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Abstract
Object Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are well-known and powerful imaging tech-
niques for MRI. Although DTI evaluation has evolved continually in recent years, there are still struggles regarding  quanti-
tative measurements that can benefit brain areas that are consistently difficult to measure via diffusion-based methods, e.g., 
gray matter (GM). The present study proposes a new image processing technique based on diffusion distribution evaluation 
of López-Ruiz, Mancini and Calbet (LMC) complexity called diffusion complexity (DC).
Materials and Methods The OASIS-3 and TractoInferno open-science databases for healthy individuals were used, and all 
the codes are provided as open-source materials.
Results The DC map showed relevant signal characterization in brain tissues and structures, achieving contrast-to-noise ratio 
(CNR) gains of approximately 39% and 93%, respectively, compared to those of the FA and ADC maps.
Discussion In the special case of GM tissue, the DC map obtains its maximum signal level, showing the possibility of study-
ing cortical and subcortical structures challenging for classical DTI quantitative formalism. The ability to apply the DC 
technique, which requires the same imaging acquisition for DTI and its potential to provide complementary information to 
study the brain’s GM structures, can be a rich source of information for further neuroscience research and clinical practice.
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Introduction

Diffusion-weighted imaging (DWI) and diffusion tensor 
imaging (DTI) are well-known and powerful MR imaging 
techniques. After its first presentation in the mid-1980s [1], 
diffusion-based imaging techniques have undergone more 
than three decades of development and application. The 
ability to infer quantitative diffusion measurements in the 
biological environment has been one of the most important 
features of diffusion-weighted images [2–5]. Considering 
the most common approach using the tensorial representa-
tion for DTI images [6], several diffusion-based representa-
tions can be achieved, including common measurements, 
such as the fractional anisotropy (FA) and apparent diffusion 

coefficient (ADC). These forms of diffusion characterization 
have been widely useful for studying the human body in a 
non-invasive way [7–9].

However, the limitations of the FA and ADC formalism 
in some studies, particularly for human brain evaluation, 
are well-known. The low tissue contrast for apparent diffu-
sion coefficient (ADC) maps and the measurement variation 
present in crossing-fiber orientations for FA maps are some 
examples of the challenges that are continually studied in 
the scientific community [4, 6, 8]. Several ideas have been 
proposed over the years to create novel image-processing 
techniques to provide complementary information for usual 
FA and ADC measurements. For this purpose, the applica-
tion of physical statistics formalism has made contributions 
to DTI evaluation, e.g., by considering Shannon’s informa-
tion theory [10–14].

Although the contribution of physical statistics formal-
ism has led to advances in DTI evaluation, there are still 
struggles regarding quantitative measurements that can 
benefit brain areas that are consistently difficult to measure 
via diffusion-based methods, e.g., gray matter (GM) [15, 
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16]. We propose a novel image processing technique based 
on diffusion space analysis and the López-Ruiz, Mancini, 
and Calbet (LMC) complexity measure [17, 18], which we 
denote as diffusion complexity (DC) mapping.

This study explains the DC formalism and presents its 
calculation and computational algorithm. The definition of 
DC mapping followed that in the manuscript. The experi-
mental design focused on evaluating the healthy human 
brain using a DTI imaging protocol and, finally, a compre-
hensive analysis showing the potential of this novel image 
processing technique and its contribution to the diffusion 
imaging modality in MRI.

Materials and methods

Diffusion complexity measurement

The first concept adopted in measuring diffusion complex-
ity is given by the definition of the signal distribution that is 
analyzed. In DWI, the acquired signal is a direct measure of 
water self-diffusion in biological tissue [3, 19]. Therefore, 
we assume that the signal distribution is the diffusion mag-
nitude obtained from the diffusion image. Recall that we are 
not considering the tensor representation, which is usually 
adopted for FA and ADC measurements. Instead, we collect 
the voxelwise diffusion orientation, given by the N diffusion 
gradients and the b-value reference; therefore, we account 
for the histogram of the diffusion signal. In other words, the 
normalized histogram is used to represent the probability 
density function for the diffusion magnitude observed in 
each voxel and then being able to apply the LMC calculation 
given in Eq. (1). The diagram illustrated in Fig. 1 shows the 
signal distribution construction for the DC mapping.

where H is Shannon’s entropy, D is the disequilibrium esti-
mate [17], and N represents the total diffusion gradients used 
in DTI image acquisition.

Database

All the DTI images used in this study were collected from 
public open-source databases. The main selection criteria 
for the imaging database were based on the availability and 
reproducibility of the data for further evaluation. Another 
important criterion was that the MRI-DTI images were com-
parable to those of routine clinical practice. The databases 
Open Access Series of Imaging Studies (OASIS-3)1 [20] and 
TractoInferno2 [21] were used.

The general image acquisition protocol for both databases 
is described as follows: (i) T1-weighted (T1-w) images using 
the accelerated sagittal 3D IR-SPGR protocol, slice thick-
ness of 1.5 mm, TR ranging from 7.3 to 9.7 ms, TE ranging 
from 3.0 to 4.0 ms, TI ranging from 20 to 400 ms, flip angle 
of 11°, matrix size of 256 × 256 × 128 and in-plane axial 
isotropic resolution of 1.0  mm2; (ii) DTI images using the 
EPI protocol, TR ranging from 1800 to 9200 ms, TE rang-
ing from 70 to 93 ms, angle = 90°, SENSE reduction factor 
ranging from 2.5, gradient directions of 21–64 orientations 
of b1 values ranging from 700 to 1000 s/mm2 and single 
b = 0 s/mm2 were also acquired alongside the DWI images 
and 1.75–2.3  mm3 isotropic voxels. The MRI scanners used 
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Fig. 1  Schematic diagram illustrating the Diffusion Complexity (DC) 
calculation. The raw diffusion-weighted diffusion (DWI) sequence 
is used as the source of information for determining diffusion signal 
distributions, and the probability diffusion distribution obtained from 
the diffusion signal histogram can be applied to the LMC complexity 

formulation as expressed in Eq. (1). It is expected that the differences 
in the microenvironment of each brain tissue can provide a different 
response in the diffusion complexity measure as seen schematically 
in the colored histogram distribution patterns (e.g., White Matter in 
green, Gray Matter in blue and CSF in light blue)

1 https:// sites. wustl. edu/ oasis brain s/.
2 https:// openn euro. org/ datas ets/ ds003 900/ versi ons/1. 1.1.

https://sites.wustl.edu/oasisbrains/.
https://openneuro.org/datasets/ds003900/versions/1.1.1.
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were 3 T Philips Achieva, 3 T Siemens Prisma, 3 T Siemens 
Trio, 3 T Siemens Magnetom TIM Trio, and 3 T GE Dis-
covery MR750. More details are explained in each database 
citation, i.e., OASIS-3 [20] and TractoInferno [21].

Due to the interest in evaluating our DC mapping method, 
only a subset of the healthy individuals comprising our 
image dataset was adopted. Therefore, anatomical changes 
related to brain diseases or natural brain aging were not con-
sidered. Thus, the following image databases were used in 
this study: (i) OASIS-3: 53 subjects ranging in age from 42 
to 48 years, with a balance of 55%/45% right-handed male/
female; (ii) TractoInferno: 62 subjects ranging in age from 
38 to 45 years, 50%/50% right-handed male/female.

All the DTI image sequences were evaluated on standard 
quality control procedures [22, 23] to create a uniform data-
base for quantitative analysis and follow the general DTI 
processing techniques debated by the scientific community. 
No additional image processing algorithms were applied to 
the DTI images to preserve the image quality as close as 
possible to the initial conditions.

Experiments

DTI quantitative analysis

The DTI images were obtained as raw DWI sequences in 
Nifti image format. First, the most common DTI quanti-
tative maps were adopted, i.e., fractional anisotropy (FA) 
and apparent diffusion coefficient (ADC). DTI map recon-
struction was performed using FMRib’s Diffusion Toolbox 
(FDT), FMRIB Software Library, FMRIB, Oxford, UK [24, 
25], with the standard configuration and tensor diffusion rep-
resentation. The DC map was calculated using the raw DWI 
sequences, as shown in Fig. 1 and Eq. 1. All three DTI maps 
were obtained, maintaining the same original image space 
and image metadata. For the DC map, we used an in-house 
implementation (see Sects. "Material and methods", Diffu-
sion complexity measurement", "Database" "Results").

Regarding the brain tissue analysis, we used the T1-w 
images for both brain tissue segmentation and spatial nor-
malization with the brain atlas. Once the T1-w image of the 
subject has been prepared, image registration is performed 
to align the T1-w-based labels to the DTI image space. We 
adopted a 3D rigid operation for intrasubject normaliza-
tion, and for brain atlas normalization, we used sequential 
3D rigid, affine, and β-spline deformation [26]. In all these 
image spatial transformations, we adopted the ANTs image 
normalization toolkit [27]. We used the MNI-152 2  mm3 
resolution brain atlas, defined by the Harvard–Oxford with 
subcortical brain tissue parcellation [28, 29], assuming that 
the brain tissue segmentation was restricted to at least 25% 
of the tissue probability [30].

Signal intensity and contrast‑to‑noise evaluation

This signal intensity evaluation was conducted by comparing 
the major brain tissues, i.e., gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF). Additional brain 
image structures were also analyzed, focusing on subcortical 
brain structures, i.e., the thalamus, caudate, putamen, pal-
lidum, hippocampus, amygdala, and accumbens [28, 29].

The contrast-to-noise ratio was evaluated assuming a 
direct calculation of the brain tissue of interest over a stand-
ard brain tissue as defined in Eq. (2).

where the region of interest adopted for the noise estimate, 
σb, is the CSF signal in intraventricular spaces, i.e., σCSF.

Tissue homogeneity evaluation

We adopted the coefficient of variation as the brain tissue 
homogeneity measurement. Therefore, it is interesting to 
identify whether the DTI quantitative map presents signal 
stability in anatomically homogenous regions. The coef-
ficient of variation,  CVt, measured over a tissue region is 
given by Eq. (3).

where �t is the mean and �t is the standard deviation values 
for tissue t.

Code implementation and computation 
requirements

The DC mapping method was developed using the 
Insight Toolkit (ITK) open-source framework based on 
the C ++ programming template. The ITK code is openly 
distributed on the GitHub repository3 maintained by the 
CSIM laboratory.4 In addition, a command-line plugin 
(documentation website5) was developed for 3DSlicer6 
software, which is another useful tool for medical image 
analysis. All these implementations were aimed at assist-
ing the research and medical community in analyzing 
and using the DC map. Open imaging science promotes 
greater transparency, reproducibility, and collaboration 

(2)CNR
‖A−B‖ =

�

�

SA − SB
�

�

�b

(3)CVt =
�t

�t

3 https:// github. com/ CSIM- Toolk its/ ITK.
4 Computer in Signals and Images Laboratory, University of Sao 
Paulo, Brazil.
5 https:// www. slicer. org/ wiki/ Docum entat ion/ Night ly/ Exten sions/ 
Diffu sionC omple xityM ap.
6 https:// www. slicer. org/.

https://github.com/CSIM-Toolkits/ITK.
https://www.slicer.org/wiki/Documentation/Nightly/Extensions/DiffusionComplexityMap.
https://www.slicer.org/wiki/Documentation/Nightly/Extensions/DiffusionComplexityMap.
https://www.slicer.org/.
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in the imaging science field. The open-source 3D Slicer 
software can be customized and extended by the commu-
nity, fostering innovation and continuous improvement by 
solving problems in imaging science.

All the computational experiments were performed using 
a computer with the following requirements: Linux OS, Mint 
21.2 Cinnamon version 5.8.4, Intel i7-12700H core proces-
sor, 512 GB SSD, 16 GB 4.800 MHz DDR5 RAM and 
NVidia dedicated RTX 3060 GDDR6 6 GB GPU.

Results

A visual assessment was conducted at the initial examination 
to discern the basic signal configuration presented in the 
proposed method. As illustrated in Fig. 2, the global signal 
patterns for FA, ADC, and DC mapping can be compared. 
Initially, it was possible to distinguish the three primary 
brain tissues using DC, showing the WM, GM, and CSF. 
When assessed against the FA and ADC images, it is evident 
that there is a unique signal preference for WM and CSF, 
respectively; however, these conventional maps revealed low 
signal levels for the remaining brain tissues.

Figure 3 presents the quantitative signal levels, demon-
strating a distinct separation between WM, GM, and CSF 
using a DC map. However, for FA and ADC signal evalua-
tion, it is evident that WM and CSF tissues can be identified 
separately although the other tissues are not statistically dis-
tinguishable. For instance, considering the two-sample t-test 
hypothesis analysis with a significant p-value of 0.05, the FA 
maps for the GM-CSF comparison and the ADC maps for 
the WM-GM comparison showed no significant differences 
(p-value = 0.088 and p-value = 0.079, respectively). On the 
other hand, the DC map showed significant differences for 
all brain tissues, i.e., GM-WM (p-value <  10–4), GM-CSF 
(p-value <  10–4) and WM-CSF (p-value <  10–4). As illus-
trated in Fig. 3, FA and ADC overlap in signal levels for 
GM/CSF and WM/GM, respectively. This observation was 
not observed in the DC image, which showed a distinctly 
separable signal distribution.

It is important not only to evaluate signal intensity but 
also to quantify the tissue contrast that can be achieved with 
each DTI map. The DC map is particularly noteworthy in 
providing relevant contrast for all major brain tissues, dem-
onstrating significant differences among brain regions in 
the WM, GM, and CSF. As illustrated in Fig. 4, the CNR 
measurements revealed the level of tissue contrast achieved. 

Fig. 2  Comparison of DC, FA, 
and ADC (columns) mapping 
for axial, sagittal and coronal 
orientations (rows). The DC 
map stands out for all three 
major brain tissues. In par-
ticular, the GM is significantly 
brighter in DCs as shown by 
FA and apparent diffusion coef-
ficient (ADC) maps
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While the FA and ADC maps cannot provide reliable sepa-
ration between some of these anatomical regions, the DC 
map shows greater CNR for all three major brain tissues 
and can be analyzed with a high level of confidence in the 
WM, GM, and CSF (details in Table 1). Furthermore, the 
average CNR for the DC map was approximately four times 

Fig. 3  Signal intensity evaluation for DC, FA, and ADC maps. The 
DC map presents a broad signal intensity for WM, GM, and CSF tis-
sues in comparison to that of FA and ADC. Furthermore, all three 
brain tissues are well-separated in the DC map, which can be difficult 
to distinguish via FA (between the GM and CSF) and ADC (between 
the GM and WM) Fig. 4  Contrast-to-noise (CNR) evaluation for DC, FA, and ADC 

maps. The DC map retains a well-separated brain tissue contrast for 
all WM, GM, and CSF regions, revealing a strong signal intensity 
through image noise. On the other hand, FA and ADC maps struggle 
with signal differentiation among tissues with low contrast in these 
DTI maps, i.e., |CSF-GM| for FA and |GM-WM| for ADC
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greater than that for the FA maps for the same tissues (see 
|CSF-GM| in Fig. 4). A similar pattern is observed for the 
ADC map, with the DC CNR showing an average increase 
of approximately 85% for all major brain tissue comparisons, 
i.e.,  CNR|GM-WM|,  CNR|CSF-WM| and  CNR|CSF-GM|. The CNR 
gains obtained for the major and subcortical brain areas are 
listed in Table 1.

In addition to the signal and CNR evaluation, it is essen-
tial to analyze the general tissue homogeneity obtained from 
each quantitative map. Figure 5 shows the global distribution 
of subcortical brain regions using DC, FA, and ADC maps. 
By comparing the global image patterns, it becomes clear 
that the DC map exhibits a more uniform spatial distribution 
within each region. Table 2 shows the CV results used to 
infer tissue homogeneity. The FA map displays significant 
variations in signal intensity within larger brain regions, 
while the ADC map maintains a consistent smoothness 
across varying brain areas.

Figure 6 contains additional information on tissue homo-
geneity, offering a more detailed examination of certain sub-
cortical brain regions. Notably, the DC map exhibits varia-
tions in signal strength for closely related subcortical areas, 
such as Pallidum and Putamen. In contrast, the FA and ADC 
maps struggle to clearly represent the signals of those brain 
areas. While FA maps tend to show more fluctuations in 
the signal, the apparent diffusion coefficient (ADC) remains 
consistently smooth across all GM-related signals. Overall, 
the DC map can distinguish between GM structures and WM 
tissue, even in more subtle subcortical brain regions.

Discussion

DTI is a powerful tool for human brain analysis and has 
several applications in modern medicine. However, there 
are limitations concerning classical quantitative information, 
such as FA and apparent diffusion coefficient (ADC) map-
ping. Although many achievements were well represented 
in such classical maps, another form of representation that 
could offer complementary information in diffusion data 
analysis is still needed. In this manner, DC mapping can 
be helpful. The signal and tissue contrast obtained from the 
LMC complexity formulation showed an interesting way to 
analyze other brain tissues poorly represented in classical 
diffusion analysis.

As shown in Figs. 3 and 4, the DC measurements pre-
sent a broad range of values that contribute to good tissue 
segmentation in the diffusion space. All the major brain 
tissues have a well-delineated order of magnitude for DC 
signals, maintaining a controlled data variability distribu-
tion. Therefore, assuming water self-diffusion behavior in 
the natural environment, it is clear that brain regions offering 
low diffusion restriction also have a low complexity level, 
e.g., CSF. On the other hand, when a rigid diffusion orienta-
tion is assumed, mainly on highly dense white matter fibers, 
the complexity is also penalized, resulting in an intermedi-
ate complexity level, e.g., WM. Interestingly, when there 
is a balance between restrictive environmental conditions 
and a microstructured self-organized pattern of axons and 
dendritic connections, the complexity reaches its maximum. 
This is the case for GM tissue, which provides challenging 
diffusion modulation using the classical DTI formulation. 
Hence, it is reasonable to expect the image pattern presented 
in Fig. 2.

In classical DTI maps, such as FA, it is usually assumed 
that WM tissue is one of the environments for diffusion mod-
ulation due to the dense axonal fibers of the brain. However, 
many other applications could benefit from diffusion signal 
analysis in other brain regions, e.g., GM. Therefore, obtain-
ing a novel metric for diffusion images to highlight GM tis-
sue is a positive outcome to be achieved.

Although we have made continued efforts from the scien-
tific community to better understand the DTI-related modal-
ity, it is still more appropriate to use the classical DTI imag-
ing protocol, which is more suited to clinical investments 
and usability. Indeed, advances in new ways to evaluate the 
diffusion pattern in biological tissue are still a reasonable 
investment for upcoming advances in medicine, e.g., image 
reconstruction techniques using Q-ball [31–33], HARDI 
[34–36], DSI [37–39] and other detailed diffusion modula-
tions and applications [40–43]. However, DTI images can 
be explored in light of new data analysis procedures, as our 
proposed method ensures that complementary methods for 

Table 1  Summary of the relative average CNR gains obtained for DC 
compared to FA and ADC maps

The three permutation evaluations were considered for the major 
WM, GM, and CSF tissues. The subcortical brain regions are com-
pared with their neighboring brain tissue, i.e., the WM
*p-values above the assumed significance level of 0.01

Average DC map CNR gain factor compared with

FA ( � ± � a.u.) p-value ADC ( � ± � 
 mm2/s)

p-value

CNR|GM-WM| 1,21 ± 0,71 0,0011 1,85 ± 0,41  <  10–4

CNR|CSF-WM| 1,37 ± 0,22  <  10–4 1,86 ± 0,56  <  10–4

CNR|CSF-GM| 3,82 ± 0,33  <  10–4 1,83 ± 0,86  <  10–4

CNR|WM-TAL| 1,42 ± 0,34  <  10–4 2,48 ± 0,81  <  10–4

CNR|WM-CAU| 1,98 ± 0,34  <  10–4 2,43 ± 0,38  <  10–4

CNR|WM-PUT| 2,18 ± 0,33  <  10–4 1,65 ± 0,89  <  10–4

CNR|WM-PAL| 1,17 ± 0,13 0,0595* 1,79 ± 0,08  <  10–4

CNR|WM-HIP| 1,29 ± 0,34  <  10–4 1,31 ± 0,36  <  10–4

CNR|WM-AMY| 1,39 ± 0,45  <  10–4 1,39 ± 0,22  <  10–4

CNR|WM-ACC| 1,67 ± 0,44  <  10–4 1,76 ± 0,19  <  10–4
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obtaining information do not imply an increase in diagnostic 
cost.

Second, other researchers have reported the properties 
of entropy calculation for DTI understanding, referring to 
Shannon’s information quantization theory and its applica-
tion to diffusion space characterization [10–12]. However, 
our proposed method aggregates the disequilibrium contri-
bution to infer a balance between entirely chaotic behav-
ior and totally restricted previsibility, following the LMC 
complexity formalism [17]. Hence, it proved to be a good 
description to infer the intermediate tissue self-organization 
that is not fully comprehended in the classical DTI schema, 
especially in the case of the GM tissue.

Another important image pattern highlighted by the DC 
metric is the ability to identify subtle signal changes in brain 
regions that are not fully capable of being studied using FA 

and ADC maps, i.e., subcortical brain regions. As shown 
in Fig. 5, the general signal distribution through the image 
space presents a balanced tissue homogeneity and contrast 
in DC maps, which is not well presented in FA and ADC. 
Subcortical brain areas were historically challenging for DTI 
images even though the authors are indicating the impor-
tance of evaluating such brain regions [44–47]. There are 
recent studies that have shown interesting results on DTI 
measurements in GM-related areas, which foment new 
investigations on using diffusion data for additional biomark-
ers on neuroscience and clinical diagnosis. For instance, it 
has been showing diffusion signal contrast on subcortical 
areas in primary and secondary progressive Multiple Scle-
rosis [48], in contrast to the normal-appearance signal in 
classical MRI maps. Other group studies attest important 
differences in GM signal on Alcohol dependence [49], 

Fig. 5  Subcortical brain regions regarding the FA, DC, and ADC 
signals (rows). A color-coded representation is provided for each 
quantitative map to prove the tissue homogeneity throughout the 
brain region. The DC map presents a consistently greater signal for 

GM-related cortical and subcortical structures. Furthermore, the val-
ues are well spread throughout the spatial structures, representing a 
smooth but evident differentiation between brain regions. The ana-
tomical labels are given in the supplementary material
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chronic neurotrauma [50], association on disturbs of brain-
iron concentration [51], and brain cortical delineation [52]. 
It is worth noticing that the application of diffusion analysis 
in GM areas has been growing in recent years. Hence, it 
could be interesting to add new information using new image 
processing techniques such as the DC map.

In addition, as shown in Fig. 6, there is good signal rep-
resentation in DC measures for large subcortical structures, 
e.g., Pallidum and Putamen. In this case, the DC signal vari-
ation can be specific to each subcortical region and does 
not vary abruptly as seen in FA measurements. We presume 
that the strong signal variation present in FA is more related 
to the inability to distinguish tissue characteristics due to 
the tensor representation that is primarily known to strug-
gle with crossing fibers and more complex environments 
[53–55]. Indeed, the deep gray matter does not present a 
crossing fibers problem. However, it is a more challenging 
environment that disturbs tensorial representation. Fur-
thermore, recent findings address the importance of DTI 
measurements in understanding the brain-iron disturbs and 
long-term brain structural degeneration [51, 56, 57], adding 
more insights to the inner complexity of diffusion behavior 
in biological tissue beyond the crossing fibers issue. This 
indicates that the DC measure can be more suitable for infer-
ring anatomical changes based on differences in diffusion 
space distribution that may shift the balance between tissue 
entropy and disequilibrium considering physical statistical 
evidence.

Another important consideration in favor of our method is 
the use of common DWI sequence MRI acquisition, which 
does not require an additional imaging configuration. In 

Table 2  Coefficient of variation (CV) for the DC, FA, and ADC maps

The level of signal variation indicates the homogeneity in each brain 
area. The lower CV value for each row is highlighted. Abbreviations 
are provided in the supplementary material

Brain area CVDC (μ ± σ a.u.) CVFA (μ ± σ a.u.) CVADC (μ ± σ 
 mm2/s)

WM 11,82% ± 6,51% 6,14% ± 4,40% 6,80% ± 1,10%
GM 8,31% ± 1,03% 8,60% ± 2,48% 10,08% ± 2,07%
CSF 71,44% ± 14,10% 40,67% ± 16,18% 17,07% ± 7,65%
THA 13,09% ± 7,04% 9,23% ± 4,93% 19,12% ± 3,69%
CAU 23,63% ± 14,66% 25,06% ± 7,45% 35,22% ± 8,39%
PUT 11,51% ± 7,94% 15,91% ± 7,60% 4,98% ± 0,71%
PAL 17,94% ± 9,50% 21,93% ± 16,56% 6,47% ± 0,92%
HIP 15,82% ± 10,02% 12,48% ± 7,68% 10,48% ± 2,16%
AMY 16,01% ± 9,55% 20,81% ± 9,94% 9,58% ± 1,81%
ACC 15,35% ± 7,16% 26,42% ± 11,82% 19,42% ± 3,21%

Fig. 6  (First row) Closing representation of the putamen (PUT), cau-
date (CAU), pallidum (PAL), and partial thalamus (THA); and (sec-
ond row) signal variability (CV) throughout all the subcortical struc-
tures represented in the MNI/Harvard Oxford Brain Atlas, given by 
DC, FA and ADC maps, respectively. There is evident signal differen-

tiation in cortical and subcortical structures in the DC map, which are 
not well-delineated in the FA and ADC maps. The same patterns are 
presented in other subcortical regions. Abbreviations are provided in 
the supplementary material
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this manner, the DC measurement is another good strategy 
for obtaining novel tissue information by reusing the same 
image acquisition presented in DTI techniques. There is no 
need to increase the acquisition cost to obtain the DC map 
evaluation. This is an advantage, considering the high cost 
of MRI exams. Therefore, the DC map is entered as com-
plementary information for classical DTI measurements. 
Another interesting point of view is that the DC algorithm 
has a low computational cost for DC calculations, which also 
favors adopting this image processing technique without the 
need to improve the computational capacity in the clinical 
or laboratory environment.

Even though interesting points are highlighted for DC 
measurements, it is also important to discuss its limitations. 
First, it is known that the adoption of shallow diffusion sig-
nal distributions can be problematic for DC estimates. In 
other words, the quantity of diffusion gradients presented 
in the DTI imaging acquisition protocol must provide a 
reasonable amount of diffusion samples per voxel. Hence, 
DTI images acquired using too few diffusion gradients, e.g., 
N < 15, can result in lower-quality DC maps. In addition, the 
same can be argued for the assumed b-value for the diffusion 
orientation  (b1), which should be chosen between  b1 = 500 
and 2000s/mm2. Rather than being a specific issue for the 
DC method, this is general advice for classical DTI formal-
ism, in which it is well-known that the b-value and number 
of gradients strongly influence classical DTI quantitative 
maps due to both SNR conditions and tensorial representa-
tion. Second, it is also important to consider the partial-vol-
ume effect that is particularly relevant in image acquisition 
with low spatial resolution, such as DTI. In this manner, 
further quantitative analysis of a small region of interest and 
a tissue frontier with other anatomical structures, mainly to 
the CSF interface, is advised. Therefore, although there are 
interesting findings regarding the brain subcortical areas, 
as shown in Fig. 6, it should be noted that small subcortical 
areas must be analyzed with caution.

The DC map generally presents relevant novel informa-
tion about brain structure organization. The level of under-
standing in areas that are difficult to study in classical DTI 
maps, such as GM and subcortical GM, can be greatly 
improved using DC. This study showed the potential of this 
new image processing technique, which involves the use 
of healthy brain anatomical data. However, further analy-
sis must be conducted to better understand the diagnostic 
potential of DC measurements. It is not within the scope 
of the present study to analyze cases of brain diseases or 
brain anatomical changes that occur during natural aging. In 
special cases, we believe that novel debates will be closely 
related to the potential of GM discrimination, enabling fur-
ther analysis in the field of brain diagnosis in presurgical 
planning for epilepsy, Alzheimer’s disease, and Parkinson’s 

disease diagnosis and many other possibilities for the use 
of DTI images.

Conclusion

The present study proposes a new image processing tech-
nique for measuring LMC complexity using the principle 
of diffusion distribution evaluation on physical statistical 
formalism. The DC map showed relevant signal characteri-
zation in brain tissues and structures historically challeng-
ing for classical DTI quantitative mapping, i.e., GM. We 
believe that the DC technique can be easily applied to many 
MRI studies requiring the same imaging acquisition for DTI. 
Our method provides promising complementary information 
for studying the brain with classical DTI quantitative maps, 
which can be a rich source of information for further neuro-
science research and clinical practice. Further development 
of DC map use in brain diseases is still needed but shows 
great potential in light of healthy individual assessments.
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