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Abstract
Multiparametric magnetic resonance imaging (mpMRI) has been adopted as the key tool for detection, localization, charac-
terization, and risk stratification of patients suspected to have prostate cancer. Despite advantages over systematic biopsy, 
the interpretation of prostate mpMRI has limitations including a steep learning curve, leading to considerable interobserver 
variation. There is growing interest in clinical translation of quantitative imaging techniques for more objective lesion assess-
ment. However, traditional mapping techniques are slow, precluding their use in the clinic. Magnetic resonance fingerprint-
ing (MRF) is an efficient approach for quantitative maps of multiple tissue properties simultaneously. The  T1 and  T2 values 
obtained with MRF have been validated with phantom studies as well as in normal volunteers and patients. Studies have 
shown that MRF-derived  T1 and  T2 along with ADC values are all significant independent predictors in the differentiation 
between normal prostate tissue and prostate cancer, and hold promise in differentiating low and intermediate/high-grade 
cancers. This review seeks to introduce the basics of the prostate MRF technique, discuss the potential applications of prostate 
MRF for the characterization of prostate cancer, and describes ongoing areas of research.
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Introduction

The role of multiparametric magnetic resonance imaging 
(mpMRI) for the detection, localization, and locoregional 
staging of prostate cancer has grown over the past two dec-
ades [1–3]. Cancer suspicious lesions can be seen on MR 
using  T2-weighted and diffusion-weighted images (DWI) 
and apparent diffusion coefficient (ADC) maps, and often as 
early enhancing foci on dynamic contrast-enhanced (DCE) 
images. For this reason, MRI has become the gold-standard 
imaging modality for the assessment of the prostate, and 

mpMRI the protocol of choice. mpMRI imaging has also 
been deployed to assist in biopsy targeting, leading to a 
higher detection of clinically significant cancer and reduced 
detection of indolent lesions as compared to standard tran-
srectal ultrasound (TRUS) biopsy [4].

The mpMRI protocol of the prostate typically includes 
 T2-weighted images for anatomical assessment along with 
DWI and DCE MRI. Interpretation of mpMRI is guided 
by the recommendations provided by the Prostate Imaging 
Reporting and Data System version 2.1 (PI-RADS v2.1) [5]. 
The evaluation of mpMRI is a qualitative assessment which 
may lead to differences in interpretation between different 
readers [6]. There has been increased exploration of the use 
of quantitative tissue property mapping for disease diagno-
sis and staging, as these maps may provide more objective 
information than conventional weighted imaging. In par-
ticular, ADC measurements derived from DWI have been 
suggested as a potential adjunct to qualitative analysis in 
PI-RADS [7–10]. Quantitative mapping of  T1 and  T2 is not 
routinely performed or included in PI-RADS due to the time 
needed to make these maps, and their unknown marginal 
utility in assessing for prostate cancer.

Recently, several approaches for quantitative  T1 and  T2 
mapping have emerged and been applied in the prostate, with 
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the goal of improving the reproducibility of cancer assess-
ment through the objective use of tissue property values to 
diagnose and stratify disease. Magnetic Resonance Finger-
printing (MRF), a technique which enables the simultaneous 
generation of quantitative maps of multiple tissue properties 
[11, 12], has also been explored in the prostate [13–17]. 
While the primary benefit of deploying MRF in the prostate 
is the ability to rapidly characterize prostate tissues, MRF 
may offer additional advantages over conventional mapping 
approaches. For example, early work has shown that MRF 
data can be used to extract information about individual 
tissue components [18, 19], potentially enabling improved 
discrimination of disease. Moreover, it has been suggested 
that MRF-derived tissue property maps can be combined 
with machine learning for automatic lesion detection [20]. 
The efficiency, reproducibility, and potential sensitivity to 
changes in prostate tissue, along with the possibility of effi-
cient post-processing and analysis, makes MRF an exciting 
new tool in clinical prostate assessment.

This review seeks to introduce the basics of MRF for 
tissue property mapping in the prostate, including pulse 
sequence design, dictionary generation, and tissue property 
map reconstruction algorithms. The potential applications in 
prostate imaging are also discussed, and current limitations 
and ongoing areas of research are described.

The mpMRI protocol

Each of the images acquired in an mpMRI protocol serves 
a different purpose.  T2-weighted imaging reflects the water 
content and cellularity of the tissue, and is used as a high-
resolution anatomical image of the zonal structure due to the 
excellent soft tissue contrast [21, 22].  T2-weighted imaging 
plays a primary role in evaluation of transition zone (TZ) 
lesions, and a secondary role to diffusion-weighted imaging 
for evaluation of peripheral zone (PZ) lesions. In the nor-
mal prostate, the PZ appears hyperintense on  T2-weighted 
imaging (though benign changes such as prostatitis can be 
hypointense), while the TZ has a heterogeneous appearance 
with areas of hypo-intensity and hyper-intensity [23, 24]. 
T2w imaging also plays an important role in characterizing 
TZ lesions, as BPH nodules common in the TZ may exhibit 
restricted diffusion which can decrease sensitivity in identi-
fying prostate cancer using diffusion-weighted images. How-
ever, intensity alone cannot be used as an objective measure-
ment of grade, because the degree of hypo-intensity varies 
from manufacturer to manufacturer, with sequence and user-
controlled settings, and across scanners.

DWI provides qualitative and quantitative information 
about cellularity and the degree of motion of water mol-
ecules within tissue. Prostate cancer appears hyperintense on 
DWI due to the increased cellularity and reduced diffusion 

coefficients compared with healthy tissue [25]. A decrease 
in the ADC value, calculated from multiple diffusion-
weighted images with different b values, is associated with 
increasing Gleason score [26, 27]. The use of both DWI and 
 T2-weighted imaging results in higher sensitivity and speci-
ficity than  T2-weighted imaging alone for detecting prostate 
cancer in both PZ and TZ [28, 29].

In addition to the essential  T2-weighted images and ADC 
maps, DCE MRI images can be used to assess perfusion. 
DCE MRI images are generated by acquiring a series of 
 T1-weighted images before and dynamically after the injec-
tion of a gadolinium-based contrast agent. These images 
show early focal enhancement in prostate cancer [30]. While 
DCE images can be processed to yield quantitative maps 
of perfusion-related parameters, these measurements suffer 
from poor repeatability and reproducibility, preventing this 
information from being used in standard clinical practice 
[31]. Although a semi-quantitative analysis of the shape of 
the DCE signal enhancement curve was originally included 
in PI-RADS v1, curve shape was not specific enough to war-
rant inclusion in PI-RADS v2.1. As it currently stands in 
PI-RADS v2.1, DCE imaging is used only to upgrade risk 
of peripheral zone lesions from Category 3 to 4 via visual 
assessment of DCE images, with cancers tending enhance 
earlier or simultaneously with surrounding normal tissue 
[32]. While  T1-weighted imaging itself plays no diagnostic 
role for prostate cancer detection, as both cancer and nor-
mal tissue have low and homogeneous signal intensity [22], 
T1-weighted images are generally used to assess for pres-
ence of hemorrhage (which can confound T2w and diffusion 
imaging) and for DCE analysis [33].

Once relevant images have been acquired, the presence 
and stage of prostate cancer can be assessed using the crite-
ria laid out in the PI-RADS v2.1 five point scoring system. 
However, PI-RADS has a number of limitations [34, 35]. 
Besides ADC maps, the images used in PI-RADS are quali-
tative, meaning that they do not reflect measurements of tis-
sue properties (such as  T2) but are merely images which are 
weighted by these tissue properties. As such, prostate tissues 
cannot be objectively evaluated to determine if a suspicious 
lesion has tissue properties that mark it as different from 
healthy tissue. As these images are approached somewhat 
subjectively, PI-RADS suffers from limited inter-reader 
agreement, even between experienced readers [34]. There 
is also a learning curve associated with PI-RADS interpre-
tation, which may contribute to this lack of agreement [36, 
37]. A more objective approach to the assessment of the 
health of the prostate gland may reduce these discrepancies 
and enable a more definitive evaluation.
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Conventional approaches for quantitative tissue 
property mapping in the prostate

Although the analysis of quantitative maps beyond ADC 
is currently not part of PI-RADS v2.1, there are reasons 
to believe that changes to prostate tissue may be measured 
through quantitative tissue property mapping. Using con-
ventional relaxometry approaches,  T2 values have been 
observed across multiple studies to be higher in PZ than 
TZ, and higher in normal tissue as compared to cancer [38, 
39]. Multiple groups have shown that  T2 mapping can be 
used to distinguish normal prostate tissue, prostatitis, and 
benign prostatic hyperplasia (BPH) from prostate cancer 
[40–45]. Decreased  T2 and ADC values have been reported 
in prostate cancer tissue as compared to healthy tissue, 
and these values correlated with the aggressiveness of the 
prostate cancer [27, 46–51]. It has been suggested that  T2 
mapping can add higher positive predictive value to pros-
tate cancer evaluation, as compared to T2w imaging alone.

Unlike  T2 mapping,  T1 mapping has not been explored 
in depth, presumably due to the fact that  T1-weighted 
images are not widely used for prostate cancer evaluation 
because they exhibit little contrast between cancer and 
normal prostate tissue. However, in a small recent study 
of 23 patients, it was found that  T1 is lower in prostate 
cancer as compared to benign prostatic tissue [52]. Using 
a dual echo turbo spin echo saturation recovery (four delay 
times) acquisition for  T1 and  T2 mapping,  T1 and  T2 times 
in cancer were found to be lower than stromal hyperplasia 
and noncancerous PZ, though TZ and PZ cancers were not 
separated and overall diagnostic performance was lower 
than ADC [53].

Several groups have attempted to understand the histo-
logical underpinnings of measured relaxation property dif-
ferences in prostate tissues and cancer [54].For example, 
Sabouri et al. have assessed the feasibility of luminal water 
fraction determination on the basis of  T2 mapping for detect-
ing and grading prostate cancer [55]. The quantitation of 
prostatic lumen, stroma and epithelium has been explored 
using compartment modeling of  T2 and ADC mapping data, 
where it was reported that fractional epithelium volume is 
increased, and lumen and stroma are decreased in the pres-
ence of cancer [56].

However, conventional  T1 and  T2 mapping sequences can 
be slow and inefficient. The Modified Look-Locker inversion 
recovery sequence (MOLLI) used for  T1 mapping required a 
data acquisition time of 4.5 min for maps with a resolution 
of 1.3 × 1.3 × 3  mm3 [52]. For  T2 mapping using a multi-echo 
turbo spin echo approach with an interpolated resolution of 
0.55 × 0.76 × 2.2  mm3, the acquisition time was 2 min and 
24 s [50]. Because  T1 and  T2 mapping is time-consuming 
and these maps are not typically acquired, these measure-
ments made via conventional approaches have not been 

thoroughly assessed for their use in tissue characterization 
and cancer detection.

Magnetic resonance fingerprinting

Magnetic resonance fingerprinting (MRF) [11] is an 
approach for quantitative tissue property mapping that can 
be used to efficiently generate maps of multiple tissue prop-
erties simultaneously. MRF has been used in a number of 
organs for the acquisition of  T1 and  T2 maps, including the 
brain [11, 57, 58], abdominal organs [59], heart [60], breast 
[61, 62], and prostate [13–15]. The general MRF frame-
work consists of four key components: MRF data acquisi-
tion, image timeseries reconstruction, dictionary simulation, 
and map generation. An overview of the MRF workflow is 
shown in Fig. 1 and described in the following sections.

MRF data acquisition

MRI signals can be sensitized to tissue properties, such as  T1 
and  T2, by selecting appropriate pulse sequence parameters, 
i.e., the repetition time (TR), echo time (TE), flip angle (FA), 
etc. MRF pulse sequences are specially designed so that dif-
ferent tissues (assumed to have different  T1 and/or  T2 values) 
to give rise to signals with different profiles over time, and 
that these signals can be distinguished from one another. 
Typically in MRF, the TR and FA are varied in a con-
trolled fashion to ensure that these signals are unique, and 
data acquisition is often initialized with an inversion pulse 
to boost the sensitivity of the signal to  T1.  T2-preparation 
pulses and additional inversion pulses can also be used to 
increase this sensitivity to  T2 and  T1, respectively. Delay 
times may also be inserted to ensure that signals arising from 
tissues with different tissue properties can be distinguished 
from one another. While the first MRF sequence used in 
the brain was based on a balanced steady-state free preces-
sion (bSSFP) readout [11], any sequence structure is can 
be used along with MRF. The selection of a pulse sequence 
structure depends on the tissue properties to measured; the 
fast imaging with steady-state precession (FISP) readout is 
increasingly deployed in MRF due to its relative insensitivity 
to off-resonance effects [12].

There are many different ways to select the pulse 
sequence parameters for an MRF acquisition. While the 
original MRF work used several empirically chosen com-
binations of TR and flip angle [11], other groups have used 
brute force approaches [63], testing many different possi-
ble scanner parameters and selecting the one that gives the 
best accuracy for the tissue property maps. More refined 
approaches include using quality factors based on noise fig-
ures [64], Cramer-Rao Lower Bounds [65], computer models 
combined with physics-inspired optimization heuristics [66], 
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and deep learning [67]. An excellent overview of different 
MRF pulse sequence parameter optimization approaches can 
be found in [68].

MRF data are usually acquired along non-Cartesian sam-
pling trajectories where each acquisition window (i.e., data 
acquired in a single TR) provides unique information about 
the underlying tissue properties. To effectively extract this 
information, specialized techniques must be deployed, which 
will be outlined below.

MRF image timeseries generation

Once the MRF data have been acquired, these data are con-
verted into images, which are used in the later pattern match-
ing step. Originally, the data acquired in each TR of the 
acquisition were transformed to the image domain via the 
non-uniform fast Fourier transform (NUFFT [69]), result-
ing in a timeseries of images. Given the high data under-
sampling factor, the MRF images are significantly corrupted 
by aliasing artifacts. However, when using non-Cartesian 
trajectories like spirals or radial, these aliasing artifacts 
appear noise-like in the images. Recently, approaches for 
reducing the artifacts in these individual images have been 
introduced into the pipeline, including view-sharing [70], 
parallel imaging [71], iterative de-noising [72], and low-
rank/compressed sensing reconstructions [73–77]. However, 
these image reconstruction steps are not required in MRF, 
where the accelerated images can be used in the subsequent 
tissue property extraction steps despite the presence of sig-
nificant aliasing artifacts.

After conversion to the image domain, images acquired 
with multiple receiver coils are combined using adaptive 
coil combination [78]. Recent works have suggested that 
further processing steps can be accelerated by compressing 
the MRF raw data or images along the coil dimension using 
PCA [79] or along the time dimension using singular value 
decomposition compression [76, 80]. Once the timeseries of 
images has been prepared, it can be used for further process-
ing to extract tissue property information (see below).

MRF dictionary simulation

The MRF reconstruction relies on the knowledge of the 
relationship between signal evolutions acquired at the MRI 
scanner and tissue properties  (T1,  T2, etc.). In most conven-
tional mapping techniques, the relationship between a tissue 
property and signal evolution is described by an exponential 
signal model, and quantitative tissue property values can be 
extracted by curve fitting the observed signal to the model. 
However, in MRF, the relationship between tissue properties 
and the signal evolutions is designed to be far more complex 
by varying pulse sequence parameters throughout the acqui-
sition. To efficiently match the measured signal time courses 
in MRF to the appropriate combination of tissue property 
values, dictionary matching approaches are typically used in 
place of explicit curve fitting.

In MRF, the signal time course that arises from a voxel 
is a consequence of both the sequence parameters used in 
the acquisition (such as FAs and TRs) as well as the proper-
ties (i.e.,  T1 and  T2) of the tissue in that voxel. The signal 
evolutions that would result from the applied MRF pulse 

Fig. 1  Overview of the MRF workflow. (Left top) Data are acquired 
using an MRF pulse sequence with variable acquisition settings (FA 
and TR). (Left bottom) The MRF pulse sequence parameters and 
a large set of tissue property values (i.e.,  T1 and  T2) are entered as 
inputs to a Bloch equation simulation to generate the MRF diction-
ary. (Middle top) The MRF pulse sequence is used to collect highly 
accelerated images at the MRI scanner; the signal timecourse of one 

voxel over time (orange curve) is dictated by the properties of the 
tissue in that voxel along with the pulse sequence settings. (Middle 
bottom) The measured signal from one voxel is compared to the dic-
tionary in the pattern matching step and the best match found. (Right) 
The tissue properties used to make the best matching dictionary entry 
are assigned as the  T1 and  T2 values for that voxel, and the process 
repeated for all voxels
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sequence for different combinations of  T1 and  T2 are cal-
culated. Once the timeseries for a set of tissue properties 
has been calculated, it is normalized for later use in pattern 
matching, and deposited as an entry in the dictionary. These 
MRF signal time courses can be calculated using a variety 
of techniques, where the most common is through the use 
of Bloch Equation simulations. Other approaches include 
modeling signals using Extended Phase Graphs (EPG) [81, 
82], or training a neural network to recapitulate the Bloch 
Equations in a significantly shorter time than explicit Bloch 
equation calculations [83].

The expected physiological range of tissue properties for 
the target clinical applications is used to define the upper and 
lower boundary of the  T1 and  T2 values for which dictionary 
entries are calculated. For example, an MRF dictionary may 
contain signal evolutions for combinations of  T1 values from 
10 to 3000 ms with an increment of 10 ms, and  T2 values 
from 2 to 500 ms with an increment of 2 ms. Note that both 
the accuracy and precision of the mapped  T1 and  T2 values 
are determined in part by the MRF dictionary resolution. If 
the dictionary resolution is fine (with small spacing between 
 T1 and  T2 entries), the size of the MRF dictionary can be 
quite large and challenging to work with, but the signal evo-
lutions may be more accurately represented in the dictionary. 
On the other hand, if the dictionary resolution is coarse, the 
size of the MRF dictionary will be small, but the entries may 
not be truly representative of the signal evolutions found in 
the acquired data. Also note that the dictionary size grows 
exponentially with the number of tissue properties to be 
mapped in the MRF scan; a large dictionary increases the 
computational load and memory requirements for the recon-
struction. This dictionary size consideration may limit the 
number of individual tissue properties that can realistically 
be assessed in an MRF scan.

MRF map generation

The final step in the MRF pipeline is to match the MRF 
image timeseries to the dictionary to select the dictionary 
entry that best represents the acquired signal for each voxel. 
The  T1 and  T2 values that went into constructing that entry 
can then be assigned to that voxel as the measured values. 

There are several approaches to this step, but the most com-
monly used (and simplest) is known as cross-correlation pat-
tern matching. Here, the signal from a single pixel through 
time is extracted from the image timeseries, and normalized. 
The cross-correlation (inner product) between this meas-
ured signal and all of the dictionary entries is calculated, 
and the dictionary entry with the highest cross-correlation 
value is selected as the best “match”. The  T1 and  T2 values 
which were used to construct that dictionary entry are then 
assigned as the tissue properties of that voxel.

This simple matching process may be slow, especially 
if the dictionary is large. To combat these effects, more 
advanced matching approaches may be used, such as fast 
group matching [84]. Machine learning approaches have also 
evolved, in which the tissue properties can be extracted from 
the data without the need for an explicit dictionary [85–90]. 
These approaches may be especially useful in situations 
where the dictionary can become very large, for instance 
when mapping more than two tissue properties [91].

Prostate MRF

Prostate MRF acquisition and tissue property map 
generation

The MRF sequence which has primarily been deployed for 
the assessment of prostate patients thus far was developed 
for use at 3 T and is described in [13]. However, other dif-
ferent implementations of MRF could be used to measure 
 T1 and  T2, such as that described in [17]. The sequence 
reported in [13] is based on FISP MRF [12] due its rela-
tive insensitivity to off-resonance effects in the presence of 
field inhomogeneities from sources such as bowel gas. A 
schematic of this pulse sequence is shown in Fig. 2. The 
magnetization is first prepared by applying an inversion 
pulse, followed by the acquisition of 3000 blocks of data, 
with TRs varying between 11.2 and 14.2 ms and flip angles 
varying between 0° and 50°, as shown in Fig. 1. This TR 
series was selected using a Perlin noise pattern, and the flip 
angles were varied in a sinusoidal pattern, where the maxi-
mum flip angle was randomly selected as described in detail 

Fig. 2  A schematic of the pulse sequence used for prostate MRF at 3 T. The readout used in many implementations is a uniform density spiral. 
The repetitions times (TR) and flip angles (α) change after each data acquisition block, and are shown on the left hand side of Fig. 1
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in [12]. Additionally, short relaxation periods with a length 
of 10 TRs were inserted every 200 TRs. Data collection is 
performed using a uniform density spiral readout. The data 
matrix is 400 × 400, with a field-of-view of 400 × 400  mm2, 
leading to an in-plane resolution of 1 × 1  mm2, with slice 
thicknesses ranging from 3 to 6 mm. The total acquisition 
time for this prostate MRF implementation is 39 s for one 
slice, and a delay time of at least 5 s is inserted between 
measurements to ensure sufficient magnetization recovery 
before beginning the next experiment. After the acquisition, 
the raw data are compressed along the coil dimension to 
eight virtual coils, and an SVD is performed along the time 
dimension to compress the timeseries from 3000 points to 
43. The compressed data are converted to the image domain 
using the NUFFT.

In prostate MRF, the MRF dictionary can be pre-cal-
culated, as the sequence parameters are not altered from 
subject to subject. In the prostate and pelvic area, the  T1 is 
expected to range between 1000 and 2500 ms, and the  T2 
between 20 and 300 ms for 3 T systems [15]. Dictionary res-
olutions, here listed in ms with a format of [min:step:max], 
for  T1 values are [10:5:90, 100:10:1000, 1020:20:1500, 
1550:50:2050, 2150:100:2950] and  T2 values are [2:2:10, 
15:5:150, 160:10:200, 250:50:500], where values of  T1 
which are less than  T2 are excluded. This dictionary has 
a total of 5,970 entries. Like the collected timeseries data, 
the dictionary is compressed along the timeseries direction, 

yielding 43 timepoints. Then the cross-correlation between 
the collected timeseries for a single voxel and each diction-
ary entry is calculated to find the  T1 and  T2 value for the 
voxel. This reconstruction can be performed off-line (for 
instance, in Matlab), but has also been implemented on the 
Gadgetron platform for rapid, on-line reconstruction and 
simplified clinical deployment [16].

Application of prostate MRF

Prostate MRF has been explored for the characterization of 
prostate pathologies in both the peripheral and transition 
zones [13–15]. An example of a  T1 map and a  T2 map gen-
erated using prostate MRF at 3 T, along with an ADC map 
and  T2-weighted image, are shown in Fig. 3. This patient 
has prostate cancer (Gleason grade 9) with PZ involvement, 
marked with a white arrow. Note the hypo-intensity of the 
cancer in the  T2-weighted image, and the low value of the 
ADC in this region. The MRF-derived  T1 and  T2 maps are 
shown at the bottom. The mean  T1 and  T2 values in this 
prostate cancer were signicantly lower than normal PZ  (T1 
was 1533 ± 175 ms vs. 2920 ± 80 ms, and  T2 was 37 ± 7 ms 
vs. 261 ± 57 ms), where the ROIs analyzed are marked with 
black borders on the MRF maps.

The initial prostate MRF work focused on quantitative 
lesion characterization in the PZ [13]. MRF and ADC data, 
in addition to standard  T2-weighted images, were collected 

Fig. 3  Images and maps col-
lected in a patient with prostate 
cancer (Gleason score 9) at 3 T. 
(top left)  T2-weighted axial 
image with a large hypointense 
cancer in the PZ (white thick 
arrow). (top right) The cancer 
demonstrates a lower diffusion 
coefficient on the Apparent Dif-
fusion Coefficient (ADC) map. 
(bottom row) MRF-derived 
 T2 and  T1 maps, respectively. 
The cancer is marked on these 
maps by an ROI with a black 
border denoted again by the 
white arrow, and the normal-
appearing PZ ROI marked with 
the simple black border
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in a total of 140 patients at 3 T. Suspicious lesions were 
biopsied using either a standard 12-core TRUS approach or 
systematic biopsy plus cognitively targeted biopsy. All three 
quantitative tissue properties  (T1,  T2, and ADC) were signifi-
cantly lower in cancer than in normal-appearing PZ tissue, 
and using all three of these metrics together provided an 
AUC of 0.99 to distinguish cancer from healthy tissue. This 
result was somewhat surprising, as  T1 had not previously 
been considered a property that changes in the presence of 
prostate cancer. Most interestingly, using  T2 and ADC, low-
grade cancers could be distinguished from intermediate- and 
high-grade cancers with an AUC of 0.83. This finding sug-
gests that MRF may be used to distinguish aggressiveness, 
and potentially indicates which patients may be followed up 
with active surveillance alone. Additionally, while  T1 and 
ADC could be used together to discriminate normal PZ tis-
sue from prostatitis (AUC of 0.99), it was not possible to 
clearly separate cancer from prostatitis in the PZ using any 

combination of the quantitative parameters, likely because of 
the small sample size and small subset undergoing targeted 
biopsy.

In a follow-up study, 89 patients undergoing targeted 
biopsy (cognitive targeting with TRUS or in-bore MRI-
guided biopsy) were recruited to be scanned with MRF at 
3 T [14]. Quantitative differences between clinically sig-
nificant cancers (Gleason score 3 + 4 = 7 and above), clini-
cally insignificant cancers (Gleason 3 + 3 = 6), non-cancers 
(prostatitis and biopsy-proven normal prostate tissue) and 
clinically insignificant lesions (combined group of Gleason 
6 cancers, prostatitis and negative biopsies) were evaluated. 
Example images from this study are shown in Fig. 4. This 
study confirmed that  T1 with ADC could be used to dis-
tinguish cancers from negative biopsies (AUC of 0.83) as 
well as non-cancers (AUC of 0.80), and  T2 and ADC could 
be used to distinguish clinically significant cancers (Glea-
son score 3 + 4 = 7 and above) from clinically insignificant 

Fig. 4  Comparison of ADC,  T1 and  T2 values for targeted biopsy-
proven prostate cancer (A–D), prostatitis (E–H) and benign prostatic 
tissue (I–L) collected at 3 T. Prostate cancer: T2w image (A) shows 
focal dark lesion against diffuse dark background signal in right 
peripheral zone with ADC of 0.87 ×  10−3  mm2/s (B).  T1 and  T2 values 
were 1560 ms and 42 ms respectively. Prostatitis: T2w (E) shows a 
wedge-shaped mildly dark lesion in left peripheral zone with ADC 
of 0.87 ×  10−3  mm2/s (F).  T1 and  T2 values were higher than cancer 
at 1770 ms and 83 ms respectively. Benign prostatic tissue: T2w (I) 

shows a focal lesion in right apical peripheral zone with ADC of 
0.82 ×  10−3  mm2/s. Based on suspicious morphology on clinical MRI, 
biopsy was performed which revealed benign prostatic tissue.  T1 and 
 T2 values were higher than cancer at 2310 ms and 73 ms respectively. 
Figure  reproduced from A. Panda et al., “Targeted Biopsy Validation 
of Peripheral Zone Prostate Cancer Characterization With Magnetic 
Resonance Fingerprinting and Diffusion Mapping,” Invest. Radiol., p. 
1, 2019, https:// doi. org/ 10. 1097/ rli. 00000 00000 000569. with permis-
sion from Wolters Kluwer Health, Inc

https://doi.org/10.1097/rli.0000000000000569


564 Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:557–571

1 3

(Gleason 3 + 3 = 6) cancers (AUC of 0.91), non-cancers 
(0.86), and clinically insignificant lesions (0.86). It was 
also possible to distinguish cancers from prostatitis (0.71 
using  T2 and 0.79 with ADC), although the cut-offs used 
for this differentiation were more complicated. Both  T1 and 
 T2 were found to be significantly different between cancers 
and non-cancers, and these metrics provided information 
complementary to ADC when differentiating cancers from 
non-cancers. In this study,  T1 values of 1720 to 1730 ms,  T2 
values of 52 to 60 ms and ADC values of 0.75 to 0.78 ×  10–3 
 mm2/s provided the best discriminatory performance 
between clinically significant cancers and non-cancers (see 
Fig. 5). While promising, one limitation of this study is that 
the diagnostic performance of these cutoff values was not 
validated in another cohort.

In comparison to lesions in the PZ, TZ cancers are more 
challenging to detect and characterize due to their location in 
a visually heterogeneous portion of the gland and similarities 
in appearance with benign nodules on  T2-weighted imaging. 
In [15], 67 men with 75 TZ lesions underwent MRI scans 
at 3 T including MRF, ADC mapping, and  T2-weighted 
imaging. As in the studies involving PZ lesions, areas of 
suspicion were identified in the  T2-weighted images, and 
quantitative  T1,  T2, and ADC values were measured over 
these areas. Figure 6 shows several example maps acquired 
in this study. The pathology of the lesions was determined 
via cognitively targeted TRUS biopsy (N = 15) and in-bore 
MRI-guided biopsy (N = 60). A combination of  T1 and ADC 
provided the best separation between prostate cancer and 

non-cancers (AUC of 0.94) and clinically significant pros-
tate cancer and clinically insignificant TZ lesions (0.81). 
MRF-derived  T1 was also able to differentiate PI-RADS v2 
category 3 non-cancers from cancers (AUC of 0.79). MRF-
derived  T1 values of 1500 to 1510 ms and ADC values of 
0.66 to 0.70 ×  10–3  mm2/s provided the best discriminatory 
performance for TZ lesions (see Fig. 7). Again  T1 = 1500 ms 
and ADC of 0.65 ×  10–3  mm2/s could be used as practical 
clinical cutoffs, although these have yet to be validated in 
another cohort.

Other studies have confirmed the findings that PZ and TZ 
 T1 and  T2 values measured with MRF are lower in cancer 
than in healthy prostate [92, 93], where the measured values 
are similar to those initially reported. Upon contrast admin-
istration, both the measured  T1 and  T2 have been shown to be 
reduced, although the reduction in both was lower in pros-
tate cancer than in normal TZ and the reduction in  T1 lower 
in prostate cancer than in normal PZ. Small studies have 
reported excellent cross-system reproducibility of prostate 
MRF-based measurements at both 1.5 and 3 T in phantoms 
and healthy subjects [17], with similar values reported as 
those in [13, 14]. The ease of use as well as the repeatabil-
ity and reproducibility of prostate MRF measurements has 
been explored in a small study performed over three differ-
ent institutions (UHCMC, Brigham Women’s, and DASA) 
with excellent results, indicating that this technique could 
indeed be generally deployed for clinical prostate assess-
ment [16]. Additional studies with larger groups of men at 
more institutions are warranted to confirm the suggestion 

Fig. 5  Quantitative characterization with combined MRF-relaxom-
etry and ADC mapping at 3  T. a Scatterplot of  T2 versus ADC for 
prostatitis (n = 15), low-grade cancers (n = 10) and clinically signifi-
cant cancers (n = 53). ADC value of 1.04 ×  10−3   mm2/s is sensitive 
but not specific for differentiating all cancers from prostatitis (right 
vertical line). ADC value of 0.78 ×  10−3   mm2/s (left vertical line) is 
the best cut-off for differentiating clinically significant cancers from 
low-grade cancers and prostatitis. In the ADC overlap zone (between 
two vertical lines), a  T2 ≤ 68  ms is additionally helpful in differen-
tiating cancers from prostatitis (horizontal line). b Scatterplot of  T1 
versus ADC for non-cancers including prostatitis (n = 15), negative 

biopsies (n = 26), low-grade cancers (n = 10) and clinically signifi-
cant cancers (n = 53). ADC values of 0.75 ×  10−3  mm2/s followed by 
 T1 of 1720  ms are the best cut-offs for differentiating cancers from 
non-cancers (horizontal line). In the ADC overlap zone (between ver-
tical lines), while five clinically significant cancers had  T1 > 1720 ms, 
they also had  T2 ≤ 68  ms. Figure  reproduced from A. Panda et  al., 
“Targeted Biopsy Validation of Peripheral Zone Prostate Cancer 
Characterization With Magnetic Resonance Fingerprinting and Diffu-
sion Mapping,” Invest. Radiol., p. 1, 2019, https:// doi. org/ 10. 1097/ rli. 
00000 00000 000569. with permission from Wolters Kluwer Health, 
Inc
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that MRF-based measurements, coupled with ADC, could 
be used as a replacement for biopsy when the tissue can be 
definitively characterized using these quantitative metrics.

Another potential use of MRF beyond clinical tissue char-
acterization is to better understand what histological changes 
drive  T1 and  T2 differences in various tissue states. In an 
intriguing article, areas of healthy tissue, prostatitis and 
cancer were identified in whole mount prostate specimens 
from men who were scanned with prostate MRF and then 
underwent prostatectomy, and the relative ratios of epithe-
lium, lumen, and stroma were calculated these regions [92]. 
It was observed that: (1) the measured  T1 and  T2 values were 
negatively correlated with the ratio of epithelium, (2) the 
 T1 increased with increasing stroma in prostate cancer but 
decreased with increasing stroma in prostatitis, (3) the  T2 
increased with increasing ratios of lumen in both prostate 
cancer and prostatitis. Given these associations, it may be 
possible to tailor the MRF sequence to specifically measure 
these differences in tissue components, thereby improving 

the precision and thus the discriminatory power of MRF. 
Work by Deshmane, et al. [19] has suggested that different 
tissue compartments in the brain can be assessed using MRF 
measurements, and such an approach may be valuable to 
pursue in prostate MRF as well. Moreover, it is known that 
a small number of cancers are missed on conventional MRI. 
With careful histological and quantitative analysis, it may be 
possible to determine if these missed cancers can be better 
detected quantitatively.

Future developments in prostate MRF

The most obvious next challenges in prostate MRF are the 
need to improve spatial resolution and scan times. The clini-
cal studies described above used a 2D MRF implementation 
to collect  T1 and  T2 maps with an in-plane spatial resolution 
of 1 ×  1mm2 and a slice thickness of 5 mm. Compared to the 
resolution of clinical  T2-weighted images which are used to 

Fig. 6  Comparison of images from (left to right) axial  T2-weighted 
MRI, apparent diffusion coefficient (ADC) mapping, and  T1 and  T2 
MR fingerprinting mapping for targeted biopsy-proven prostate can-
cer, prostatitis, and a benign prostatic hyperplasia (BPH) nodule all 
collected at 3 T. A–D Biopsy-proven prostate cancer (arrow). Mean 
 T1,  T2, and ADC were 1450  ms, 43  ms, and 0.51 ×  10–3   mm2/s, 
respectively. E–H Biopsy-proven prostatitis (arrow). Mean  T1,  T2, 
and ADC were 1615  ms, 63  ms, and 0.83 ×  10–3   mm2/s, respec-

tively. I–L, For the BPH nodule (arrow), mean  T1,  T2, and ADC 
were 1600  ms, 43  ms, and 0. 87 ×  10–3  mm2/sec, respectively. Note 
the difference in  T1 relaxation times between transition zone cancer 
and noncancers despite the lesions having similar hypointense signal 
intensity on  T2-weighted images. Figure  reproduced from A. Panda 
et al., “MR Fingerprinting and ADC Mapping for Characterization of 
Lesions in Transition Zone of the Prostate Gland,” Radiology. 2019; 
292:685–694, permission pending



566 Magnetic Resonance Materials in Physics, Biology and Medicine (2022) 35:557–571

1 3

detect prostate cancer, generally 0.6 × 0.6mm2 with a 3 mm 
slice thickness, the spatial resolution of these MRF-based 
tissue property maps is significantly lower. This lower reso-
lution precludes the use of current MRF implementations 
for lesion detection. Moreover, the data acquisition times 
reported have been relatively long due to the need to capture 
each 2D slice independently in a scan lasting 39 to 50 s. A 
high-resolution (0.6 × 0.6 ×  3mm3) 3D prostate MRF acqui-
sition scheme which could be explored for lesion detection 
has been developed with a data acquisition time of 3 min and 
48 s [93]. This resolution is identical to that used in conven-
tional  T2-weighted imaging of the prostate, and the scan time 
is not substantially longer than multi-slice 2D MRF. While 
only a small number of lesions were assessed and those that 
were examined were not separated by their location in the 
prostate, initial results in 90 men suspected of having pros-
tate cancer have been in step with prior studies [14, 15]. The 
development of a relatively rapid high-resolution 3D pros-
tate MRF approach may eventually eliminate the need for 
a separate high-resolution  T2-weighted scan, as a synthetic 
image could be generated from the  T2 map itself, or lesions 
could be directly detected using the MRF-based maps. It is 
anticipated that future prostate MRF studies will adopt high-
resolution 3D approaches due to these benefits.

Another challenge is that the current implementation 
of prostate MRF enables the simultaneous quantification 
of  T1 and  T2, but not ADC, which has been measured in a 
separate scan for the clinical studies described above. With 

such an approach, the  T1 and  T2 maps are inherently co-
registered, but the ADC map may not be perfectly aligned 
with the MRF-based maps. Indeed, as the diffusion images 
are collected with EPI and more susceptible to distortion 
than the MRF-based maps, a potentially error-inducing 
registration step is required. An MRF implementation 
which measures  T1 and  T2 as well as ADC would be far 
preferable to the use of two different scans. While it is the-
oretically possible to measure additional tissue properties 
along with  T1 and  T2 with MRF, including but not limited 
to perfusion [96, 97], fat fraction [98–101], and diffusion 
[102], it is quite challenging to measure both diffusion and 
 T2 at the same time with MRF. Implementations of MRF 
which including diffusion measurements have broken the 
acquisition up into two portions, one of which is used to 
assess  T1 and  T2, and one which is used to measure  T1 and 
ADC. However, even this approach has not been widely 
adopted due to the long scan times needed to acquire infor-
mation about all three tissue properties, and the low signal 
levels which result from both  T2- and diffusion-weighting. 
Other groups have reported the ability to measure all three 
properties [103], but this approach has not yet been tested 
in the prostate. Until an efficient and accurate combined 
 T1/T2/ADC MRF acquisition and reconstruction scheme 
specific to the prostate is developed, a separately acquired 
conventional ADC map must be used to assess the diffu-
sion characteristics of lesions. Across all these technical 
challenges, multi-institutional and multi-vendor validated 

Fig. 7  Scatterplot of apparent 
diffusion coefficient (ADC) 
versus  T1 for normal transition 
zone (NTZ) (n = 66), biopsy-
proven noncancers (n = 38), and 
prostate cancers (n = 37) shows 
that cancers are well separated 
from biopsy-proven noncancers 
and NTZ in a quantitative space. 
Regions defined by the optimal 
model are denoted by the 
solid line (prostate cancers vs 
noncancers) and the dashed line 
(prostate cancers vs NTZ). Fig-
ure  reproduced from A. Panda 
et al., “MR Fingerprinting and 
ADC Mapping for Characteri-
zation of Lesions in Transition 
Zone of the Prostate Gland,” 
Radiology. 2019; 292:685–694, 
permission pending
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implementations of the technique would allow more rou-
tine scanning at non-expert sites, and robust comparisons 
across patients and cohorts.

Finally, the significant and clinically-relevant challenge of 
definitively distinguishing various pathologies in the pros-
tate persists, even when using the quantitative measurements 
of three different tissue properties. For example, while it 
may be possible to distinguish cancer from prostatitis in 
some cases, a robust approach to characterize these different 
tissues would be of great clinical interest. The difficulty may 
lie in the fact that the properties of healthy tissue and patho-
logical tissue are similar (i.e., similar  T1,  T2, and ADC), 
and an additional tissue property may be needed to enable 
their discrimination. Another possibility is that the variance 
in the measurements of these tissue properties is currently 
too large; more precise measurements using improved MRF 
sequences may be helpful. Sub-characterization of Category 
3 lesions in the PIRADs 2.1 system into high and low risk 
groups is another major open problem in that would have 
high clinical impact. MRF of metastatic lesions (for example 
in osseous structures) and measuring their response to treat-
ment is another major goal of future clinical work.

Conclusion

Prostate MRF is an evolving technology for prostate imag-
ing and tissue property mapping. Together with ADC maps, 
the  T1 and  T2 maps derived using MRF have been used to 
discriminate cancers from non-cancers and healthy prostate 
tissue in both the peripheral and transition zones. While 
potential improvements to the MRF acquisition and recon-
struction are under investigation, including the acquisition 
of higher resolution or 3D maps or the addition of ADC to 
the measured tissue properties, initial MRF results suggest 
that this technique may become a useful tool for the charac-
terization of prostate tissue.
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