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Abstract
Objectives To investigate the utility of deep learning (DL)-based image reconstruction using a model-based approach in 
head and neck diffusion-weighted imaging (DWI).
Materials and methods We retrospectively analyzed the cases of 41 patients who underwent head/neck DWI. The DWI in 
25 patients demonstrated an untreated lesion. We performed qualitative and quantitative assessments in the DWI analyses 
with both deep learning (DL)- and conventional parallel imaging (PI)-based reconstructions. For the qualitative assessment, 
we visually evaluated the overall image quality, soft tissue conspicuity, degree of artifact(s), and lesion conspicuity based 
on a five-point system. In the quantitative assessment, we measured the signal-to-noise ratio (SNR) of the bilateral parotid 
glands, submandibular gland, the posterior muscle, and the lesion. We then calculated the contrast-to-noise ratio (CNR) 
between the lesion and the adjacent muscle.
Results Significant differences were observed in the qualitative analysis between the DWI with PI-based and DL-based 
reconstructions for all of the evaluation items (p < 0.001). In the quantitative analysis, significant differences in the SNR 
and CNR between the DWI with PI-based and DL-based reconstructions were observed for all of the evaluation items 
(p = 0.002 ~ p < 0.001).
Discussion DL-based image reconstruction with the model-based technique effectively provided sufficient image quality 
in head/neck DWI.
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Introduction

Diffusion-weighted imaging (DWI) is an important modal-
ity for evaluations of the head and neck due to its ability to 
detect lesions, differentiate between benign and malignant 
lesions, and predict treatment outcomes [1–4]. Single-shot 
echo-planar imaging (EPI) is the most commonly used 
readout technique [5], because single-shot EPI readout 
achieves rapid scanning with high signal acquisition. 
Moreover, the majority of magnetic resonance imaging 
(MRI) scanners support the implementation of the EPI 
sequence. Single-shot EPI nevertheless has significant 
drawbacks, including geometric image distortion result-
ing from the setting of a large number of EPI factors [6]. 
Image distortion may adversely impact the radiological 
diagnostic performance in image interpretation. The par-
allel imaging (PI) technique effectively reduces image 
distortion in EPI-based DWI by decreasing the number 
of EPI factors. However, increasing the reduction fac-
tor in PI leads to a decrease in the signal-to-noise ratio 
(SNR), accompanied by substantial image noise, par-
ticularly in areas with high geometry factors (g-factors) 
typically located at the center of the image [7]. Although 
increasing the number of excitations (NEX), i.e., multi-
ple signal averaging, may reduce image noise and yield a 
sufficient SNR, doing so entails a longer scanning time. 
This extended duration may cause discomfort to patients 
and increase the likelihood of patient motion, which, in 
turn, lowers image quality. Additional supportive denois-
ing techniques should, therefore, be explored to overcome 
these limitations.

Remarkable development has recently been achieved in 
the clinical application of deep learning (DL) with con-
volutional neural networks (CNNs) in the field of medical 
imaging [8–12]. Image reconstruction techniques based 
on DL in particular have demonstrated promising results 
in relation to denoising for the acquisition and reconstruc-
tion of MRI data [13–15]. One of the DL-based image 
reconstruction techniques, classified as ‘model-based’ 
processes, represent a leading-edge development in the 
domain of image denoising within MRI; these tech-
niques have provided significant advancements in the 
field [16–19]. The model-based technique consists of a 
deep-learning architecture named Adaptive-compressed-
sensing sensitivity-encoding (CS)-Net, which is a type of 
filtered U-net architecture, embedded inside the image 
reconstruction process. Due to its analytical framework, 
this model-based DL denoising approach capably manages 
a large amount of data derived from image acquisition 
and the reconstruction process, including signal informa-
tion from individual channels in receiver coils as well as 
both magnitude and phase information. Consequently, the 

model-based DL method holds promise for the improve-
ment of image quality, even in head and neck DWI, which 
typically contains considerable image noise.

We conducted the present study to assess the utility of a 
model-based DL image reconstruction by comparing with 
images reconstructed with the conventional PI-based method 
in head and neck DWI.

Materials and methods

Patients

The protocol of this retrospective study was approved by 
our institutional review board, and the requirement for 
patients' written informed consent was waived. Total 384 
patients were referred to our hospital for the evaluation of 
the head and neck and underwent MR scanning during the 
period from April 2022 to November 2022. From these 
384 patients, we selected the cases of 43 patients with the 
following inclusion criteria; (1) the patient underwent the 
scanning by a specific MR scanner equipped with the DL-
based reconstruction function, and (2) the patient's MRI 
data set including DWIs with both the conventional PI- and 
DL-based reconstructions was available. Two of these 43 
patients were excluded based on a failure to save the raw 
data of DWI for the image reconstruction. We analyzed the 
cases of the final total of 41 patients. Twenty-five of the 
41 patients underwent pretreatment MR scanning for the 
evaluation of their head and neck tumor as an initial assess-
ment. The other 16 patients underwent MR scanning for 
the evaluation after the treatment of their head and neck 
lesion as a follow-up examination. The process of patient 
selection is presented in Fig. 1. The characteristics of the 41 
patients were as follows: 30 males and 11 females, median 
age 59 years (range 37–78 years). Among the 41 patients, 
the primary sites and the pathological diagnoses in the 25 
patients who underwent pretreatment MRI for the initial 
evaluation of their primary tumors were as follows: pharyn-
geal squamous cell carcinoma (SCC) (n = 10 patients), oral 
cavity SCC (n = 4), nasal or sinonasal cavity SCC (n = 4), 
sinonasal inverted papilloma (n = 1), and parotid gland 
tumor (n = 6). The other 16 patients were on follow-up status 
after the definitive treatment for their head and neck lesion 
(i.e., no lesions present). Patient characteristics are summa-
rized in Table 1.

Imaging parameter

All scanning was performed using a 3.0-Tesla MR unit 
(Ingenia Elition; Philips Healthcare, Best, The Nether-
lands) with a 16-channel neurovascular coil. Two data sets of 
DWI with three orthogonal motion probing gradients were, 
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respectively, acquired: (1) 2D single-shot spin-echo (SE) 
EPI-based DWI with PI reconstruction, and (2) 2D single-
shot spin-echo EPI-based DWI with DL reconstruction. Two 
sets of DW images were thus obtained using the same image 
acquisition protocol with the following parameters: TR 
4000 ms, TE 61 ms, flip angle 90°, EPI factor 45, acquired 
matrix 156 × 156 (reconstructed matrix, 256 × 256), field of 
view (FOV) 230 × 230 mm (matrix size 0.9 × 0.9 mm), slice 
thickness 5 mm, inter-slice gap 1.5 mm, reduction factor 3.0, 
number of excitations (NEX) 1, scanning time 1 min 1 s. The 
mean value derived from the three orthogonal directional 
DWIs was utilized for subsequent analyses.

Data processing

We used the image reconstruction model including the DL 
architecture of the Adaptive-CS-Net in retrieving the image 

from an undersampled k-space by the iterative image pro-
cessing for the improvement of image quality; this method is 
classified as model-based DL reconstruction [16]. An over-
view of the iterative process in this model-based DL recon-
struction is presented in Fig. 2. The details of the model 
training of Adaptive-CS-Net and of optimization methods 
are described in a previous report [16]. All image processing 
was conducted within the MR console.

This technique is used to achieve improved image qual-
ity from an undersampled k-space by iterative image pro-
cessing by a DL-based image sparsifying approach mainly 
for denoising and removing artifacts with Adaptive-CS-
Net. More specifically, Adaptive-CS-Net employs a CNN 
as a sparsifying transform, which serves to substantively 
replace the wavelet transform within the framework of 
the compressed sensing algorithm. Adaptive-CS-Net was 
constructed based on a U-Net-shaped structure with a soft 
thresholding function that could help achieve efficient image 
processing, such as denoising and removing artifacts. We 
speculated that, as a result of embedding Adaptive-CS-Net 
into an iterative processing of image reconstruction, more 
accurate image quality improvement could be expected by 
fully dealing with not only the final output images but also 
the substantial total amount of data processed iteratively 
through the Adaptive-CS-Net within the image reconstruc-
tion cycle. In addition, as another important characteristic of 
this model-based reconstruction process, we input the image 
reconstruction-related data set of domain-specific knowledge 
(e.g., data consistency, phase behavior, and background 
information) in the reconstruction process; the process for 
data consistency check makes it possible to avoid inappro-
priate processing by canceling the specific denoising/artifact 
reduction that is inconsistent with the original image data, 
the process for inputting the phase behavior was to remove 
the slowly varying phase caused by acquisition errors or 

Fig. 1  Flow diagram of the 
study population. DL, deep 
learning; PI, parallel imag-
ing; DWI, diffusion weighted 
imaging

Table 1  Patient characteristics (n = 41)

SCC, squamous cell carcinoma

Total patients (n = 41)
Age
Range 37–78
Median 59
Gender
Male 30
Female 11
Detail of primary lesion (25 of 41 total patients)
Pharyngeal SCC 10
Oral cavity SCC 4
Nasal or sinonasal cavity SCC 4
Sinonasal inverted papilloma 1
Parotid gland tumor 6
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imperfections, and the process for inputting the background 
information was to estimate the coarse signal distribution in 
the FOV from low frequency k-space data. These processes 
lead to reliable background identification in the reconstruc-
tion process. [16, 17]. Finally, from a single set of acquired 
DWI data, a corresponding set of images was output through 
the model-based DL reconstruction process. Conventional 
PI-based DWI, which is the most frequently used DWI 
sequence, was compared with the above-described model-
based DL reconstruction method.

Image analysis: qualitative assessment

As a qualitative assessment, two board-certified radiolo-
gists who are head-and-neck imaging specialists with 8 
and 17 years of experience in radiology, respectively, visu-
ally evaluated the axial DW images with PI- and DL-based 
reconstruction in a blinded fashion, focusing on: (i) the 
overall image quality, (ii) soft tissue conspicuity, and (iii) 
the degree of the artifact in all 41 patients. In patients with 
a primary tumor (n = 25), (iv) lesion conspicuity was also 
evaluated. Each evaluation was conducted based on a five-
point grading system as follows: 1 point, very poor, unavail-
able for diagnostic use; 2 points, poor, but possible for diag-
nostic use; 3 points, moderate, acceptable for diagnostic use; 
4 points, good, minimal limitations for diagnostic use; and 
5 points, excellent, almost no limitations for diagnostic use.

Image analysis: quantitative assessment

In the quantitative assessment, the signal intensity of the 
bilateral parotid glands, submandibular gland, and the poste-
rior neck muscle was measured in all 41 patients by placing 
a circular 100  mm2 region of interest (ROI) in all patients 

[20]. The SNRs of the normal tissue (the parotid glands, the 
submandibular gland, and the posterior muscle) were meas-
ured as follows: the mean signal in the ROI/standard devia-
tion (SD) of the signal in the ROI [21]. In the patients with 
a primary lesion (n = 25), a free-hand ROI was manually 
placed on the tumor lesion. If the tumor extended into two or 
more slices, the slice in which the largest area of tumor was 
depicted was selected. Any area which was suggested to be 
necrosis, a cystic lesion, or vessel component was carefully 
excluded from the ROI. The SNRs of the lesion were meas-
ured by the same fashion as the normal tissue. Subsequently, 
the contrast-to-noise ratio (CNR) was determined as follows. 
An additional ROI was manually drawn on muscle adjacent 
to the tumor lesion, and the CNR was then calculated as the 
difference between the mean signal of the tumor lesion and 
the adjacent muscle ROI divided by the SD of the adjacent 
muscle's ROI [21]. Finally, the apparent diffusion coeffi-
cient (ADC) was calculated using the signal intensity of b0 
and b1000 images in the tumor lesion ROI. All of the ROI 
placement procedures were performed first on the patient's 
PI-based DWI images, and then the ROI was copied on the 
patient's DL-based DWI. Manual correction of the copied 
ROI placement was performed as needed. The quantitative 
procedure was performed by an experienced radiologist with 
17 years of experience.

Statistical analysis

Kappa statistics were used to determine the interobserver 
agreement for the qualitative analyses (0.00–0.20, poor; 
0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, good; 
0.81–1.00, excellent). Qualitative image scores were com-
pared between the DWI with PI-based and DL-based recon-
structions using the Wilcoxon signed-rank test. The SNRs of 

Fig. 2  Overview of the model-based deep learning (DL) reconstruc-
tion process. This schematic diagram shows the model-based DL 
reconstruction framework, which is characterized by the iterative pro-
cessing by a DL-based image sparsifying approach. In this model, the 
deep learning architecture of Adaptive-CS-Net was embedded in the 

image reconstruction cycle. Adaptive-CS-Net is based on a U-Net-
shaped structure, with a soft thresholding function (arrowheads). In 
the reconstruction process, image data undergo iterative processing 
with image sparsifying by Adaptive-CS-net. This process produces a 
final output image with high image quality
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the normal tissues (parotid glands, submandibular gland, and 
posterior muscle) and the tumor lesion, the CNRs, and the 
ADCs were, respectively, compared between the DWI with 
PI-based reconstruction and DWI with DL-based recon-
struction using the paired t test, after the confirmation of 
the data's normal distribution by the Shapiro–Wilk test. A 
p value < 0.05 was considered significant. SPSS software 
(IBM, Armonk, NY) was used for all statistical analyses.

Results

In the qualitative analysis, significant differences were 
observed between the DWI with PI-based reconstruction 
and the DWI with DL-based reconstruction in all of the 
evaluation items. The results of the qualitative analysis are 
summarized in Table 2. The interobserver agreement in all 
of the qualitative analyses between the two board-certified 
radiologists was mostly good (Kappa score of 0.59–0.68).

In the quantitative analysis, the sizes of the ROIs for the 
delineation of tumor lesions were 387 ± 212  mm2. After 
the Shapiro–Wilk test, all quantitative variables were con-
firmed its normal distribution. We observed significant dif-
ferences in the SNR between the DWI with PI-based and 
DL-based reconstructions in all of the normal anatomical 
structures (right and left parotid gland, submandibular gland, 
and the posterior muscle) and tumor lesions. In the CNR 

assessment for tumor lesions, the CNR between the lesion 
and adjacent muscle in the DL-based DWI (17.1 ± 13.0) 
was significantly higher than that in the PI-based DWI 
(12.6 ± 10.6) (p < 0.001). The ADCs in the DL-based DWI 
(0.85 ± 0.07 ×  10−3  mm2/s) tended to be slightly higher than 
those in the PI-based DWI (0.83 ± 0.07 ×  10−3  mm2/s), but 
significance was not observed (p = 0.31). Table 3 provides 
the results of all the quantitative analyses.

Representative cases of DWI images with PI-based and 
DL-based image reconstruction are presented in Figs. 3 and 
4. In addition, cases wherein the efficacy of the model-based 
DL reconstruction was deemed insufficient are presented in 
Supplementary Materials 1 and 2.

Discussion

Our results revealed that the model-based DL image recon-
struction technique with Adaptive-CS-Net successfully 
improved the image quality in DWI compared to the con-
ventional PI-based technique in both qualitative and quanti-
tative assessments for evaluations of the head and neck. To 
the best of our knowledge, the present study provides the 
first report of an assessment of the utility of DL-based image 
processing in head and neck DWI. This image reconstruc-
tion technique may be a useful tool in daily clinical practice 
for the assessment of the head and neck by providing high 

Table 2  Results of the qualitative assessment

Data are mean ± standard deviation

Reader 1 Reader 2 Kappa-score

Parallel-imaging Deep-learning p value Parallel-imaging Deep-learning p value

Overall image quality 2.88 ± 0.47 3.85 ± 0.55 < 0.001 2.75 ± 0.51 3.91 ± 0.45 < 0.001 0.68
Soft tissue conspicuity 2.64 ± 0.69 3.58 ± 0.60 < 0.001 2.73 ± 0.51 3.85 ± 0.43 < 0.001 0.61
Degree of the artifact 2.55 ± 0.70 3.67 ± 0.72 < 0.001 2.73 ± 0.56 3.82 ± 0.57 < 0.001 0.59
Lesion conspicuity 2.88 ± 0.71 3.73 ± 0.60 < 0.001 2.80 ± 0.57 3.80 ± 0.40 < 0.001 0.65

Table 3  Results of the 
quantitative assessment

Data are mean ± standard deviation. SNR, signal to noise ratio; CNR, contrast to noise ratio; ADC, appar-
ent

Parallel imaging Deep learning p value

SNR Lesion 9.8 ± 2.3 12.0 ± 2.9 < 0.001
Rt. Parotid gland 9.5 ± 2.8 11.2 ± 3.4 < 0.001
Lt. Parotid gland 8.8 ± 3.2 10.5 ± 3.9 0.002
Rt. Submandibular gland 7.3 ± 1.8 9.2 ± 2.2 < 0.001
Lt. Submandibular gland 7.1 ± 2.0 8.7 ± 2.4 0.002
Rt. Cervical muscle 7.0 ± 1.4 8.9 ± 1.5 < 0.001
Lt. Cervical muscle 7.1 ± 1.7 8.2 ± 1.8 < 0.001

CNR Lesion to adjacent muscle 12.6 ± 10.6 17.1 ± 13.0 < 0.001
ADC  (10–3  mm2/s) Lesion 0.83 ± 0.07 0.85 ± 0.07 0.31



444 Magnetic Resonance Materials in Physics, Biology and Medicine (2024) 37:439–447

1 3

SNRs and CNRs with superb image visibility. We evaluated 
various tumor lesions, bilateral parotid glands, submandibu-
lar glands, and the posterior neck muscles for quantitative 
and qualitative assessments, and we observed that the image 
quality of all these targets was significantly improved. This 
result suggested that the model-based DL technique per-
formed in this study achieved the overall favorable outcome 
in most of the locations in the head and neck. Regarding 
degree of artifact, B0 field inhomogeneity and EPI Nyquist 
ghost artifacts in DWIs frequently cause a decrease in image 
quality. The present results indicate that model-based deep 
DL reconstruction effectively decreases or eliminates a 

wide variety of artifacts or artifact-related noise and pro-
vides high-quality DWIs; however, it was unclear what kinds 
of artifacts were most or least effectively removed; further 
analysis is needed to clarify this issue.

In recent decades, conventional PI-DWI with single-
shot SE-EPI has been a commonly used sequence design, 
and has frequently been applied for evaluations of the head 
and neck. However, the image acquisition of regions in the 
head and neck by conventional EPI-based DWI is often 
challenging because of its magnetic field inhomogeneity 
[22]; it can occasionally be difficult to maintain high image 
quality within an acceptable scanning time. Indeed, we 

Fig. 3  Representative patient with posterior wall oropharyngeal 
cancer. In fat-suppressed T2WI (a), a primary tumor lesion located 
mainly on the posterior wall of the oropharynx was observed as a 
high-signal-intensity mass (a: arrow). In DWI with conventional PI-
based reconstruction (b), the depiction of the primary lesion was 

unclear because of the bulk noise on the lesion (b: arrows). In con-
trast, the primary lesion was clearly depicted by the sufficient effect 
of noise reduction in DWI with the DL-based reconstruction (c: 
arrows)

Fig. 4  Representative patient with cancer at the base of the tongue. 
Fat-suppressed T2WI indicated the tumor lesion on the base of the 
tongue (a: arrow). In DWI with conventional PI-based reconstruc-
tion (b), overall image noise was noticeable throughout the image 

(b); the depiction of normal anatomical structures as well as a part 
of the tumor was partially affected by image noise. In contrast, the 
DWI with DL-based reconstruction clearly depicted all of the normal 
structures and the lesion (c)
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observed a certain degree of image noise in the PI-based 
DWI obtained in the present study. Koyasu et al. showed that 
readout-segmented EPI-based DWI significantly reduced the 
image distortion and provided more homogenous images 
compared to conventional single-shot spin-echo EPI [23]. 
As another readout technique, turbo spin-echo (TSE) DWI 
was also described as useful for evaluations of the head and 
neck [24]. These techniques may offer higher image qual-
ity; however, both sequence designs generally require a long 
scanning time. In addition, few scanners are available for 
such advanced sequences. In contrast, compared to conven-
tional PI-based DWI, the DL-based reconstruction technique 
was found to successfully achieve effective improvement in 
image quality even in pixels with high g-factors by adopting 
a high-quality image processing strategy with Adaptive-CS-
Net. This DL-based method is expected to play an important 
role in clinical practice for the evaluations of the head and 
neck. Recently, DWI processed with iterative denoising by 
a L1 regularization method such as wavelet transform has 
been introduced as a useful technique to obtain high-quality 
images [25]. We speculate that noise/artifact reduction by 
L1 regularization might be somewhat limited, because this 
technique is an algorithm-based method with a set threshold 
value in the wavelet transformation process; future compari-
son between this L1 regularization method and model-based 
DL reconstruction is needed.

DL-based image processing has been investigated in sev-
eral prior studies on the acquisition of DWI for parts of the 
human body other than the head and neck [26–29]. Three 
of these prior studies in particular improved image quality 
using DL-based reconstruction without extending the acqui-
sition time [26–28]. One of the previous studies utilized a 
DL-based reconstruction for DWI acquisition, which was 
performed using an end-to-end image-based DL technique 
targeting the prostate gland [26]. The other two studies were 
conducted to assess the usefulness of DL reconstruction 
utilizing the k-space-to-image method to assess the upper 
abdomen and breast [27, 28]. All of these previous studies 
have reported promising results, indicating that DL-based 
reconstructed DWIs show improved image quality. These 
existing DL-based methods have been considered clinically 
beneficial for image assessment using DWI. However, in 
these investigations, the output images with improved image 
quality were obtained mainly using CNNs that were trained 
for the conversion of output images (i.e., conversion from 
noisy images with under-sampled data to fully sampled 
images with good quality). Compared to this type of recon-
struction method, which handles output images only, the 
model-based type of DL reconstruction used in the present 
study demonstrated an image processing using the Adaptive-
CS-Net embedded in the iterative reconstruction cycle for 
effective denoising and removing artifacts. In this process, 
a large amount of signal data in the image reconstruction 

process can be well-utilized, handled, and integrated for 
effective image quality improvement while maintaining the 
data consistency [16, 30]. This method might achieve supe-
rior image quality compared to the post-processing type of 
DL-based method in which only output data sets (either of 
images or k-space data) are fed into a CNN. A prior study by 
Afat et al. conducted DL-based reconstruction for liver DWI 
using image processing with 17 unrolled iterations using 
raw k-space data as input [29]. Their method was somewhat 
similar to that used in the present study from the point of 
view that both investigations utilized the iterative technique 
in DL-based reconstruction. Their study focused on whether 
image quality could be maintained under a reduced scanning 
time using DL-based reconstruction. It would be interesting 
to assess to what extent image quality can be improved when 
the scanning time is not reduced, as in the present study.

Our study has several limitations. The number of patients 
was small (n = 41), because the study was conducted at a 
single institution. Our results should thus be regarded as pre-
liminary. Second, each patient underwent two DWI scans for 
PI- and DL-based reconstruction. The differences between 
the two DWIs may also stem from variations in the acquisi-
tion conditions (e.g., accidental patient movement) and not 
solely from the reconstruction process. Third, we did not 
directly compare DWI with model-based-type DL image 
reconstruction with other DL-based reconstruction tech-
niques. Although the model-based-type DL image process-
ing was revealed to be more effective than that provided by 
the conventional PI-based technique, further investigations 
comparing several types of DL-based image processing are 
necessary to clarify this issue.

Conclusion

DL image reconstruction technique with a model-based 
approach successfully provided superb image quality in head 
and neck DWI and indicated superiority for denoising capa-
bility compared to the conventional PI-based method. This 
technique can be a useful tool for the assessment of patients 
with head and neck diseases.
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tary material available at https:// doi. org/ 10. 1007/ s10334- 023- 01129-4.
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