(1):25–37

van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, Den Toonder JM 
(2011) Circulating tumor cell isolation and diagnostics: toward 
routine clinical use

Villone M, DAvino G, Hulsen M, Greco F, Maffettone P (2013) Particle 
motion in square channel flow of a viscoelastic liquid: migration 
vs. secondary flows. J Non-Newtonian Fluid Mech 195:1–8

Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-
inertial particle focusing and continuous separation in a straight 
rectangular microchannel. Lab Chip 11(2):266–273

Zeng L, Balachandar S, Fischer P (2005) Wall-induced forces on a 
rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25

Zhao H, Shaqfeh ES, Narsimhan V (2012) Shear-induced particle 
migration and margination in a cellular suspension. Phys Fluids 
24(1):011902

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Suspension of deformable particles in Newtonian and viscoelastic fluids in a microchannel
	Abstract
	1 Introduction
	2 Methodology
	2.1 Governing equations
	2.2 Problem setup

	3 Results and discussion
	3.1 Newtonian fluid
	3.2 Viscoelastic fluid

	4 Conclusions
	Acknowledgements 
	References


