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Abstract
Current challenges of using serum prostate-specific antigen (PSA) level-based screening, such as the increased false posi-
tive rate, inability to detect clinically significant prostate cancer (PCa) with random biopsy, multifocality in PCa, and the 
molecular heterogeneity of PCa, can be addressed by integrating advanced multiparametric MR imaging (mpMRI) approaches 
into the diagnostic workup of PCa. The standard method for diagnosing PCa is a transrectal ultrasonography (TRUS)-
guided systematic prostate biopsy, but it suffers from sampling errors and frequently fails to detect clinically significant 
PCa. mpMRI not only increases the detection of clinically significant PCa, but it also helps to reduce unnecessary biopsies 
because of its high negative predictive value. Furthermore, non-Cartesian image acquisition and compressed sensing have 
resulted in faster MR acquisition with improved signal-to-noise ratio, which can be used in quantitative MRI methods such 
as dynamic contrast-enhanced (DCE)-MRI. With the growing emphasis on the role of pre-biopsy mpMRI in the evaluation 
of PCa, there is an increased demand for innovative MRI methods that can improve PCa grading, detect clinically significant 
PCa, and biopsy guidance. To meet these demands, in addition to routine T1-weighted, T2-weighted, DCE-MRI, diffusion 
MRI, and MR spectroscopy, several new MR methods such as restriction spectrum imaging, vascular, extracellular, and 
restricted diffusion for cytometry in tumors (VERDICT) method, hybrid multi-dimensional MRI, luminal water imaging, 
and MR fingerprinting have been developed for a better characterization of the disease. Further, with the increasing interest 
in combining MR data with clinical and genomic data, there is a growing interest in utilizing radiomics and radiogenomics 
approaches. These big data can also be utilized in the development of computer-aided diagnostic  tools, including automatic 
segmentation and the detection of clinically significant PCa using machine learning methods.
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Introduction

Prostate cancer (PCa) is a common non-cutaneous cancer 
diagnosed in men and has long been associated with inter- 
and intra-tumoral heterogeneity [1]. Other issues with the 
present PCa diagnostic pathway include the risk of overdi-
agnosis and overtreatment of indolent tumor due to serum 
prostate-specific antigen (PSA) level-based screening strat-
egy, as well as the possibility of missing a few anterior 
lesions when using transrectal ultrasound (TRUS) biopsies 
[2]. Over the past decade, multiparametric MRI (mpMRI) 
has emerged as an essential technique in the management of 
PCa. mpMRI is increasingly being used in targeting biopsy, 
detection, staging of disease, assessment of disease aggres-
siveness, as a triage test before biopsy, and following up 
patients after a negative biopsy [3–6].
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Prostate mpMRI methods include a combination of 
anatomic pulse sequences like high-resolution T1- and 
T2-weighted (T2W)-MRI (multiplanar), and functional MRI 
pulse sequences such as diffusion weighted imaging (DWI) 
and dynamic contrast-enhanced (DCE)-MRI [7]. T1W 
images are used to detect post-biopsy hemorrhage and for 
evaluation of regional lymph nodes. T2W images are used 
for zonal anatomy, DWI provides a unique contrast based on 
differences in the rate of diffusion of water molecules within 
tissue, and DCE-MRI assesses tumor angiogenesis [8–10]. 
The current role of DCE-MRI in PCa is debatable, and MR 
spectroscopic imaging (MRSI), another functional MR tool 
that measures the concentration of various metabolites is not 
routinely performed in clinics. The combination of an endo-
rectal surface coil and a pelvic phased array coil increases 
the signal-to-noise ratio (SNR) of MR images. However, 
due to patient inconvenience, increased cost, time of exami-
nation, and limited clinical benefit of the coil at 3 T, the 
endorectal coil is used only with 1.5 T MRI systems [7, 11].

Despite several advancements in the diagnosis of PCa 
using MR methods, mpMRI still suffers from high cost, 
inconsistent image quality, a moderate specificity in the 
transition zone (TZ) PCa, and inter-observer variability in 
mpMRI interpretation [12, 13]. As a result of these issues, 
various groups have been working on developing new MRI 
methodologies and sequences for improved diagnosis of 
PCa. In this review, we briefly present the clinical util-
ity of mpMRI in PCa, several novel MR sequences such 
as advanced diffusion MR-based sequences (restriction 
spectrum imaging, VERDICT, etc.), perfusion based MR 

approach (ASL), luminal water imaging, MR fingerprint-
ing (Fig. 1) as well as various emerging methods for the 
improved diagnosis and precise decision making in PCa 
[14].

Current clinical role of mpMRI in PCa

mpMRI in biopsy naïve patients, in targeting biopsy, 
the diagnosis of clinical significant PCa

The current standard diagnostic pathway for detecting PCa 
includes abnormal digital rectal exam (DRE) and elevated 
serum PSA levels. Systematic TRUS biopsies are performed 
with histological grading based on the Gleason grading sys-
tem and modifications by the International Society of Uro-
logical Pathology (ISUP) to assess the presence of PCa if 
DRE is abnormal and/or elevated serum PSA levels [1, 2, 
12]. A Cochrane review and meta-analysis showed that PSA 
screening failed to detect a significant reduction in PCa-
specific mortality [15]. Thus, there is an urgent clinical need 
to detect clinically significant PCa (e.g., ISUP ≥ 2 [16] or per 
PI-RADS v2.1 [7] Gleason score (GS) > 7 (including 3 + 4 
with a substantial but not dominating Gleason 4 component), 
and/or volume > 0.5 cc, and/or extraprostatic extension) and 
to avoid unnecessary biopsies.

mpMRI has the potential to diagnose clinically significant 
PCa while avoiding unnecessary biopsies. Our group and 
others have long been using pre-biopsy mpMR-based diag-
nostic pathway in the management of clinically significant 

Fig. 1   A representative 
example of pulse sequence of 
MR fingerprinting. A A pulse 
sequence diagram of the mag-
netic resonance fingerprinting-
fast imaging with steady state 
precession (FISP). A series of 
FISP acquisitions follows an 
adiabatic inversion pulse. B 
In the MRF-FISP sequence, a 
sinusoidal fluctuation of flip 
angles and repetition periods in 
a Perlin noise pattern are used. 
C: Each repetition uses one 
interleaf of a variable density 
spiral trajectory. To fully sample 
the centre of the k-space, it 
takes 24 interleaves, and 48 
interleaves for 256 × 256. At 
every repetition, the trajectory 
rotates by 7.5° (reproduced with 
permission from reference # 14 
from John Wiley & Sons from 
Jiang et al. 2015)
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PCa [9, 12, 17–20]. The PROMIS trial, a recent meta-anal-
ysis, as well as the MRI-FIRST trial support the claim that 
MRI has the most favorable diagnostic accuracy in the detec-
tion of clinically significant PCa as compared to the stand-
ard TRUS-guided biopsy [12, 17–21]. In MRI-FIRST trial, 
251 patients were analyzed. This study revealed that 5.2% 
of patients with clinically significant PCa would have been 
undetected if systematic biopsy had not been performed, 
and 7.6% of patients would have been undetected if mpMRI 
guided biopsies had not been performed [18]. However, in 
order to reduce costs and scanning time, a few investiga-
tors have started evaluating abbreviated biparametric in the 
detection of the significant cancer as compared with full 
mpMRI [22, 23]. Moving one step ahead from diagnostic to 
population-based screening, Evan et al. discussed the chal-
lenges of existing screening method and proposed a step-by-
step approach of using abbreviated MRI or fast MRI that can 
be employed as a screening tool for PCa to avoid PSA-level 
based overdiagnosis of insignificant PCa [24]. Eklund et al. 
recently conducted a population-based non-inferiority trial 
of PCa screening using MRI-targeted biopsy to address the 
problem of overdiagnosis using PSA-based screening [25]. 
A total of 1532 men with PSA level of ≥ 3 ng/ml were ran-
domly assigned to the standard biopsy group (603 men) and 
to the experimental biopsy group (929 men). Biparametric 
MRI (T2W + DWI) were acquired in 846 men in the experi-
mental biopsy group before the biopsy. Clinically significant 
cancer was found in 21% of men in the experimental biopsy 
group, compared to 18% of men in the standard biopsy 
group. It was shown that MRI targeted and standard biopsy 
performed better than standard biopsy in detecting clinically 
significant PCa [25].

When working with the large mpMRI datasets of PCa, 
it is critical to maintain the variability between individual 
scans performed at different vendor sites to a minimum and 
provide the highest possible image quality. In order to pro-
mote standardized acquisition, interpretation, and reporting 
of mpMRI of prostate, the PI-RADS was developed. PI-
RADS version 2 and more recently version PI-RADS v2.1 
have focused on minimizing inter-reader variability and 
provide technical standards for T2W images and DWI [7, 
26]. PI-RADS has improved the sensitivity from 88 to 95% 
while maintaining specificity for the detection of PCa [27]. 
The updated version (PI-RADS v2.1) emphasizes a limited 
role of DCE-MRI, while excluding the role of MRS [7]. 
Further, to assess the quality of mpMRI scans, the Prostate 
Imaging Quality (PI-QUAL) scoring systems has recently 
been developed [28]. Image quality of mpMRI particularly 
DWI can be improved by using a laxative cleansing enema 
prior to MR examination [29].

The potential clinical role of mpMRI is in biopsy naïve 
patient to reduce the number of biopsies in clinically insig-
nificant PCa. Recently, the PRECISION (Prostate Evaluation 

for Clinically Important Disease: Sampling Using Image 
Guidance or Not?) trial showed that MRI-targeted biopsy 
was superior to standard TRUS-guided biopsy in men with 
elevated serum PSA levels [30]. Another, prospective phase 
3 randomized clinical trial showed that the detection rate 
of PCa ISUP grade 2 or higher was significantly higher 
in men assigned to MRI and targeted biopsy (38%) than 
systematic biopsy (26%) in biopsy naïve patients [31]. As 
mentioned previously, the PROMIS and MRI-FIRST trials 
demonstrated that mpMRI outperformed routine systematic 
biopsy in biopsy-naive patients [18, 21]. We developed a risk 
score and 6-point pre-biopsy mpMRI-based risk calculator 
as a point-of-care tool to help limit the number of negative 
biopsies in men with PSA levels between 4 and 10 ng/mL 
[32]. The developed risk score achieved a higher area under 
the receiver operating curve (AUC) of 0.87 and found to be 
highly predictive of PCa. Thus, adopting pre-biopsy mpMRI 
as a triage test avoids unnecessary biopsies and reduces 
overdiagnosis of insignificant PCa (Fig. 2) [3, 18, 32, 33].

mpMRI in active surveillance, previous negative 
biopsy, and  abbreviated prostate MRI

mpMRI appears to be a powerful technique in active sur-
veillance for patient selection and the detection of disease 
progression [34]. Active surveillance is used in patients 
with low-risk PCa to avoid overtreatment of such patients. 
Low-risk PCa patients can be routinely monitored using a 
serial mpMRI and/or mpMRI targeted biopsy. Due to a high 
negative predictive value of mpMRI, a significant number of 
patients can avoid unnecessary biopsy. A systematic review 
and meta-analysis reported a median negative predictive 
value of 82.4% for any PCa and 88.1% for clinically signifi-
cant PCa. It was also reported that variation in negative pre-
dictive value of mpMRI is due to prevalence, study design, 
and the definition used for clinically significant disease [35].

Beside these, mpMRI has been shown to be useful in 
patients who had a previous negative biopsy. A randomized 
clinical trial showed that MRI-targeted biopsy alone can be 
used as a method of choice in patients who had elevated 
PSA and a previous negative TRUS-biopsy [36]. Recently, 
it has been shown that prostate MRI findings are associ-
ated with long-term oncologic outcomes in localized PCa 
[37]. mpMRI has also shown its utility to select patient for 
focal therapy which is another treatment option for low- to 
intermediate-risk PCa. Further, integrating MRI information 
with clinical and biopsy data may help with tailored patient 
management [37].

In view of longer acquisition time and limited role of 
DCE-MRI and MRSI in a full mpMRI protocol,  abbreviated 
biparametric mpMRI have been utilized in the diagnosis of 
PCa [22, 38]. Kuhl and colleagues evaluated the diagnos-
tic accuracy of abbreviated biparametric prostate MRI in 
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comparison with the full mpMRI protocol in 542 men with 
elevated PSA level [22]. Biparametric prostate MRI can be 
acquired faster compared to full mpMRI. Utilizing all of 
these methods, such as abbreviated MRI and/or full mpMRI, 
can be used as a triage test in the diagnostic pathway of 
PCa to avoid unnecessary biopsy and detect the clinically 
significant PCa. Larger prospective trials are needed to show 
that an abbreviated MRI is at par with the full mpMRI in the 
diagnostic pathway of PCa.

Advanced prostate MR sequences

Diffusion imaging methods

Intravoxel incoherent motion (IVIM) and diffusion kurtosis 
imaging (DKI)

The concept of IVIM was introduced by Le Bihan [39], 
wherein at least half of the measurements were performed 
at less than 200 s/mm2 [8]. It is a potential diffusion mod-
eling technique that utilizes two non-exchanging compart-
ments—vascular (water in the capillaries or blood ves-
sels) and non-vascular (water in and around cells). IVIM 
model separates the signals from vascular and non-vas-
cular water, such as blood microcirculation in capillary 
networks providing perfusion value, and measured at low 
b values (e.g., 0–100 s/mm2) [26–28]. Although there is 

no consensus, on the best processing approach of IVIM 
data and threshold b value, often it is considered that IVIM 
effects would disappear for b > 250 mm2/s. Conventionally, 
the apparent diffusion coefficient (ADC) map can be cal-
culated using a total of three b values, with a low b value 
of 0–100 s/mm2, an intermediate b values of 800–1000 s/
mm2, and a higher b value of ≥ 1400 s/mm2 [7]. Compared 
to ADC, IVIM can be utilized by acquiring multiple sig-
nals at low b values to study a variety of cancer types that 
showed mixed results [40–42]. Mathematically, it can be 
expressed as using a bi-exponential model: 

where b is the strength and timing of the gradients 
used to generate diffusion-weighted images, S0 is the sig-
nal intensity at b = 0 s/mm2, f is the perfusion fraction 
and represents the percent of a voxel volume occupied by 
capillaries, D is the diffusion in the extravascular space, 
and D* is the pseudo-diffusion and reflects perfusion in 
capillaries.

Shinmoto et al. used three orthogonal directions at 10 b 
values of 0, 10, 20, 30, 50, 80, 100, 200, 400, and 1000 s/
mm2 at 3 T to acquire IVIM-DWI in PCa [43]. Studies 
show that the IVIM perfusion fractions in malignant and 
healthy prostate tissues vary, and are not consistent with 
DCE-derived perfusion parameters [43, 44]. The IVIM 
model is good in separating signals from vascular water, 

S(b) = S0(1 − f ) exp(−bD) + S0f exp[−b(D
∗ + D)]

Fig. 2   Diagnostic flowchart of 
patient suspected for PCa
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but fails to address the microstructure cellular components 
such as shape, density, and cell size [45].

With advancements in gradient hardware technology, 
it is possible to acquire DWI at higher b values of up to 
3000 s/mm2 [8]. At high b values (≥ 1000 − 1500 s/mm2), 
the non-Gaussian diffusion effect predominates due to 
complex structure of the tissues that provide valuable tis-
sue structure information. Apart from IVIM, non-Gaussian 
diffusion behavior can also be handled by kurtosis model, 
bi-exponential model, the stretched exponential model, etc. 
[8, 46]. Among them, diffusion kurtosis imaging (DKI) and 
its potential in PCa has been studied by various groups [47, 
48]. The ADC derived from the mono-exponential model 
assumes a Gaussian model, is oversimplified, and provides 
limited microstructural information. DKI, on the other hand, 
captures non-Gaussian diffusion behavior and provides tis-
sue heterogeneity [46].

The standard kurtosis model is: 

 where K is the kurtosis, a dimensionless quantity, and Dk is 
a kurtosis-adjusted diffusivity.

Wu et al. investigated the utility of DKI in predicting 
upgrades in  GS in 46 patients with biopsy-proven GS 6 [49]. 
They observed that GS upgrade group had a lower ADC 
and higher maximum apparent kurtosis coefficient (Kapp)

S = S0 exp[−bDk + K∕6(bDk)
2]

max and mean Kapp (Kappmean), than the group without 
an upgrade. Further, Kappmax had the highest  AUC (0.82) 
in upgraded GS [49]. However, a meta-analysis comparing 
the diagnostic performance of mono-exponential DWI and 
DKI for PCa found that DKI provides no additional infor-
mation [50]. Figure 3 shows a representative example of 
advanced diffusion parameter maps [51]. Feng et al. evalu-
ated the potential of various DW models (mono-exponential, 
bi-exponential, stretched exponential, and DKI) using 21 
b values ranging from 0 to 4500 s/mm2 with varying aver-
ages at 3 T [52]. They found that the mean values of ADC, 
diffusion parameters of the bi-exponential model < D > , 
f, diffusion coefficient of the stretched exponential model 
(DDC), water diffusion heterogeneity index (α), and diffu-
sion coefficient of the kurtosis model (Dapp) were signifi-
cantly lower in cancerous tissues than in benign peripheral 
zone (PZ) in each group while Kapp was higher in cancer 
than in benign PZ. However, parameters derived from bi-
exponential, stretched-exponential, and kurtosis models 
did not show superior diagnostic performance than the con-
ventional ADC [52]. A recent meta-analysis reported that 
various non-Gaussian DWI models (IVIM, bi-exponential, 
stretched exponential, and DKI) may help  detect and char-
acterize PCa but studies with large cohort are required to 
standardize non-Guassian DWI protocol for improved diag-
nosis of PCa [47]. Another recent study involving 14 institu-
tions looked at the differences in PCa detection rates using 

Fig. 3   A representative example of diffusion parameter maps. A 
70-year-old man (PSA 7.9 ng/ml) with prostate cancer (GS 4 + 5 = 9, 
lesions in both lobes of prostate, T3a). A Lesion on T2WI (arrow); 
B–F images acquired with b values of 200, 900, 1100, 2200, and 
3000  s/mm2; as the b value goes up,  cancers become more vis-

ible; G ADC map obtained using a mono-exponential model; 
H–I pseudo-color maps of D (0.50 × 10−3  mm2/s), F (25.45%), D* 
(8.40 × 10−3 mm2/s), Dapp (0.94 × 10−3 mm2/s), Kapp (= 0.94) (repro-
duced with permission from reference # 51 from Springer Nature 
from Shan et al. 2019)
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different DW fitting algorithms (e.g., mono-exponential, 
bi-exponential, and DK models) [53]. They found a consist-
ent performance of the DW models (mono-exponential and 
kurtosis fits) in differentiating PCa. Also, it was observed 
that post-processing decisions might impact the diagnostic 
accuracy of DWI in PCa.

As mentioned earlier, at low b values IVIM effect pre-
dominates while at higher b values kurtosis effect is seen. 
To estimate both the perfusion and restricted diffusion, Lu 
et al. developed a hybrid IVIM-DKI model [54]. However, 
this model suffers from local non-physiological heterogene-
ity in parameter estimation because of low SNR. To address 
this issue, Malagi et al. employed an advanced IVIM-DKI 
to distinguish PCa from benign tumors as an alternative to 
classic IVIM-DKI model at 1.5 and 3 T [55]. A total of 13 
b values (0 to 2000s/mm2) were used and the data showed 
high diagnostic performance in cancer detection at 1.5 T, 
which can be used as an alternative for the traditional IVIM 
model. Hectors et al. evaluated the potential of conventional 
mono-exponential DWI, stretched exponential DWI, DKI, 
and diffusion-tensor imaging (DTI) [56]. They reported 
that these various diffusion methods have the potential in 
the detection of PCa [56]. Further larger studies are needed 
to assess the diagnostic accuracy of advanced IVIM-DKI 
model in detecting clinical significant PCa.

Nilsson et al. utilized tensor-valued diffusion encoding 
(b-tensor encoding) in 17 histologically proven PCa [57, 
58]. This method provides an estimate of the mean diffusiv-
ity (MD), the isotropic kurtosis (MKI), and the anisotropic 
kurtosis (MKA). An increased MKI was observed in PCa 
as compared with normal tissue in both the PZ and TZ [57]. 
Tensor-valued diffusion encoding provided microscopic 
diffusion anisotropy. Future larger studies related with the 
b-tensor are needed with an increased in-plane resolution for 
better accuracy in diagnosing PCa.

Restriction spectrum imaging (RSI)

Among several advanced diffusion-based techniques, RSI, 
is a DW modeling technique, uses a multishell diffusion 
acquisition with a range of b values. The RSI can quantify 
non-Gaussian diffusion in tissue microstructures using a 
linear mixture model [59–61]. The diffusion signal is gen-
erally modeled using several components, such as signal 
from nuclear volume fraction, cell size, and density, as a 
function of acquisition parameters such as diffusion time, 
echo time, and b values. Finally using generalized linear 
estimates, individual weights are estimated for signals. Since 
RSI is a multishell acquisition, it can simultaneously acquire 
geometric information, allowing isotropic and anisotropic 
orientations to be separated.

In conventional DWI, a combined signal from intra-
cellular (restricted water) and extracellular (hindered), 

referred as impeded water, is obtained. However, using 
compartment filtering and choosing an appropriate diffu-
sion time, RSI enables to get signal from restricted water 
as the signal from hindered water dissipates quickly. Thus, 
RSI model includes a spectrum or distribution of hindered 
and restricted diffusion pools [61].

For prostate RSI, a typical protocol includes b values of 
125, 375, and 1000 s/mm2 with 6, 6, and 15 diffusion gra-
dients, respectively. Also, the acquisition of b = 0 images 
with opposite phase encoding polarizations is used by 
RSI as a distortion correction method. In PCa, after uti-
lizing multishell acquisition, using geometric filtering it 
is possible to isolate signal form highly restricted area 
and isotropic water [62, 63]. In a proof of concept study, 
this technique was evaluated for the staging of PCa [59]. 
A total of 27 biopsy proven PCa patients underwent spin 
echo (SE)–echo planar imaging (EPI)-based RSI prostate 
MRI along with the standard MRI using an endorectal coil. 
The range of b values used were 0, 800, 1500, and 4000 s/
mm2 in 30 unique diffusion directions for each nonzero b 
value. The RSI cellularity maps were reconstructed and 
standardized with z-score maps. Eight of 9 (89%) patients’ 
demonstrated extra prostatic extension by RSI, while only 
22% patients were correctly identified with extra prostatic 
extension by standard MRI. In another larger study, a total 
of 100 patients were studied by RSI and mpMRI at 3 T 
MRI in the same session [63]. The data were compared to 
the outcomes of a radical prostatectomy or a biopsy. The 
combination of mpMRI and RSI achieved a higher AUC 
than mpMRI alone for GS ≥ 4 + 3. Further RSI performs 
similar to mpMRI for high grade tumors with the AUC of 
0.71 at the sextant level [63]. Felker et al. evaluated the 
potential of RSI in 189 biopsy naïve men [64]. All patients 
underwent a pre-biopsy mpMR examination and RSI at 3 T 
followed by a standard 12-core TRUS-guided biopsy and 
targeted biopsy using either a cognitive based or fusion 
based technique. The overall diagnostic accuracies for RSI 
and DWI were 0.7 and 0.68, respectively. Accuracy of RSI 
and DWI in  PZ was 0.72 and 0.73, respectively (p = 0.76), 
while accuracy of RSI and DWI in TZ was 0.67 and 0.61, 
respectively (p = 0.55) [64].

Besasie et al. assessed mpMRI and RSI to predict Glea-
son upgrade in 123 men on active surveillance undergoing 
a repeat biopsy [65]. Overall, RSI increased the AUC from 
0.7 to 0.9 to predict Gleason upgrading in men on active 
surveillance [65]. The RSI technique has several advan-
tages over traditional DWI, such as reduced spatial distor-
tion, improved tumor contrast to noise, and a normalized 
in vivo assessment of cellularity. One of the drawbacks of 
RSI is its low SNR. Figure 4 represents a case where RSI 
outperforms in targeting a biopsy than the standard T2W, 
DCE-MRI, and conventional DWI techniques [62, 63].
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Vascular, extracellular, and restricted diffusion 
for cytometry in tumors (VERDICT)

This MR method eliminates the problems of IVIM, while 
quantifying and mapping histological features [66–68]. 
VERDICT fits models with various diffusion times and 
diffusion weightings and assigns the DWI signal to three 
principal components: (a) intracellular water (S1), (b) 
water in the extracellular extravascular space (S2), and 
(c) vascular water in blood in the capillary network (S3) 
[66]. By using 3-compatment tissue models, VERDICT 
provides a quantitative detail about cell density, size of 
cells, intra and extracellular volume fractions.

Mathematically, the VERDICT framework is the sum 
of 3 compartment models (S1, S2, and S3): 

 where S is total MR signal, Si is the signal from each com-
partment, and fi is the proportion of signal with no diffu-
sion weighting from water molecules within the respective 
population i, 0 ≤  fi  ≤ 1; and the total sum of signal fraction 
is 1 [66].

VERDICT had previously been validated on colorectal 
xenograft model and in ex-vivo prostate specimens [66, 
68]. A feasibility study was carried out on 8 men with ele-
vated PSA and its performance was compared with ADC, 
kurtosis, and IVIM [67]. DW images were acquired using 
single shot EPI and with 9 b values (100–3000 s/mm2).

The model differentiated PCa from benign areas 
and provided insights on prostate tissue microstruc-
ture. Increased intracellular and vascular volume 
fraction was seen with a decrease in the volume of 

S =

∑i=3

i=1
fiSi

extracellular–extravascular space in PCa compared with 
benign regions [67].

A representative example of a patient with GS 3 + 4 
seen on various parametric maps (the ADC, kurtosis, and 
VERDICT models) is shown in Fig. 5 [67]. Johnston et al. 
evaluated the repeatability of intracellular volume fraction 
maps obtained with VERDICT prostate MRI in 70 men 
[69]. The intracellular volume fraction map was found to 
be highly repeatable. Mean intracellular volume fraction 
was higher in Gleason grade 3 + 4 as compared with benign 
and/or Gleason grade 3 + 3 lesions. Interestingly, intracel-
lular volume fraction outperforms ADC in differentiating 
Gleason grades [69]. VERDICT parametric maps provide 
information regarding cell size, intracellular volume frac-
tion, extracellular volume fractions, and a pseudo-diffusion 
coefficient. The VERDICT model does not account for diffu-
sion anisotropy in the prostate and it takes more than 12 min 
to acquire this sequence.

Zoom DWI and diffusion‑weighted whole‑body 
imaging with background body signal suppression 
(DWIBS)

Routine challenges such as susceptibility artifacts and dis-
tortion with conventional single shot EPI-based DWI can 
be mitigated with 2D selective excitation pulses allowing 
a focused excitation of reduced field of view [70]. Zoomed 
DWI improves image quality and reduces image distortion 
in prostate MRI. Brendle et al. showed that reduced field 
of view or Zoom DWI provides a better image quality with 
improved SNR as compared to conventional single shot EPI 
based DWI [71].

Fig. 4   A representative example of restriction spectrum imaging. A 
An RSI-guided biopsy in which the ADC is equivocal but the RSI 
clearly identifies the lesion. B After a series of negative systematic 
biopsies, an RSI guided biopsy reveals high-grade PCa. Modified 

with permission from McCammack et  al. PCAN 2016 (reproduced 
with permission from reference # 62 from John Wiley and Sons from 
Brunsing et al. 2016)
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Since the 1990s, whole-body MRI has been utilized 
to study various cancers [72]. Padhani et al. developed 
a recommendation, the METastasis Reporting, and Data 
System for PCa (MET-RADS-P), for maintaining quality 
standards and reporting of whole-body MRI of advanced 
PCa [73]. DWI is an essential component of whole-body 
MRI. The concept of DWIBS was introduced by Takahara 
et al. that provides volumetric DW images of the whole 
body [74]. Larbi et al. evaluated the potential of whole-
body MRI in PCa and multiple myeloma [75]. It was 
found that any pairwise composition of T1, STIR (short 
tau inversion recovery), and DWI has a higher diagnostic 

value to detect bone metastases in PCa. They reported 
that the pairwise  combination of T1-STIR, T1-DWI, 
and combination of all T1-STIR-DWI provided the high-
est performance (sensitivity = 100%, 95% CI [90.5–100.0]; 
specificity = 100% [75.3–100.0]; AUC = 1.00 [0.93–1.00]) 
for PCa [75]. DWIBS can detect lymph node, malignant 
skeletal lesions in PCa patients, and provide some inci-
dental findings that may affect the treatment strategy [76]. 
DWIBS analyzes the entire body and is useful in assessing 
lymph nodes and distant metastases without using ioniz-
ing radiation and the administration of exogenous contrast 
materials.

Fig. 5   A representative example of VERDICT and various parameter 
maps. A 62-year-old man with Gleason score 3 + 4 PZ tumor. The 
tumour ROI is shown in red, while the benign region is highlighted in 
black. A T2-weighted image; B ADC map; C volume fraction map of 
the intracellular compartment; D volume fraction map of the extracel-
lular–extravascular space (EES); E E, cell radius index map; F cellu-

larity map obtained from intracellular volume fraction (fIC) and cell 
radius (R); G volume fraction map of the vascular space; H kurto-
sis diffusivity map; I kurtosis map. Unlike the rest of the paramet-
ric maps, the cellularity map clearly differentiates the tumor from the 
benign region (reproduced with permission from reference # 67 from 
Wolters Kluwer Health, Inc. from Panagiotaki et al. 2015)
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Perfusion based MR methods

DCE‑MRI

DCE-MRI provides information on tumor vascularity by 
acquiring series of images utilizing a 3D T1-weighted fast 
spoiled gradient-echo sequence with a high temporal reso-
lution after injecting the contrast material [77]. Though a 
higher temporal resolution (~ 5 s) is better, PI-RADS v2.1 
suggests to use a temporal resolution of ≤ 15 s with suf-
ficient spatial resolution for DCE-MRI. DCE-MRI is not 
emphasized in PIRADS v2.1 since it has a limited role 
in the TZ [7]. DCE-MR images can be analyzed qualita-
tively, semiquantitatively, and quantitatively [77]. Tumor 
demonstrates early wash-in and wash-out qualitatively 
while semiquantitative approach provides various curve 
parameters (e.g., peak enhancement, time to peak, etc.). 
The quantitative approach utilizes the Tofts model or the 
extended Tofts pharmacokinetic modeling and provides 
various quantitative parameters such as the volume trans-
fer constant (Ktrans), extracellular extravascular volume 
fraction (ve), and the exchange rate constant (Kep) [78, 
79]. However, the semi-quantitative and quantitative DCE-
MRI have shown a varying degree of confidence amongst 
readers thus enabling many to forego DCE-MRI and to use 
biparametric MRI (T2W and DWI sequences) studies in 
the evaluation of PCa [80].

Faster sampling and compressed sense methods have 
improved the quality of MR images and newer DCE-
MRI methods that improve the spatiotemporal resolution 
have been explored [81]. Rosenkrantz et al. investigated a 
combined approach using golden-angle radial sampling, 
compressed sensing reconstruction, and parallel imag-
ing (GRASP) for DCE-MRI. Twenty PCa patients were 
studied using GRASP and standard DCE-MRI methods at 
3 T [81]. GRASP provided better lesion conspicuity and 
structural information and showed improved interreader 
correlation for lesion size [81].

Another study evaluated the ultrafast DCE-MRI (high 
temporal resolution ~ 2.2 s) in 20 PCa patients [82]. Sig-
nal enhancement and signal washout rate were higher in 
PCa as compared to normal regions. The AUC for DCE 
parameters was comparable to ADC and T2 in PZ and the 
combined T2 + ADC + DCE achieved the highest AUC of 
0.92. The downside of this work is that the DCE parame-
ters were obtained using an empirical mathematical model, 
which cannot be compared to the standard Tofts compart-
ment model [82].

Arterial Spin Labeled (ASL) MRI

ASL measures perfusion level in the tissue without using 
an exogenous contrast agent and has extensively been 
used in brain and kidneys [83, 84]. In ASL, protons in the 
arterial blood are magnetically labeled prior to their entry 
into the area of interest. Perfusion quantification using 
ASL can be achieved using various steps, e.g., acquisition 
of label and control images, reconstruction of perfusion 
weighted images, and for quantification, modeling the per-
fusion weighted image signal using a separately acquired 
proton density image and sequence parameters [83]. ASL 
labeling can be performed using various methods includ-
ing pseudo-continuous ASL, pulsed ASL, velocity-selec-
tive ASL, vessel-selective ASL, etc.

Li et al. showed the potential of prostate ASL imaging 
using a modified spatially confined flow-sensitive alter-
nating inversion recovery (FAIR) sequence on 5 healthy 
subjects [85]. The mean total prostate blood flow was 
25.8 ± 7.1 mL/100 cm3/min. Another study reported sig-
nificantly higher mean blood flow in prostate cancerous 
areas than benign regions [86]. Further, blood flow meas-
ured by ASL significantly correlated with the pharmacoki-
netic parameters obtained using DCE-MRI in PCa [86]. 
ASL showed improved contrast ratios both in PZ and TZ 
in differentiating PCa from benign as compared with signal 
intensities measured from DCE-MRI [87]. Figure 6 shows a 
representative example of a biopsy proven PCa patient with 
increased blood flow measure on ASL [86]. Although ASL 
does not utilize an exogenous contrast agent, it is intrinsi-
cally a lower SNR technique and suffers from susceptibility-
induced B0 inhomogeneity [88]. Further studies are required 
using ASL-based methods to understand PCa angiogenesis.

MR spectroscopy methods

Proton MRS/MRSI

Proton magnetic resonance spectroscopy imaging 
(1H-MRSI) of the prostate enables non-invasive assessment 
of various metabolites such as citrate (Cit), choline (Cho), 
creatine (Cr), and polyamines (PA) [9]. Prostate MRSI (3D 
chemical shift imaging) is acquired using a point-resolved 
spectroscopy (PRESS) volume localization method with 
water and lipid suppression. MRSI of a healthy prostate 
exhibits a high level of Cit peak at 2.6 ppm, whereas PCa 
shows decreased Cit with increased Cho (3.2 ppm) due 
to increased phospholipid cell membrane turnover [89]. 
Changes in metabolites are quantified by using various 
metabolite ratios such as Cit/Cho + Cr or Cho + Cr/Cit [9].

MRSI helps to direct targeted biopsies and MRSI-derived 
parameters, such as metabolite ratios, allow noninvasive 
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assessment of aggressiveness of PCa [3, 20, 90]. A recent 
meta-analysis showed that MRSI had a pooled sensitivity, 
specificity, odds ratio, and an AUC of 0.86, 0.78, 22, and 
0.89, respectively, in the diagnosis of suspected PCa [91]. 
Starobinets et al. studied 78 patients using mpMRI (MRSI, 
DWI, DCE-MRI) prior to radical prostatectomy [92]. Whole 
mount histopathology was used as a reference in this study. 
Combination of choline, creatine, and ADC achieved the 
highest AUC of 1 and 0.99 in distinguishing benign lesions 
from PCa in the PZ and the TZ, respectively. In the TZ, the 
combination of Cho and washout slope achieved the highest 
AUC (0.92) in differentiating GS ≤ 3 + 4 from GS ≥ 4 + 3. 
They found that mpMRI can distinguish between benign tis-
sues and PCa both in the PZ and the TZ, as well as mpMRI 
can stratify aggressiveness of PCa [92].

The majority of earlier spectroscopic studies evaluating 
PCa utilized PRESS 3D MRSI because of its commercial 

availability. However, it suffered from long acquisition time 
and chemical shift displacement error. The recent devel-
opment of semi-localized adiabatic selective refocusing 
pulse sequence (sLASER) with gradient-modulated offset-
independent adiabatic (GOIA) pulses (GOIA-sLASER) 
addressed the majority of PRESS 3D MRSI challenges 
[93]. Gholizadeh et al. evaluated the potential of novel MRSI 
using a GOIA-sLASER pulses in addition to the routine 
mpMRI (T2W, DWI, and DCE-MRI) in the TZ PCa [94]. 
This study also found that the role of DCE-MRI in TZ PCa is 
limited. The combination of MRSI, T2W, and DWI achieved 
the highest AUC of 0.99 in the detection of the TZ PCa. Fur-
ther, metabolite ratio [(Cho + spermine + Cr)/Cit] obtained 
using the MRSI showed the highest correlation with tumor 
aggressiveness (r = 0.64, p < 0.01) [94].

The drawback of traditional PRESS 3D MRSI is a long 
acquisition time, lipid contamination due to improper water 

Fig. 6   A representative example of ASL perfusion imaging and quant 
DCE-MRI maps. A–B, A 77-year-old man with PCa in right PZ. The 
lesion is hypointense on T2-weighted image and hyperintense on 
diffusion-weighted image; C–F, the corresponding blood flow (BF) 

maps with different T1 values show a higher BF value in the can-
cerous zone than the benign region; G–I, Ktrans, kep, ve maps also 
show higher values in PCa (reproduced with permission from refer-
ence # 86 from John Wiley and Sons from Cai et al. 2014)
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and lipid suppression, and post-processing of MR spectra. 
However, it has recently been shown that the new adiabatic 
pulse-based sequence 3D GOIA-sLASER MRSI is superior 
to earlier clinically used PRESS 3D MRSI with improved 
SNR and reduced lipid contamination [93, 95]. As per 
PIRADS v2.1, MRSI is not currently being used in routine 
clinical practice [7].

The advancement of 3D GOIA-sLASER MRSI and 
hyperpolarized 13C-MRI has revived interest in using MRS 
techniques in PCa [93, 96]. In addition, higher magnetic field 
strengths, such as 7 T and above, have also demonstrated 
the potential of MRS  due to its improved SNR and spectral 
resolution [97]. However, both the 13C-MRI and MRS at 7 T 
still require an endorectal coil which limits clinical applica-
bility and necessitates further technological developments.

Hyperpolarized 13C MRI (HP 13C‑MRI)

The low sensitivity of C-13 spectroscopy due to low natural 
abundance (1.1%) of C-13 isotope can be overcome by the 
use of C-13 enriched agents and the process of dynamic 
nuclear polarization. In dynamic nuclear polarization, the 
dominant hyperpolarization method, the polarization is 
transferred from electron to the target molecule in a polarizer 
at a low temperature (approximately 1 K) and at a magnetic 
field of 3–5 T [98]. HP 13C-MRI magnetizes C-13 probes 
and provides unique metabolic information relevant to can-
cer and heart diseases [99, 100].

HP 13C-MRI has shown promising results in preclinical 
cancer models, in human PCa, and other diseases by pro-
viding metabolic information [101, 102]. Dynamic nuclear 
polarization of 13C-labeled biomolecules (probes) is most 
widely utilized hyperpolarization method in preclinical 
research, and currently in human studies. The HP [1-13C] 
pyruvate is a biomarker used in majority of preclinical can-
cer investigations. Increased conversion to HP pyruvate to 
HP lactate has been observed in malignant tissues and this 
increases with the loss of phosphatase and tensin homolog 
deleted on chromosome 10 (PTEN) [103]. A recent study 
included 12 PCa patients who underwent a 13C-MRI using 
a dual-tuned 1H/13C endorectal coil for signal detection. 
After injecting [1-13C] pyruvate, HP carbon-13 spectra 
were acquired using a 2D dynamic echo-planar spectro-
scopic imaging (EPSI) sequence [103]. It was observed that 
hyperpolarized lactate increased with Gleason grade. Fur-
ther, RNA sequencing data revealed that regions of high 
HP lactate were associated with elevated monocarboxylate 
transporter 1. This seminal study established a relationship 
between metabolic information obtained from HP pyru-
vate MRI and genomic alterations, showing the potential 
of HP-MRI in understanding cancer biology and assess-
ing therapy response [103]. HP 13C-MRI is an emerging 
molecular imaging method that can assess pathway-specific 

metabolic alterations. A current limitation of HP 13C-MRI is 
the complexity of the technique. Also, HP 13C-MRI-related 
studies are limited to a few institutions; therefore, a multi-
institutional larger study is needed to evaluate the role of HP 
13C-MRI in the diagnosis of PCa.

Other advanced MR methods

T2 maps and luminal water imaging (LWI)

T2 maps can be generated after acquiring several T2W 
images at different echo times. Quantitative T2 maps can 
be useful in dealing with the subjective aspect of T2W 
[104–106]. Quantitative T2 map is acquired using a tradi-
tional multi-echo spin-echo sequence with increase in echo 
times or through accelerated T2 relaxometry [106, 107].

T2 of normal PZ is 122.2 ± 33.8 ms and in the central 
gland the value is 88.2 ± 13.3 ms [108]. T2 map showed a 
higher positive predictive value compared to standard T2W 
images [104]. The highest AUC was achieved using quanti-
tative T2 values in differentiating PCa and normal gland tis-
sue as compared with ADC [106]. Sixteen individuals were 
studied using a 32-echo spin-echo procedure to evaluate 
multi-exponential T2 decay in prostate tissue, which demon-
strated bi-exponential T2 decay, indicating slow or no water 
exchange between contributing tissue components [109].

Sabouri et al. developed LWI using three-dimensional 
multiecho spin-echo where a total of 64 echoes were 
acquired [110]. The signal decays were fitted to a multi-
exponential function (using a regularized non-negative 
least squares) to measure various T2 components. Using 
this method, luminal water fraction (LWF) can be quanti-
fied which represents the fractional volume of the luminal 
space [110]. It was observed that PCa had a lower LWF 
as compared to normal and benign prostatic tissues [110]. 
Devine et al. correlated LWI with the VERDICT model and 
observed that LWI alone can predict PI-RADS v2 score 
groupings with a comparable AUC to that of ADC. Further, 
LWI parameters correlated with the VERDICT parameters, 
suggesting that LWI is sensitive to the underlying tissue 
microstructure [111]. LWI is sensitive to the tissue micro-
structure, where the stroma and epithelium constitute a short 
T2 component, while the lumen constitutes a long T2 com-
ponent. However, most prior studies on LWI were conducted 
in a small cohort, a larger clinical trial will help include LWI 
into mpMRI. Figure 7 shows a representative example of 
MR parametric map for LWI [110].

Hybrid multi‑dimensional MRI (HM‑MRI)

Prostate tissue is composed of epithelium, stroma, and 
lumen. These glandular compartments have distinct 
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diffusivity and can shed light on various prostatic diseases 
[112]. The basis of HM-MRI is to assess changes in ADC 
and T2 values in response to variation in time to echo and b 
values. Further, employing a mathematical model prostatic 
tissue compositions can be measured using HM-MRI, non-
invasively [113]. Wang et al. developed prostate HM-MRI 
method by taking into account the interdependence of ADC 
and T2 values, and measuring the ADC as a function of TE 

and the T2 as a function of b value [114]. The fractional 
volumes of stroma, epithelium, and lumen of prostate were 
obtained by Chatterjee et al. by fitting the HM-MRI data to a 
three compartment models [113]. Compared to normal pros-
tatic tissue, PCa showed increased epithelium, a decrease in 
lumen and stroma [113] (Fig. 8). Motion-induced artefacts 
due to a long acquisition time are one of the challenges with 
HM-MRI.

Fig. 7   A representative example of various maps of LWI. Repre-
sentative maps of MR parameters, areas under the short (Ashort) and 
long (Along) T2 components, ratio of the area under the long com-
ponent over the area under the entire distribution (LWF), the short 
T2 (T2-short) and long T2 (T2-long) components, and the geomet-

ric mean of the entire distribution (gmT2), Ncomp was obtained by 
counting the number of peaks in the distribution, axial T2-weighted 
image, and whole-mount histology of the same section (reproduced 
with permission from reference # 110 from John Wiley and Sons 
from Sabouri et al. 2017)
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Chemical exchange saturation transfer (CEST) 
imaging

CEST is a molecular imaging method that maps the 
exchange between protons of the bulk water and protons 
in small metabolites and macromolecules [115, 116]. It 
enables us to image the low concentration compounds that 
often cannot be detected by conventional MRI or MRS. In 
CEST, exchangeable solute protons resonating at a differ-
ent frequency than bulk water proton are selectively satu-
rated using radiofrequency irradiation [115]. Acquisition 
of CEST involves radiofrequency saturation (e.g., using 
a continuous wave or short pulsed saturation) at differ-
ent spectral positions followed by standard data acquisi-
tion using a single shot EPI. In CEST, water signal gets 
changed depending upon the target molecule with varying 
frequency offsets; thus, we generate a map of the normal-
ized water signal intensity as a function of the frequency 
of the off-resonance saturation known as Z-spectrum. 

The detection of exchangeable amide proton of peptides 
and proteins, also known as amide proton transfer (APT) 
imaging, is the most commonly studied signals in CEST 
imaging [117].

In a preliminary study, Jia et  al. showed that APT 
ratio was significantly higher in PCa than benign regions 
(5.8% ± 3.2% vs 0.3% ± 3.2%, p = 0.002) [118]. Takayama 
et al. characterized 66 biopsy proven PCa by APT imaging 
and analyzed one slice per patient [119]. The mean APT 
signal obtained was highest for patients with GS 7 than the 
other GS categories (GS-6: 2.48 ± 0.59; GS-7: 5.17 ± 0.66, 
GS-8: 2.56 ± 0.85, and GS-9: 1.96 ± 0.75) [119]. DKI and 
APT were also used in assessing risk assessment of PCa 
and it was found that both the DKI and APT derived param-
eters are valuable in the diagnosis and segregation of PCa 
[120]. Often CEST suffers from B0 or B1 inhomogeneity 
and motion-related artifacts. Further large cohort studies are 
needed to prove the role of CEST imaging in detection and 
characterization of PCa.

Fig. 8   A 56-year-old man with 
Gleason score 4 + 3 cancer 
in right peripheral zone. The 
cancer lesion (arrows) shows 
reduced stroma (36.4%) and 
lumen (7.8%) volume and 
elevated epithelium volume 
(55.8%) compared to surround-
ing benign tissue. HM-MRI 
correctly predicts it be a clini-
cally significant cancer on the 
predicted cancer map, and seen 
as hypointense region in the 
corresponding T2-weighted 
image (courtesy of Prof. A. Oto 
and Dr A. Chatterjee, University 
of Chicago)
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MR Fingerprinting and other MR methods

Ma et al. were the first to propose MR fingerprinting (MRF), 
an innovative approach for obtaining quantitative measure-
ments of several MR parameters in a single session [121]. It 
enables simultaneous measurement of quantitative maps of 
T1, T2, and proton density. Signal evolution or ‘fingerprints’ 
provide the unique characteristic of tissue. With the use of 
optimized repetition time, flip angle, and sampling patterns 
in a pseudo-random manner, a dictionary of signal evolution 
using Bloch simulation are generated [14]. These dictionary 
values are used to assign T1 and T2 values and other tissue 
properties.

MRF was previously acquired using the balanced 
steady-state free precession (bSSFP) sequence; however 
due to B0 inhomogeneity, it is now obtained using a fast 
imaging with steady-state precession (FISP). MRF has 
been utilized in various diseases including PCa [122–124]. 
Panda et al. evaluated MRF combined with ADC mapping 
to characterize TZ PCa lesions [123], (Fig. 9). TZ cancers 
had lower T1, T2, and ADC than non-cancers. While MRF 

allows fast, simultaneous generation of quantitative maps 
of multiple physical properties such as T1 and T2, it will 
be interesting to study how this can be incorporated to 
standard mpMRI of prostate.

Beside these, a few other MR methods have recently 
demonstrated their potential in PCa. Briefly, the stimu-
lated-echo-based mapping (STEM) approach for simul-
taneous T1, T2, and ADC mapping showed improved 
image quality in PCa detection [125, 126]. MR elastog-
raphy revealed that PCa had a higher mean elasticity than 
benign disease [127, 128]. Another MR method, high 
spectral and spatial resolution (HiSS) MRI, has shown its 
potential in breast cancer and PCa [129, 130]. HiSS is 
a kind of spectroscopic imaging; however, it focuses on 
water and fat resonance, allowing proper elimination of 
fat resonance. It can also provide subvoxel tissue structure 
including vascularity of tissue of interest. Further, initial 
studies have shown feasibility of 7 T MR in the diagnosis 
of PCa [97, 131]. But, it suffers from challenges like sub-
stantial non-uniformities in B1 field and radiofrequency 
power deposition.

Fig. 9   A representative example of MR fingerprinting. T2W, ADC 
map, MR fingerprinting (MRF) T1 map, and MRF T2map for biopsy 
proven PCa A–D; prostatitis E–H, and a benign prostatic hyperplasia 
(BPH) nodule (I–L). A–D for PCa (arrow), mean T1, T2, and ADC 
were 1450  ms, 43  ms, and 0.51 × 10−3 mm2/sec, respectively. E–H: 
for prostatitis (arrow), Mean T1, T2, and ADC were 1615 ms, 63 ms, 

and 0.83 × 10−3 mm2/sec, respectively. I–L: for BPH nodule (arrow), 
mean T1, T2, and ADC were 1600 ms, 43 ms, and 0. 87 × 10−3 mm2/
sec, respectively (reproduced with permission from reference # 123 
from the Radiology Society of North America (RSNA) from Panda 
et al. 2019)
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Quantitative MRI parameters 
and computational methods

Diffusion metric and diffusion–MR‑based methods

DWI provides contrast based on the average water mol-
ecule displacement over a specific time interval in biologi-
cal tissues. The most commonly used mono-exponential 
way to describe the attenuated diffusion weighted (DW) 
signal, known as the ADC, has been the cornerstone of 
prostate mpMRI. Previous studies have found an inverse 
relationship between ADC and Gleason grades [3]. Kumar 
et al. reported a mean ADC value of 1.68 ± 0.31 × 10− 3 
mm2/s for the PZ compared with 1.07 ± 0.25 × 10− 3 mm2/s 
obtained for the central gland in healthy volunteers [19]. 
They also obtained a cutoff value of 1.17 × 10− 3 mm2/s 
to predict PCa, while Nagayama et al. reported a cutoff 
value of 1.35 × 10 − 3 mm2/s with an accuracy of 93% [19, 
132]. Further, in PZ PCa, DWI outperformed quantitative 
T2 and DCE- MRI [133]. As per a systematic review and 
meta-analysis, the pooled mean ADC of clinically signifi-
cant PCa was 0.86 × 10− 3 mm2/s while the pooled mean 
ADC of insignificant PCa was 1.1 × 10− 3 mm2/s [134]. 
This shows that despite having advantage of oversimpli-
fied mean ADC, there is significant overlap in reported 
values partly due to variations in acquisition methods and 
use of varying b values.

In order to improve repeatability and applicability, 
several alternative ADC quantitative metrics have been 
used by various groups to diagnose PCa, e.g., the ADC 
ratio, which is the mean ADC of tumor to the mean ADC 
of normal tissue. ADC ratio was shown to have the best 
AUC value for differentiating low-grade from high-grade 
PCa [135]. Similarly, the ADC histogram has been used 
to assess the heterogeneity of PCa, and it was observed 
that the 10th percentile ADC is a better predictor in dif-
ferentiating various Gleason grades [136]. Several other 
non-Gaussian DW-related quantitative parameters such 
as kurtosis, perfusion fraction, bi-exponential diffusion, 
and pseudo-diffusion are also under investigation for their 
clinical potentials in the improved diagnosis of PCa which 
has been discussed previously [47, 53].

Radiomic analyses of mpMRI in PCa and machine 
and deep learning methods

In addition to the development of novel MR sequences 
and techniques, recent improvements have been made in 
texture analysis, radiomics, and radiogenomics to find 
new biomarkers for PCa and to assess heterogeneity of 
the disease. Texture analysis provides quantitative imaging 

features, particularly using the second and higher-order 
texture descriptors like gray-level co-occurrence matrix 
(GLCM) and gray-level run length matrix (GLRLM) [137, 
138]. A variety of methods, including first-order statistics 
and Haralick texture features, have been applied to a wide 
range of malignancies [139, 140]. Radiomics is a process 
that involves extracting quantitative features from radio-
graphic images using computational algorithms, whereas 
radiogenomics aims to correlate imaging features to bio-
logical and genomic data [141–144]. The combination 
of these –omics approaches would differentiate between 
indolent and aggressive PCa, allowing for a more tailored 
approach to PCa management. These methods require 
a huge amount of data, and care should be taken while 
selecting stable features to ensure that results are repro-
ducible. Stoyanova et al. performed a radiogenomics anal-
ysis to assess the relationship between radiomic features 
and RNA data obtained from microarray from 17 biopsies 
from 6 PCa patients [141]. A distinct phenotypic differ-
ence was found indicating the multifocality and heteroge-
neity of PCa.

Furthermore, in the era of big data and artificial intel-
ligence (AI), such information could be used to develop 
computer-aided decision-making systems. Machine learning, 
a subfield of AI is reshaping the healthcare industry [145]. 
Machine learning applications to prostate mpMRI can be 
used to perform image segmentation, registration of TRUS/
MR images for biopsy, image reconstruction, detection, and 
characterization of PCa.

In a multicenter study, the Prostate MR Image Segmenta-
tion (PROMISE12) challenge was set up for prostate seg-
mentation on 100 patients [146]. Two automatic algorithms, 
Imorphics, and ScrAutoProstate were fast and outperformed 
the other algorithms [146]. Tian et al. utilized a convolu-
tional neural network (CNN) model to segment prostate on 
T2W MR images [147]. As compared to manually labeled 
ground truth, the CNN model achieved a mean Dice simi-
larity coefficient (DSC) of 85 ± 3.8% [147]. Another study 
developed a fully automated cascaded U-Net model for seg-
mentation using T2W and DWI that resulted in a higher 
mean DSC (92.7 ± 4.2%) for the entire prostate gland and 
79.3 ± 10.4% for the PZ [148]. Dai et al. developed a mask 
region-based CNN model to segment the prostate and seg-
ment the prostate lesions [149]. The model automatically 
segmented the entire prostate and identified highly suspi-
cious prostate lesions. The promising results of the PROS-
TATEx challenge prompted machine learning enthusiasts 
to plan further studies to automatically characterize PCa 
lesions [150, 151]. Wang et al. proposed an end-to-end 
trainable deep neural network for automatic detection of 
PCa and multimodal registration, and characterization of 
PCa [151]. A recent systematic review analyzed the abil-
ity of fully automated deep learning and semi-automated 
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traditional machine learning for the detection of clinically 
significant PCa [152]. A comparable performance was 
observed of the two (fully automated and semi-automated) 
AI methods. However, it identified several methodological 
issues and biases (e.g., inappropriate ground truth, lack of 
multi-reader image segmentation, and single center datasets 
without external test cohorts) that must be handled in future 
studies to make sure created models are generalizable [152].

The accurate curation of medical data is a key challenge 
in establishing fully automated AI-based clinical solutions. 
Another issue is the scarcity of large amounts of labeled 
data, which limits the full potential of deep learning meth-
ods. Moreover, suboptimal quality of data can make it dif-
ficult to design fully automated AI- based clinical solutions.

Summary and future directions

The developments of novel mpMRI methods promise accu-
racy and unique knowledge of microstructural changes in 
malignant prostate tissue. An mpMRI is highly powerful 
method but for its wider applicability and translating it as 
a screening method of PCa, researchers need to come up 
with faster and cost-effective MR methods to reduce the 
acquisition time, along with optimized protocols [153]. 
Further, the rule-in ability of mpMRI in previous negative 
biopsy needs further evaluation due to a large variability in 
positive predictive value. Also, there is a need to develop 
a multidisciplinary approach that includes radiologists, 
researchers, physicists, and urologists who understand 
the unmet clinical needs and technological advances in 
order to redefine the approaches that can further improve 
upon the ability of mpMRI in diagnosis and characteriza-
tion of PCa. Uniform MR protocol with an optimal image 
quality and appropriate training of radiologists are key 

factors in detecting clinically significant PCa. Faster sam-
pling methods, non-Cartesian acquisition such as radial 
k-space sampling have improved the accuracy and to a 
certain extent mitigated motion related issues in prostate 
mpMRI. Various newer MR methods such as MRF, HM-
MRI, RSI, VERDICT method, and LWI have provided an 
insight to prostatic microstructures. However, these meth-
ods should be used with caution because they are based on 
specific assumptions and are not always straightforward. 
HP 13C-MRI and APT-MRI have also shown promising 
unique metabolic information in PCa. Aside from mpMRI 
advancements, Gallium-68-labeled prostate-specific mem-
brane antigen (68Ga-PSMA, e.g., US-FDA approved ligand 
68Ga-PSMA-11), a positron emission tomography (PET) 
tracer, has demonstrated potential in initial staging and 
biochemical recurrence for localized PCa [154].

Other than improvement in MR sequences, there has 
been tremendous progress made in image analysis meth-
ods. Radiomics and radiogenomics analyses, and advances 
in AI-based approaches particularly machine and deep 
learning methods (Fig. 10) are increasingly being used for 
image reconstruction, segmentation, and characterization 
of PCa lesions. These novel methods require prospective 
validation with high-quality data and reproducible out-
comes before being incorporated in prostate mpMRI and 
clinical practice.
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