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Abstract
Objective  To evaluate: (a) the specific effect that the demyelination and axonal loss have on the DW signal, and (b) the impact 
of the sequence parameters on the sensitivity to damage of two clinically feasible DWI techniques, i.e. DKI and NODDI.
Methods  We performed a Monte Carlo simulation of water diffusion inside a novel synthetic model of white matter in the 
presence of axonal loss and demyelination, with three compartments with permeable boundaries between them. We compared 
DKI and NODDI in their ability to detect and assess the damage, using several acquisition protocols. We used the F test 
statistic as an index of the sensitivity for each DWI parameter to axonal loss and demyelination, respectively.
Results  DKI parameters significantly changed with increasing axonal loss, but, in most cases, not with demyelination; all 
the NODDI parameters showed sensitivity to both the damage processes (at p < 0.01). However, the acquisition protocol 
strongly affected the sensitivity to damage of both the DKI and NODDI parameters and, especially for NODDI, the parameter 
absolute values also.
Discussion  This work is expected to impact future choices for investigating white matter microstructure in focusing on 
specific stages of the disease, and for selecting the appropriate experimental framework to obtain optimal data quality given 
the purpose of the experiment.
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Introduction

Diffusion-weighted imaging (DWI) is a powerful non-
invasive imaging technique that has shown high sensitiv-
ity in revealing microstructural changes in damaged brain 
tissues [1–6]. DWI provides valuable information about 
tissue microstructure by revealing the diffusion motion of 
water molecules within biological tissue [7–12]. Diffu-
sion movements are hindered, or restricted by cell mem-
branes, organelles, etc., thus, their average cumulants of 
displacement in time are linked to a diffusion coefficient 
D and depend on the tissue microstructure. DWI meth-
ods (e.g. DTI [9], DKI [13], and NODDI [14]) model the 

diffusivity inside the tissue and, for a given attenuation 
of the diffusion-weighted signal, allow to extract D and 
some other parameters reflecting microstructural features 
of the biological tissues, such as the DTI-derived appar-
ent diffusivity coefficients (MD, AD, RD) [15], the fiber 
orientation [14, 16–18], and the cell density [14, 16–18]. 
When pathology affects the central nervous system (CNS), 
microstructural features may be altered by damage pro-
cesses such as demyelination or axonal loss, several of 
which may occur together. Evaluating the impact of each 
kind of structural change on the DW signal and the DWI 
parameters is challenging. Specifically, the choice of the 
acquisition sequence to employ is extremely important 
because it could significantly affect the accuracy, preci-
sion, and sensitivity to the damage of the measured DWI 
parameters. Greater sensitivity to the damage can poten-
tially uncover the first changes in the lesioned tissues and 
subtle differences due to the damage progression, invisible 
to T1 and T2 contrasts. Also, to improve performance, 
an optimal scheme can reduce acquisition times, which is 
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essential to ensure the feasibility of advanced DWI meth-
ods in clinical studies and, ultimately, to promote their 
inclusion in the clinical routine. However, optimizing DWI 
parameters is highly complex, thus, not many studies have 
proposed optimal experimental designs for multi-shell 
techniques, and all these studies only considered healthy 
tissue [14, 19–22]. Also, a few studies [23, 24] have com-
pared different DWI methods (NODDI, DKI, and DTI) in 
their ability to highlight the same tissue microstructural 
abnormalities, in multiple sclerosis (MS) in particular.

As a consequence, there is a general lack of agreed-upon 
guidelines regarding the sequence to use for each specific 
DWI multi-shell technique, in particular, to optimize the 
microstructural characterization of lesioned tissues. The 
purpose of this simulation study is to explore, for the first 
time, the impact of the acquisition sequence on the abil-
ity of two clinically feasible multi-shell DWI techniques 
(DKI and NODDI) to reveal two specific damage processes 
typical of many neurological diseases [25–28], i.e. demy-
elination and axonal loss. Moreover, our study assesses the 
effect of these tissue damages on the diffusion parameters 
and compares DKI and NODDI in their capability to char-
acterize a lesion in a given allocated time. In this regard, 
Monte Carlo simulation of water diffusion is a versatile and 
powerful technique enabling in silico comparison, design of 
DWI techniques, and assessment of the sensitivity, specific-
ity, accuracy, and precision of DWI parameters compared 
to ground truth features, whereas this is difficult or long to 
perform experimentally.

Specifically, we developed a new white matter WM model 
including myelinated and permeable axons in the presence 
of demyelination and axonal loss: our model encompasses 
some significant novelty elements compared to those pre-
viously proposed in the literature [29–37]. In particular, 
boundary permeability was never considered before, neither 
in works approaching the damaged conditions of WM [32, 
35–37] nor in studies on DWI method validation using com-
putational phantoms (e.g. [14, 18]). However, the effects of 
cell membrane permeability and water exchange on the dif-
fusion signal are non-negligible when using sequences with 
diffusion times greater than 12 ms for a healthy brain, and 
4 ms for injured conditions [38], but the typical sequences 
employed in the clinical studies to perform DTI, DKI, or 
NODDI analysis have diffusion times of about 30–40 ms. 
In addition to boundary permeability, among the novelty 
elements is the presence of myelin, characterized by a physi-
ologically plausible relaxation time T2 [64]. And finally, 
we introduce new features in modeling demyelination and 
axonal loss, namely, we consider, for the first time, that the 
probability of water molecules crossing the myelin sheath 
depends on the sheath thickness, and that extra-axonal dif-
fusivity is affected by axonal debris occurring together with 
axonal loss.

Thus, we performed a Monte Carlo simulation of water 
diffusion motion inside 21 synthetic voxels of WM with the 
above features (called substrates), and with different degrees 
of damage; we, then, calculated the DW signal from each 
substrate with various acquisition protocols. For each DWI 
method and acquisition sequence, we extracted the param-
eter values and quantified the parameter sensitivities to 
the damage processes by using the F test statistic. All the 
parameter sensitivities were compared with those of DTI, 
the latter representing the only standard in the current clini-
cal practice. The ultimate goal of this study was to identify 
a biomarker for demyelinating diseases, using a clinically 
feasible protocol. We, therefore, tested only protocols with 
a limited acquisition time (< 30 min) and a limited intensity 
of the field gradient (< 87 mT/m). Among the DWI methods, 
we selected DKI and NODDI, since they are widely used to 
characterize real lesioned tissue in the presence of demyeli-
nation and axonal loss [39–53]. They work well with clini-
cally feasible acquisition protocols with the aforementioned 
constraints and their analysis is easily implementable in the 
standard clinical practice.

The paper is organized as follows. The Methods section 
includes two subsections: “Synthetic tissue and Monte Carlo 
simulation” describing the structural features of the intact 
and damaged WM model, and “Experimental design” pro-
viding details about the study design, and the acquisition 
protocols selected for each DWI method. The Results section 
shows the specific effect that the demyelination and axonal 
loss have on the DTI, DKI, and NODDI parameters; it dem-
onstrates how the acquisition protocol strongly impacts the 
parameter sensitivity and, finally, compares the methods in 
their ability to reveal the damage, for a given allocated time. 
Finally, the Discussion section reports on the implications 
of the findings.

Materials and methods

Synthetic tissue and Monte Carlo simulation

To date, several computational phantoms have been pro-
posed to represent WM, but most of them represent healthy 
brain tissues [29–34], thus, some of their features do not 
match those obtained from histology of pathological tissue. 
In the last decade, some efforts have been made to realize 
synthetic models of brain tissue in the presence of some 
specific pathological conditions, e.g. axons with bulges, 
crimps, and breakages in the computational framework of 
RWS (Random Walk simulator Software) by Landman et al. 
in [32], axonal bending by Budde and Frank [35], or axonal 
undulation by Nilsson et al. [37].

Regarding pathological processes involved in MS, 
in 2017, Salan et al. [36] proposed a synthetic phantom 
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encompassing spherical and diamond-shaped glial cells and 
myelinated axons with impermeable boundaries to approach, 
for the first time, the effects that demyelination has on the 
DTI parameters. The authors reported an increase in the 
DTI-derived Radial Diffusivity and Mean Diffusivity and a 
decrease in the Fractional Anisotropy. However, these results 
reflect the effects of only one structural change involved in 
the demyelination, i.e. the different configuration of the bar-
riers. In particular, in this model, the myelin compartment 
is not different from the others in terms of relaxation time 
T2, whereas myelin has a very short T2 compared to the 
other tissues and, consequently, given the same volume, its 
contribution to the signal is relatively much smaller. As a 
consequence, their estimation of the signal change due to 
demyelination is likely larger than should be expected.

Here, we present an alternative WM model featuring, for 
the first time, myelinated axons with permeable membranes 
in the presence of demyelination and axonal loss. All the 
aforementioned works approaching the damaged condi-
tions of WM, as well as the studies on DWI method valida-
tions using computational phantoms (e.g. [14, 18]), rely on 
impermeable compartments. However, the effect of the cell 
membrane permeability and the water exchange rate between 
compartments on the diffusion signal is non-negligible when 
using sequences with diffusion times greater than 12 ms in 
the case of a healthy brain, and 4 ms in injured conditions 
[38]: the typical sequences used in clinical studies to per-
form DTI, DKI, or NODDI analysis have diffusion times on 
the order of 30–40 ms.

Specifically, we implemented a Monte Carlo simulation 
of the diffusion motion of synthetic water molecules (called 
walkers for brevity) inside a synthetic environment (called 
substrate), containing several parallel non-abutting myeli-
nated axons, each of them being represented by a pair of 
coaxial cylinders: the inner one representing the axon, and 
the space between the inner and the outer cylinders repre-
senting the myelin. The outer radii are distributed according 
to the gamma-function below:

with scale parameter θ = 2.493 × 10–7 m and shape parameter 
k = 2.877. Hall et al. [31] obtained these values by fitting a 
gamma distribution to one of the histograms of axon radii 
reported by Aboitiz et al. in a histological study on the body 
section of the corpus callosum (CC) [54]. The ratio between 
the inner and the outer radius, i.e. the g-ratio, is fixed for all 
axons and set equal to g-ratioh = 0.7 in healthy conditions, 
since histological studies report that g-ratio values are rela-
tively constant and close to 0.7, in both the healthy human 
CC and macaque CC [55, 56]. We neglected the further con-
founding effect of dispersion in fiber orientation since this 

(1)P(x;k, �) =
xk−1e−x∕�

Γ(k)�k
,

study focuses on evaluating the effects of the demyelination 
and axonal loss on the diffusion-weighted MR signal.

In this simulation study, we modeled the myelin sheath 
as a compartment limited by two boundaries: the inner 
membrane, separating axon and myelin, and the external 
membrane separating the myelin from the outer space. We 
did not model any further structure inside this compart-
ment but, rather, address the physical characterization of 
it by considering its whole volume (changing with demy-
elination degree), by calculating the cumulative probability 
of crossing the boundaries (Appendix B), and by directly 
taking into account the measurements, in the real myelin, 
of the apparent diffusivities (Appendix A) and the relaxa-
tion time (Appendix C). On the other hand, modeling the 
myelin sheath as a wound oligodendrocyte membrane would 
have been exceedingly complex and would have required 
the knowledge of the effective permeability of the wound 
oligodendrocyte membrane (different from that of a simple 
membrane). These data, to our knowledge, are not available 
in the literature, whereas available data on apparent diffu-
sivities and relaxation time consist of values on the whole 
myelin sheath, averaged over the voxel or specimen.

In any case, our method consists of calculating the dif-
fusion-weighted signal generated by a synthetic tissue that 
mimics a real one and comparing the information about the 
tissue extracted from this signal (e.g. fractional volumes of 
the compartments) using a specific diffusion method, with 
the ground truth values of the same synthetic tissue. Our 
idea was that taking into account the main aspects of the real 
myelin, as well as of the other compartments, that influence 
the diffusion signal, our modeling simplifications would not 
have overly affected the reliability of the results. In detail, all 
three compartments of the environment, i.e. the intra-axonal, 
the intra-myelin, and the extra-cellular space, are character-
ized by specific spatial diffusivities, boundary permeabili-
ties, and T2 relaxation times.

Concerning the spatial diffusivities, we considered 
that the intrinsic diffusion motion is free throughout 
the substrate, and set the same diffusion coefficient 
Dint(sim) = 2.02 × 10−9m2∕s , in the intra-axonal and 
extra-cellular spaces, in healthy conditions, adopting 
the choice of the authors of Camino and RWS [30–32] 
(both of which including only these two compartments). 
Given the intrinsic diffusivity of free liquid water at 
310 K (body temperature) is Dfree = 3.0 × 10−9m2∕s , the 
lower value Dint(sim) should compensate for the effect 
of the hindrance of the several organelles and proteins 
not modeled in the synthetic environment. Regarding the 
intra-myelin space, we also set the value of its intrinsic 
diffusivity equal to Dint(sim) in the intra-myelin space, 
assuming that the substantial differences between the 
directional apparent diffusion coefficients measured in 
the real myelin [57] and the intrinsic diffusion coefficient 
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in the intra-axonal space and in the extracellular space, 
is mainly due to the presence of the barriers (cell mem-
branes) rather than to an actual difference between the 
intrinsic diffusivities. We show in Appendix A that such 
an assumption is plausible.

Regarding the boundary permeability, we character-
ized differently the axonal and myelin membranes. For 
the axonal membranes, we relied on the values of water 
membrane permeabilities for the neurons reported by 
Boss et al. in a mice cell culture experiment [58] and on 
the measurements of permeability of axons reported by 
Stanisz [59] conducting a diffusion study on a sample of 
optic bovine nerve. For the myelin, we modeled a perme-
able membrane the crossing probability of which decays 
exponentially with myelin thickness. We used the find-
ings on the real trends of the DTI-derived parameters, 
with increasing demyelination and axonal loss in the real 
tissues, as a reference for our simulation, to appropri-
ately set the parameters characterizing the membrane per-
meabilities. We found that, when simulating the myelin 
sheath as totally impermeable or weakly permeable, the 
trends of AD and RD obtained in the simulation with 
increasing g-ratio do not match with those reported in the 
literature [60–63]. Appendix B describes our method to 
implement the permeability of the boundaries, consider-
ing the results on DTI parameters in the literature.

Concerning the T2 relaxation times in the different 
compartments, we relied on the values measured by Whit-
tall et al. in [64]: the authors reported a T2 value of 15 ms 
for the intra-myelin space of CC and a mean T2 value of 
78 ms in the WM. Accordingly, in the intra-myelin space, 
we set T2m = 15ms ; in the intra-axonal and extra-cellular 

space, we set T2o = 78ms . We used these T2 relaxation 
times to calculate the MR signal, by taking into account 
the time spent by each walker in each of the three com-
partments: more detail is given in Appendix C.

Finally, we modeled demyelination and axonal loss 
as two independent and superimposable processes, as 
reported in studies on neurodegenerative and demyelinat-
ing diseases [65–67]. Demyelination is modeled by leav-
ing unchanged the distribution of the axonal inner radii 
and increasing the g-ratio, as well as, accordingly, the 
myelin transmission probability, as described in Appen-
dix A. We modeled axonal loss by reducing the axonal 
density, while selectively eliminating axons with smaller 
radii, considering the experimental findings reported in 
post-mortem [66, 68], and in-vivo studies [65, 69–71] 
on MS lesions. Also, we took into account the effects on 
the extracellular diffusivity of the axonal debris, occur-
ring as a consequence of axonal loss: Appendix D pro-
vides details of the implementation of the axonal loss and 
axonal debris processes.

Experimental design

We synthetized 21 substrates with different degrees of dam-
age. Damage is characterized by the values of g-ratio and 
percentage of axonal loss ploss . In one substrate we imposed 
the healthy conditions: g-ratio = 0.7 and ploss = 0 . In 10 
substrates ploss = 0 and g-ratio ranging from 0.71 to 0.97; 
in the others, g-ratio = 0.7 and ploss ranging from 0.05 to 
0.90 (Fig. 1). For each cubic substrate with 20�m edge, the 
diffusion motion of 2 × 105 walkers were simulated for 6000 
time-steps ( �t = 15.6�s ). The MR signal was computed by 

Fig. 1   Cross-sections of synthetic substrates with a fixed initial gamma distribution of radii (α = 2.877, β = 2.493 × 10–7) and different degrees of 
damage in terms of g-ratio and ploss
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using several Stejskal Tanner sequences the details of which 
are reported in Table 1; we superimposed a Rician noise 
with SNR = 20.

We evaluated the sensitivity to demyelination and axonal 
loss of each DWI parameter by performing the one-way 
analysis of variance (ANOVA). In detail, we determined 
whether there were any statistically significant differences 
between the means of the parameters (dependent variables) 
calculated in the healthy condition (g-ratio = 0.7, ploss = 0.0) 
and in different conditions of g-ratio or ploss (independent 
variables): significant differences were accepted at p < 0.01 . 
Then, we carried out the post hoc Tukey test on the data to 
get a deeper insight into comparisons between the parameter 
means. In particular, for each parameter, damage process, 
and acquisition sequence, we used the Tukey test to compare 
each pair of means related to different degrees of damage 
to find out if they were significantly different or similar: 
again, significant differences were accepted at p < 0.01 . 

Statistical analysis was performed by means of MATLAB® 
(MathWorks, Natick, MA, USA). To summarize the statisti-
cal results, we used the Fisher test statistic F as an index of 
sensitivity for each damage process. Here, F corresponds 
to the ratio of the variance between the signal attenuations 
arising from different substrates (with different degrees of 
damage), and the variance of the attenuations within the 
single substrate. Greater F statistics reflect better results of 
the post hoc Tukey test, i.e. greater ability in distinguishing 
different degrees of damage, and thus, greater sensitivity.

DTI acquisition protocols and parameters

To date, the DWI technique most commonly used in the 
standard clinical practice is DTI [9–12], which assumes that 
diffusion motion is characterized by a Gaussian displace-
ment distribution with a proper “apparent” diffusion coef-
ficient (ADC) for each spatial direction. In detail, the shape 

Table 1   Parameters of the 
acquisition protocols

(*)The approximated acquisition time is calculated by considering that acquiring a whole-brain scan with 
2 mm isotropic resolution along 90 different directions requires about 25 min [14]

Name of the sequence N dir b value ( s∕mm
2) G (T/m) Δ (s) δ (s) TE (s) Approximated 

acquisition time (*) 
(min)

DTI 30 1000 0.0378 0.0387 0.0175 0.0780 8
2sh(a) 30 711 0.0318 0.0387 0.0175 0.0780 25

60 2855 0.0638 0.0387 0.0175 0.0780
2sh(b) 30 1000 0.0378 0.0387 0.0175 0.0780 17

30 2000 0.0534 0.0387 0.0175 0.0780
3sh(a) 6 300.2 0.0207 0.0387 0.0175 0.0780 14

15 712.9 0.0319 0.0387 0.0175 0.0780
30 1997.8 0.0534 0.0387 0.0175 0.0780

3sh(b) 30 1000 0.0378 0.0387 0.0175 0.0780 25
30 2000 0.0534 0.0387 0.0175 0.0780
30 2855 0.0638 0.0387 0.0175 0.0780

5sh(a) 6 300.2 0.0207 0.0387 0.0175 0.0780 25
15 712.9 0.0319 0.0387 0.0175 0.0780
15 1301 0.0431 0.0387 0.0175 0.0780
30 1997.8 0.0534 0.0387 0.0175 0.0780
25 2855 0.0638 0.0387 0.0175 0.0780

DKI7sh 30 400 0.0250 0.0350 0.0175 0.0700 59
30 800 0.0353 0.0350 0.0175 0.0700
30 1200 0.0433 0.0350 0.0175 0.0700
30 1600 0.0500 0.0350 0.0175 0.0700
30 2000 0.0559 0.0350 0.0175 0.0700
30 2400 0.0612 0.0350 0.0175 0.0700
30 2800 0.0661 0.0350 0.0175 0.0700

NODDI5sh(b) 6 300.2 0.0207 0.0387 0.0175 0.0780 27
15 712.9 0.0319 0.0387 0.0175 0.0780
20 1997.8 0.0534 0.0387 0.0175 0.0780
25 2855 0.0638 0.0387 0.0175 0.0780
30 5302 0.0870 0.0387 0.0175 0.0780
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of the isosurface of the displacement probability density of 
water molecules is an ellipsoid and the eigenvalues λ1, λ2, 
λ3 of the diffusion tensor represent the ADC along the prin-
cipal axes of the ellipsoid [11]. DTI parameters, i.e. axial 
diffusivity (AD), radial diffusivity (RD), mean diffusivity 
(MD), and fractional anisotropy (FA), are combinations of 
the eigenvalues according to the formulas in [11] that sum-
marize the diffusion properties of tissues and their degree 
of anisotropy; they have shown higher sensitivity to tissue 
structural changes in several pathological processes, as com-
pared to the usual anatomic MRI techniques [72].

We selected, for DTI, an acquisition protocol typically 
employed in the clinical practice, consisting of 30 acquisi-
tions along non-aligned directions uniformly distributed in 
space with b value = 1000 s/mm2. Empirical evidence sug-
gests this b value is the best choice for DTI analysis [73]. 
We derived the eigenvalues of the diffusion tensor through 
Camino [30] using weighted linear least-squares.

DKI acquisition protocol and parameters

In 2010, Jensen et al. [13] proposed the diffusional kurtosis 
imaging (DKI) that, regarding the diffusion motion of the 
water, quantifies the deviation of the displacement distribu-
tion from a Gaussian. DKI parameters are calculated along 
with the various spatial directions, according to formulas in 
[13]: in detail, considering a frame of reference that diago-
nalizes the diffusion tensor, the axial kurtosis AK is the dif-
fusional kurtosis along the direction parallel to the largest 
diffusion eigenvalue (often referred to as parallel direction); 
the radial kurtosis RK is the diffusional kurtosis averaged 
over all directions perpendicular to the parallel one; the 
mean kurtosis MK is the diffusional kurtosis averaged over 
all directions. Finally, the fractional kurtosis KFA was pro-
posed later, in 2015 [74], to provide a characterization of 
the kurtosis tensor without contributions from the diffusion 
tensor.

DKI parameters are found to be sensitive to the changes 
in the complexity of the tissue ascribed, for example, to the 
reactive astrogliosis [75], and axonal loss [76]. However, the 
exact meaning of the DKI parameters is still under debate 
and more studies are required to further validate the emerg-
ing data and to link changes in DKI parameters to pathologic 
findings.

DKI analyses are usually performed employing several 
acquisition protocols differing in the number of shells, gradi-
ent strength, and the number of diffusion gradient directions 
[39–42, 75–77]. The acquisition protocol consisting of two 
shells with 30 non-aligned directions and b values of 1000 
and 2000s/mm2 is commonly used in human studies, even 
if there are no agreed-upon guidelines in this respect. We 
used for our simulations six acquisition protocols for DKI, 
according to the empirical evidence indicating b values of 

about 2000 − 3000s∕mm2 as an appropriate maximum and 
considering that 21 is the minimum number of non-aligned 
diffusion gradient directions given the DKI degrees of free-
dom [13, 78]. The protocol DKI7sh (see Table 1) consists 
of seven shells with 30 non-aligned directions and is often 
used in DWI studies on animal models [42]. Such a long 
acquisition time ( > 60min ) makes this sequence unsuitable 
for the standard clinical practice, however, it is informative, 
in this context, on the presumed highest sensitivity to dam-
age provided by DKI parameters. The other sequences are 
the same as those used for NODDI, the maximum b value of 
which is less than 3000 s/mm2: this choice supports a pos-
sible unique acquisition protocol to perform the analysis of 
DW signals by means of more DWI methods, without losing 
too much in terms of parameter sensitivity.

DKI analysis is performed with the DKE software tool 
[79], using weighted linear least-squares, and implementing 
the physical and biological constraints described in [78].

NODDI acquisition protocols and parameters

Multi-compartmental DWI methods [14, 16–18] were devel-
oped to more accurately infer the microstructural properties 
of the tissue. These methods require high magnetic field 
gradient strengths (140–300 mT/m) and more demanding 
3D q-space acquisition compared to DTI and DKI to dis-
criminate between the hindered and restricted components 
of the model of diffusion (the acquisition time is on the order 
of 1 h or more). To date, the only compartmental method 
devised to be used with the low gradient strengths available 
on the common clinical MR scanners is NODDI (Neurite 
Orientation Dispersion and Density Imaging), proposed by 
Zhang et al. [14]. NODDI decomposed the observed dif-
fusion signal as originating from three compartments. The 
intracellular (ic) compartment is the space bounded by the 
membrane of neurites, modeled as zero-radius cylinders, the 
orientation dispersion of which follows the Watson distri-
bution: the diffusion motion occurs only along the axonal 
axial direction and is fully restricted perpendicular to them. 
The Orientation Dispersion Index, defined as OD in [14] 
and called ODI in [47], measures the orientation dispersion 
of the axons and ranges from 0 (for the parallel fibers) to 1 
(for fully dispersed fibers). The extracellular (ec) space sur-
rounds the axons and, also, is characterized by anisotropic 
and hindered diffusion; the isotropic (iso) space represents 
the cerebrospinal fluid CSF where the diffusion is isotropic 
and free. DW signal attenuation Ai coming from each com-
partment i contributes to the total DW signal attenuation A 
as follows [14]:

(2)A =
(

1 − �iso
)(

�icAic +
(

1 − �ic
)

Aec

)

+ �isoAiso,
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Aiso, Aic , and Aec are the signal attenuations related to, 
respectively, the isotropic compartment, the intra-cellular 
space, and the extra-cellular space; �iso is the fraction of the 
whole voxel occupied by the isotropic compartment, while 
�ic is the intra-cellular volume fraction of the part of voxel 
where diffusion is not isotropic.

NDI is the Neurite Density Index, i.e. the volume fraction 
of the voxel occupied by the intra-cellular space. NODDI 
parameters gave superior contrast compared to DTI param-
eters in demarking MS lesions [23, 44–48] and other neu-
rodegenerative pathologies (e.g. Alzheimer’s disease [52]), 
stroke [51], and structural brain development [49, 50, 53].

For NODDI analysis, we selected six acquisition proto-
cols. The protocols 2sh(a) and 3sh(a) (see Table 1) consist 
of, respectively, two and three shells and correspond to the 
protocols suggested by the authors of NODDI to achieve 
the best balance between the acquisition time (respec-
tively ~ 30 min and 15 min) and accuracy of the parameters 
related to volume fractions [14]. The protocol 2sh(a) is rec-
ommended when high accuracy is required in measurements 
of axonal orientation dispersion. Despite the authors’ sug-
gestions, many different acquisition protocols with two, and 
up to six shells, have been used to perform NODDI analysis 
on both healthy and lesioned tissue [47–53]. In 2014, Wang 
et al. [80] suggested that NODDI results obtained with a 
two-shell protocol and b values of 1000 and 2000s∕mm2 
are comparable to those relying on the optimized protocol 
3sh(a). The authors based this deduction on the comparison 
between the histograms of the parameter values throughout 
the brain of one healthy volunteer. Some studies perform-
ing NODDI analysis used this protocol [52, 53]. Given the 
purpose of this study, the acquisition protocol proposed 
by Wang et al. was included in the simulation as 2sh(b). 
We designed three additional protocols to better test the 
impact of the number of shells and diffusion gradient direc-
tions, and of higher values of the magnetic field gradient 
strength. In detail, one shell with 30 directions with b value 
= 2855s∕mm2 was added to 2sh(b) to obtain 3sh(b) and two 
five-shell protocols were obtained by adding two shells to 
the optimized protocol 3sh(a) using two different maximum 
magnetic field gradient strength: G = 0.0638 T/m in 5sh(a); 
G = 0.087 T/m in NODDI5sh(b). The upper limit of 96 dif-
fusion gradient directions was respected for all the sequences 
to ensure a maximum acquisition time of ~ 30 min, feasible 
in the clinical practice. See Table 1 for a summary of pro-
tocol features.

We used the NODDI toolbox for Matlab (MATLAB ®, 
MathWorks, Natick, MA, USA) [81] to compute the ori-
entation dispersion index ODI, the isotropic volume frac-
tion �iso and �ic ; finally, we calculated the neurite density 

(3)NDI =
(

1 − �iso
)

�ic,

index NDI as in Eq. 3. We set the intra-cellular diffusivity 
for the NODDI method equal to d∕∕ = 1.7 × 10−3mm2∕s , 
i.e. the value suggested by the authors of NODDI in [14] 
and reported as the optimum value to use in clinical studies 
(Guerrero et al. in [82]). Note that the diffusivity d∕∕ is not 
directly comparable to the value of the intrinsic diffusivity 
Dint(sim) set in the simulation, and it is not solely linked to 
the intrinsic diffusivity characterizing the real intra-axonal 
space, but it also compensates for the simplification of 
NODDI in describing the axons as non-myelinated sticks.

Results

Figures 2, 3, 4, 5 and 6 show the Monte Carlo simulation 
results on the DTI, DKI, and NODDI parameters calcu-
lated in different conditions of demyelination or axonal 
loss. As Sect. “Experimental design” explained, for each 
DWI parameter, damage process, and acquisition sequence, 
we performed the one-way ANOVA analysis to test if the 
parameter is sensitive or not to the damage process; then, 
we performed the post hoc Tukey test to evaluate how sensi-
tive the parameter is to the degree of damage. We used the 
Fisher test statistic F as an index of sensitivity to summarize 
the results of the statistical analysis since greater F reflects 
better results of the post hoc Tukey test and, consequently, 
greater sensitivity. Tables 2 and 3 report, for each acquisition 
sequence, the F test statistics for the parameters that showed 
statistically significant changes between healthy and dam-
aged condition (one-way ANOVA with p < 0.01 ). Concern-
ing Table 3, please note that we did not use all the sequences 
for both the DKI and NODDI analyses. In particular, the 
sequence NODDI5sh(b) involves too high a gradient for the 
DKI analysis; also, the sequence DKI7sh is too long to be 
feasible in the standard clinical practice, thus, its use in the 
NODDI analysis is outside the scope of this study.      

Due to demyelination, DTI-derived AD and MD do not 
significantly change with g-ratio; RD increases and FA 
decreases when g-ratio increases. With the increasing axonal 
loss, RD and MD increase, whereas FA and AD decrease.

Figure 3 shows the variation in the DKI-derived param-
eters induced by increasing the percentage of axonal loss, in 
the case of significant changes (p < 0.01) between the param-
eters calculated in the healthy and damaged conditions. On 
the other hand, in most cases DKI parameter did not vary 
significantly due to demyelination. The first result is that 
the acquisition protocol has an influence on the parameter 
sensitivity to the damage. The best sensitivities are obtained 
with a five-, rather than a seven-shell sequence (Table 3) 
and, in any case, they are comparable to, or lower than, the 
sensitivities of DTI parameters. Finally, the parameter aver-
ages can significantly vary across protocols as well, e.g. 
KFA in Fig. 3b.
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Concerning NODDI, the acquisition protocol strongly 
impacts the parameter sensitivity to the damage and on the 
parameter mean values. The largest differences in terms of 
both sensitivity and mean values occur between the results 
obtained with five-shell sequences and those obtained with 
two- and three-shell sequences; additional minor differences, 
but still non-negligible, exist between the results of the opti-
mized protocols 2sh(a) and 3sh(a), and those of 2sh(b) and 
3sh(b). The best sensitivities are achieved by NDI and �iso 
with 2sh(a) and 3sh(a) (see Table 3 and Figs. 4 and 5). Gen-
erally, with two- or three-shell sequences, these parameters 
show high sensitivity to demyelination and excellent sen-
sitivity to axonal loss. The parameters νic and ODI are not 
sensitive to demyelination and scarcely sensitive to axonal 
loss except for severe cases (see Table 3 and Fig. 6).

Discussion

This diffusion simulation explored the specific effects 
that demyelination and axonal loss have on the DKI- and 
NODDI-derived parameters, using seven different diffusion 
sampling schemes (Figs. 3, 4, 5 and 6). We evaluated, for 
the first time, the impact of the acquisition protocol on the 
sensitivity of these parameters to the demyelination and 
axonal loss, with the goal of identifying a biomarker for 
demyelinating diseases to be used in the clinical practice. 
For this purpose, we developed a new model of synthetic 
WM tissue that includes some novelty elements never con-
sidered in the previous simulation studies, e.g. the boundary 
permeability and a myelin compartment with a specific T2 
relaxation time.

We calculated the DW signal coming from the tissue with 
different degrees of damage, employing various acquisition 
protocols. For each DWI method and acquisition sequence, 
we extracted the output parameter and quantified their sensi-
tivities to the damage processes by using the F-test statistic. 
We selected typical clinical acquisition protocols from the 
literature and designed some others ad hoc by limiting the 
maximum number of acquisitions to 96 and the maximum 
magnetic field gradient to values obtainable in a standard 3 T 
scanner ( 63.8mT∕m and 87mT∕m).

The DTI results presented in the literature about param-
eter trends in the presence of demyelination and axonal 
loss [60–63, 83–88], were used to calibrate the boundary 
permeability parameters.

We found that, when simulating the myelin sheath as 
being totally impermeable or weakly permeable, the trends 
of AD and RD obtained in the simulation with increasing 
g-ratio did not match with those reported in the litera-
ture [60–63]. Instead, we achieved consistent results by 

modeling the axonal membrane as a permeable membrane 
with a physiologically realistic permeability [58], and the 
myelin sheath with a crossing probability exponentially 
decaying with myelin thickness.

We will now review the results of the simulation of 
DKI and NODDI parameters using clinically feasible DWI 
acquisition protocols, showing that they allow the detec-
tion of axonal loss and demyelination. We will also see 
that the ability to detect minute changes in the lesioned 
tissue depends on the acquisition protocol in an unex-
pected way: for example, increasing the number of shells 
or acquisitions does not necessarily translate into a higher 
sensitivity to damage.

DKI findings

The observed decrease of the mean kurtosis MK and 
increase of the axial kurtosis AK with increasing the per-
centage of axonal loss is consistent with the findings of 
many studies on MS patients [23, 39, 40] reporting lower 
values of MK and higher values of AK in lesions compared 
to healthy tissue. Concerning the trends of the DKI param-
eters in the case of demyelination, we found that DKI 
parameters are non-sensitive to demyelination with the 
exception of MK for protocol 5sh(a). On the other hand, an 
increase of MK, RK, and AK was reported by Guglielmetti 
et al. [42] in the CC of a cuprizone mouse model in the 
presence of demyelination, and severe inflammation, using 
a seven-shell sequence. However, the authors hypothesized 
the observed increment in DKI parameters was due to the 
high level of microgliosis present in the tissue and not to 
the demyelination process. Indeed, higher cellularity trans-
lates into an increase in the microstructural complexity, as 
reported in studies examining brain tumors where high-
grade gliomas were compared to low-grade gliomas [43].

In addition to the specific effects of demyelination and 
axonal loss on the DKI parameters, the major finding of our 
simulation relates to the strong influence that the acquisi-
tion protocol has on the DKI parameter mean values and, 
especially, on their sensitivity to the damage.

In 2017, Chuhutin et al. [19] conducted a diffusion study 
on synthetic and experimental data (in-vivo human brain 
and ex-vivo rat brain) and reported that mean kurtosis MK 
strongly depends on both the experimental b-value and tis-
sue type. In 2018, in a diffusion study on ex-vivo specimens 
of mice [20], Hutchinson et al. similarly found that DKI 
parameters were highly vulnerable to the effects of DWI 
sampling scheme: this dependence may differentially influ-
ence DKI parameters depending on the tissue type or even 
the axes along which the excess kurtosis is calculated. In 
both studies, the dependence of the DKI parameters on the 
diffusion sampling was ascribed to their dependence on 
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Fig. 2   Results of the Monte Carlo simulations for DTI parameters 
expressed in terms of mean and standard deviation, considering 
a Rician noise with SNR = 20 affects the synthetic DW signal. In a 
and b, radial diffusivity RD values with increasing g-ratio and frac-
tion of axonal loss ploss, respectively; in c and d, fractional anisotropy 

FA values with increasing g-ratio and fraction of axonal loss, respec-
tively; in e and f, axial diffusivity AD and mean diffusivity MD val-
ues with increasing fraction of axonal loss. Changes in AD and MD 
induced by increasing g-ratio are omitted because not significant 
(p > 0.01)
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b-value: indeed, DKI parameters are calculated by consid-
ering the expansion of the logarithm of signal attenuation 
to the 4th-order DKI model, which is quadratic in b value. 
On the other hand, the dependence of the parameter mean 
values on the tissue type could be due to the discrepancy 
between the DKI model of the signal and the actual signal: 
such discrepancy changes with the microstructural features 
of the tissue (e.g. degree of anisotropy). In this context, our 
finding of the dependence on the acquisition protocol of 
the parameter sensitivity to the damage could stem from 
the influence of both b-values and tissue type on the DKI 
parameters, as found in the above studies. In detail, sensi-
tivity to damage depends on the variation of a parameter 
in different conditions of damage, namely in tissues with 
different microstructural features, that, differently influence 
the parameters, depending on b value.

Another interesting result of our investigation is that we 
obtained the best sensitivities to damage not using a seven-
shell sequence, but rather with a two-, three-, or five-shell 
sequence. This is contrary to the common assumption in the 
literature, according to which the greater the number of the 
shells and diffusion gradient directions, the better the sensi-
tivity to the damage of the DWI parameters, irrespective of 
the DWI method used. However, for DKI, using more data 
does not always bring better results, and this is likely caused 
by the complex influence of the acquisition protocol and tis-
sue type on the parameters, as discussed above.

Given the strong influence of the acquisition protocol on 
DKI parameters and particularly on the sensitivity to dam-
age, as found in our simulation, comparing experimental 
results of DKI analysis, relying on different acquisition 
sequences, could lead to erroneous conclusions regarding the 
presence or severity of the damage. Further investigations 

Fig. 3   Results of the Monte Carlo simulations for DKI parameters 
showing significant changes with increasing axonal loss (p < 0.01): in 
a, b, and c, the changes induced in AK, KFA, and MK respectively. 
Results are expressed in terms of mean and standard deviation, con-

sidering a Rician noise with SNR = 20 affects the synthetic DW sig-
nal. In most cases, DKI parameters did not significantly change with 
increasing demyelination
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are needed to find a community consensus on acquisition 
details.

NODDI findings: parameter sensitivity 
to the damage

For NODDI parameters our simulation study alerts about 
the even more evident difference between the results 
obtained using different acquisition sequences since the dif-
ference concerns both the parameter sensitivity to the dam-
age and the parameter absolute values. For each acquisition 
protocol, NDI can reveal different degrees of both axonal 
loss and demyelination with the best sensitivity among 
all the NODDI-derived parameters; however, the optimal 
results across the sequences have been achieved when using 
the protocols optimized for NODDI by the authors of the 
method, i.e. 2sh(a) and 3sh(a) (Table 3 reports the F-test 
statistic, used as an index of sensitivity, across the param-
eters, damage processes, and sequences). The sensitivity of 
NDI to the myelin content has already emerged in an MRI-
histological study conducted by Grussu et al. [47] on several 
post-mortem human MS and HC spinal cord specimens. 

The authors ascribed this finding to both the effect that the 
altered membrane permeability has on NDI [87, 88], and 
to the fact that even if myelin water were virtually invis-
ible in diffusion MRI due to its very short T2 [89], when 
myelin is lost, the local T2 increases, effectively increasing 
the amount of water with longer T2 and causing NDI to 
decrease [90].

It is also interesting to note that DKI parameter sensi-
tivities obtained with the sequences optimized for NODDI 
by the authors of the method (i.e. 2sh(a) and 3sh(a)) and 
with the sequence 5sh(a) (obtained by adding two shells 
to 3sh(a)) are very good compared to the others used in 
this study and this suggests the possibility of using a sin-
gle specific acquisition sequence to perform DWI analysis 
with both DKI and NODDI methods, without compro-
mising parameter sensitivities. In this regard, By et al. 
[23] conducted a diffusion study on MS patients by using 
2sh(a) and performing both NODDI and DKI analysis on 
the cervical spinal cord: NDI, ODI, MK, AK, and RK 
turned out to be effectively sensitive to the damage.

Fig.4   Results of the Monte Carlo simulations for NODDI parameter 
Neurite Density Index NDI (i.e. the NODDI-derived intra-cellular 
fractional volume), using 6 different acquisition protocols. In a and b, 
NDI mean values and standard deviations were obtained in different 
conditions of demyelination and axonal loss, respectively, consider-

ing a Rician noise with SNR = 20 affects the synthetic DW signal. For 
reference, some specific combinations of the true intra-axonal frac-
tional volume AVF and true intra-myelin fractional volume MVF are 
also shown
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NODDI findings: parameter absolute values

Moreover, our simulations allow comparing the values of 
the NODDI parameters, with some microstructural features 
of the synthetic substrate.

Concerning ODI, since the synthetic axons are parallel, it 
should be zero and remain unchanged with increasing demy-
elination or axonal loss. Overall, ODI values are close to 
zero, but bad trends occur in the presence of severe axonal 
loss when using two-shells protocols or less than 90 diffu-
sion gradient directions: an impairment in method accuracy 
translates to high ODI values.

Regarding fractional volume estimations, in general, 
the absolute values of the parameters obtained with a five-
shell sequence are very different from those obtained with 
two or three shells. In particular, with five-shell protocols, 
NDI is greater than the sum of the intra-axonal and intra-
myelin space. On the other hand, with two- and three-shell 
sequences, NDI estimates the true intra-axonal volume frac-
tion with good accuracy (slightly worsening with damage 
due to its dependence on the myelin content): this finding 
makes this parameter a potential biomarker of the true intra-
axonal volume fraction (Fig. 4). Concerning �iso, it attempts 
to measure the fractional volume characterized by isotropic 
diffusion (CSF): here its true value is zero. Figure 5 shows 
that, with five-shell sequences, �iso values have zero mean, 

in the presence of both demyelination and axonal loss; with 
two- or three-shell sequences, �iso is very close to the true 
fractional volume consisting of the extra-cellular and intra-
myelin space, at least in the case of non-severe damage. 
Finally, νic should be exactly equal to NDI (Eq. 3 with �iso = 
0) but this is verified only when using five-shell sequences 
(Fig. 6).

A similar strong dependence of NODDI results across 
acquisition protocols with different numbers of shells and 
diffusion gradient directions and strength emerged in the 
diffusion study on a fixed mouse brain conducted by Hutch-
inson et al. [20] (mentioned in the discussion on the DKI 
findings), and, also, in a very recent in-vivo study conducted 
by Li et al. in 2019, on a single healthy adult macaque mon-
key [22]. Furthermore, the aforementioned MRI-histological 
study conducted by Grussu et al. [47], reported high values 

Fig. 5   Results of the Monte Carlo simulations for NODDI parameter 
Isotropic Volume Fraction �

iso
 , using 6 different acquisition protocols. 

In a and b, �
iso

 mean values and standard deviations obtained in dif-
ferent conditions of demyelination and axonal loss, respectively, con-

sidering a Rician noise with SNR = 20 affects the synthetic DW sig-
nal. For reference, the sum of the extra-cellular volume fraction EVF 
and intra-myelin volume fraction MVF is also shown

Table 2   F test statistic of the changes in the DTI parameters induced 
by demyelination (variable g-ratio) and axonal loss (variable percent-
age of axonal loss ploss)

Omitted results refer to parameters showing non-significant changes 
between healthy and damaged condition (one-way ANOVA with 
p < 0.01)

MD AD RD FA

g-ratio – – 4.05 5.09
ploss 4.75 10.69 29.30 41.19
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of NDI (ranging from 0.5 up to 1.0) with ground truth values 
of the intra-axonal fractional volume lower than 0.4 when 
using a sequence with six shells, b values ranging from 520 
to 18,720 s∕mm2 , and 121 isotopically distributed diffusion 
gradient directions: these outcomes fully support our results 
in the case of using five shells.

In short, it appears that it is not feasible to estimate, at 
the same time, all the true intra-cellular, extra-cellular, and 
CSF fractional volumes with good accuracy with NODDI 
due to its simplified model of the microstructure lacking the 
myelin compartment. Up to three shells, NODDI models the 
signal coming from the intra-axonal space of the substrate 
as coming from the intra-cellular space. It models the rest 
of the signal mainly as coming from CSF, failing to identify 
in the substrate the extra-cellular space ( �ic ∼ 1 for two- and 
three-shell protocols in Fig. 6a, b). In the case of five shells, 
the greater complexity of the data allows NODDI to rule 
out CSF (which is not present in the substrate), but then the 
signal is modeled as coming mostly from the intra-cellular 
compartment.

On one hand, it would be interesting to further investi-
gate the NODDI parameters when using diffusion sampling 
schemes with two and three shells in real tissues where also 
the CSF and cells are present: these structures, not modeled 
in our simulation, are characterized by an isotropic diffu-
sion, thus, there is a good chance that NDI will estimate 
the true intra-axonal volume still with good accuracy and, 

if so, NDI would be a very useful biomarker for the true 
neurite density. On the other hand, as an alternative and 
more pragmatic clinical approach, NDI could be viewed as 
a biomarker without considering its relation to the true intra-
axonal fractional volume, and, consequently, the objective 
of standardizing the protocol would not be to improve the 
estimation accuracy, but rather to optimize the sensitivity to 
a given pathology.

Contribution of the myelin to the MR signal

In our simulation study, myelin is not completely invisible to 
the diffusion MR signal, as previous studies presumed due to 
very short T2 [55, 89]. In detail, Stikov et al. in a combined 
histologic and diffusion study [55] investigating on the mye-
lin, found out the relationship between the NODDI-derived 
NDI and the true intra-myelin volume fraction MVF and true 
intra-axonal volume fraction AVF of the tissue, supposing 
that myelin does not contribute to the diffusion MR signal:

However, our simulation results showed that, whatever 
the diffusion sampling scheme is used, the above Eq. 4 does 
not hold. Figure 4a, b report the comparison between the 
NDI results, and the quantity AVF∕(1 −MVF) (in red), 
given the true MVF and AVF of the synthetic tissues. 

(4)NDI = AVF∕(1 −MVF).

Table 3   F-test statistic of the changes in the DKI and NODDI parameters induced by demyelination (variable g-ratio) and axonal loss (variable 
percentage of axonal loss ploss)

Parameters axial kurtosis AK, mean kurtosis MK, radial kurtosis RK, and kurtosis fractional anisotropy KFA are DKI-derived, while neurite 
density index NDI, fractional volume �

iso
 of the compartment with isotropic diffusion, fractional volume νic of the intra-cellular space, and orien-

tation dispersion index ODI are NODDI-derived
omitted results (–) refer to parameters showing non-significant changes between healthy and damaged condition (one-way ANOVA with 
p < 0.01) . NC means Not Calculated, since not all the sequences were used for both the DKI and NODDI analyses

2sh(a) 2sh(b) 3sh(a) 3sh(b) 5sh(a) NODDI5sh(b) DKI7sh

AK g-ratio – – – – – NC –
ploss – – – 0.07 13.85 NC –

MK g-ratio – – – – 3.19 NC –
ploss 9.68 – 15.62 – 23.88 NC 4.57
ploss – – – – – NC –

KFA g-ratio – – – – – NC –
ploss 7.91 – 9.30 – – NC 4.56

NDI g-ratio 79.28 39.42 178.29 39.42 61.96 53.37 NC
ploss 1325.33 895.20 1258.81 895.20 277.91 219.55 NC

�
iso

g-ratio 72.67 41.99 159.96 41.99 – – NC
ploss 1406.98 970.37 1359.07 970.37 – – NC

νic g-ratio – – – – 61.96 53.37 NC
ploss 331.89 6.43 83.58 6.43 277.92 220.54 NC

ODI g-ratio – – – – 36.04 44.48 NC
ploss 346.07 53.26 86.01 53.26 168.68 210.42 NC
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Concerning this relationship, it should be noted that the dif-
fusion MRI – histological study by Grussu et al. [47] (men-
tioned above, in the discussion on NODDI findings) did not 
report equality between NDI and AVF∕(1 −MVF) but only 
correlation.

Conclusion

In conclusion, this study explored the feasibility of using 
Monte Carlo simulations of diffusion in synthetic tissues 
to assess which WM structural changes induced by specific 
damage processes underlying neurodegenerative and, par-
ticularly, demyelinating diseases, DWI parameters can actu-
ally detect when using clinically feasible acquisition pro-
tocols. In this regard, we demonstrated, for the first time, 

that the effects of the boundary permeability, as well as the 
contribution of the myelin compartment to the MR signal, 
are not negligible, especially when simulating damage pro-
cesses involving changes in these features.

In detail, we employed two DWI methods that are widely 
used to characterize lesioned tissues in the patients with 
demyelinating disease, i.e. DKI and NODDI, and compared 
them to DTI, in their ability in revealing the damage. We 
demonstrated that the results of the diffusion analysis relying 
on these methods can dramatically change when using differ-
ent acquisition protocols. This finding points out the need to 
standardize the sequences, in view of a better interpretation 
of the parameter changes, and towards a correct comparison 
of the experimental results of diffusion studies.

Fig. 6   Results of the Monte Carlo simulations for NODDI param-
eters by using 6 different acquisition protocols. Results are expressed 
in terms of mean and standard deviation, considering a Rician noise 
with SNR = 20 affects the synthetic DW signal. In a and b, the 

changes induced in the fraction of non-isotropic volume occupied by 
intra-cellular space νic by demyelination and axonal loss, respectively. 
In c and d, the changes induced in the Orientation Dispersion Index 
ODI by demyelination and axonal loss, respectively
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Certainly, the model of synthetic WM presented here 
represents a simplification of the real WM tissue since, 
for example, it lacks microglia, and dispersion in the ori-
entations of the axons is not considered. However, the dif-
ferences in the parameter sensitivities, and, in the case of 
NODDI, in the parameter absolute values obtained by using 
different acquisition protocols cannot be ascribed to such 
limits of our synthetic WM model. Thus, further investiga-
tions in vivo would be appropriate to confirm these findings.

In following up this work, we would like to increase the 
complexity of the model geometry, by introducing spherical 
compartments representing the astrocytes and the dispersion 
in the orientation of the fibers. On the other hand, it could 
be advantageous to model other kinds of damage processes 
like microgliosis and edema. Also, these types of simula-
tions could be useful in approaching the DWI analyses that 
involve more complex DWI compartmental methods as 
CHARMED, AxCaliber, and ACTIVEAX, requiring high 
gradient strength ( 140 − 300mT∕m ) and long acquisition 
time (at least 1 h), given their many degrees of freedom.
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Appendix A: Intrinsic diffusivity 
in the intra‑myelin space

In our synthetic model of WM, we set a priori the value 
of water intrinsic diffusivity, into the synthetic myelin, 
equal to the value set for the other compartments i.e. 
Dint(sim) = 2.02 × 10−9m2∕s , since there are no suitable 
measurements of the intrinsic diffusivity of water in the 
real myelin. Thus, in this Appendix, we will evaluate the 
plausibility of our hypothesis by comparing the apparent 
diffusivity calculated along the radial direction in the syn-
thetic myelin, with the apparent diffusivity measured along 
the radial direction in the real myelin. In detail, Andrews 
et al. conducted an ex-vivo study on the excised frog sci-
atic nerve and measured the directional apparent diffu-
sion coefficients in the intra-myelin space [57], reporting 
ADCm∥ = 3.7 × 10−10m2∕s and ADCm⟂

= 1.3 × 10−10m2∕s 
along, respectively, the axial and the radial direction of the 
axon. In our simulation, by setting the intrinsic diffusivity in 
the intra-myelin space equal to Dint(sim) = 2.02 × 10−9m2∕s , 
we  o b t a i n e d  ADCm∥(sim) = 0.7 × 10−10m2∕s  a n d 

ADCm⟂
(sim) = 0.06 × 10−10m2∕s ; the synthetic myelinated 

fibers range in radius between 0.07–2.5 µm, with an average 
radius equal to 0.7�m . Given that the frog sciatic nerve con-
tains myelinated fibers ranging in radius between 0.5–10 µm 
[91], we have to consider, at least, the differences in terms of 
fiber radius, to compare the directional apparent diffusivities 
in the myelin obtained in this simulation with those reported 
by Andrews et al. [57]. In the case of Brownian motion, i.e. 
diffusion motion in the absence of a concentration gradient, 
the average distance l a water molecule diffuses during the 
time Δ is l =

√

2DΔ [7]. In the intra-myelin space of a given 
axon A1, along the radial direction, we can approximate the 
average distance l with half the difference between the outer 
R1 and the inner radius r1 of A1, following the same proce-
dure used by Stanisz et al. in [59]:

where g is the g-ratio = 0.7 in the healthy condition. Thus, 
the ratio of the apparent diffusion coefficients ADCm⟂

 in the 
intra-myelin space, along the radial direction, of two axons 
A1 and A2 with outer radii R1 and R2, is:

There is no information about the average radius of the 
axons populating the specific sample analysed by Andrews 
et al. [57]. However, the typical distribution of the axonal 
radii of the frog sciatic nerve can be approximated with 
a Gamma function with a positive skewness [16], so we 
may presume that the average radius ranges from 0.5 to 
5 µm, i.e., respectively, the inferior limit and midpoint of 
the radius interval [0.5–10 µm] reported in the literature 
for the sciatic frog nerve fibers [91]. By using Eq. 2 with 
ADCm⟂1 = 0.06 × 10−10m2∕s , i.e. our estimated value of 
the radial intra-myelin ADC, R1 = 0.7�m , i.e. the average 
radius of the synthetic fibers, ADCm⟂2 = 1.3 × 10−10m2∕s , 
i.e. the intra-myelin ADC measured ex-vivo in a frog sciatic 
nerve by Andrews et al. in [57], we obtain an average radius 
of the frog sciatic nerve fibers equal to R2 = 3.3�m , that is 
physically plausible (0.5 µm < R2<5 µm).

Appendix B: Boundary permeabilities

The synthetic tissue of WM presented in this simulation 
study consists of three compartments, i.e. the intra-axonal 
space, the intra-myelin space, and the extra-cellular space. 
The boundaries separating the intra-axonal and the intra-
myelin spaces, and those separating the intra-myelin and the 
extra-cellular spaces are permeable: we had to characterize 

(5)l =
R1 − r1

2
=

R1(1 − g)

2
,

(6)
ADCm⊥1

ADCm⊥2

=
R2
1

R2
2

.
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them considering that, to our knowledge, the only useful 
measurements of water permeability, reported in the litera-
ture, are affected by both the neuron membrane and myelin 
sheet.

In detail, when a walker encounters a membrane, it is 
either reflected or transmitted, with a membrane transmis-
sion probability P. P depends on the membrane biochemi-
cal characteristics translating to a permeability value k . To 
ensure no net flux across the membrane [32], the relation 
between k and P, from inside to outside and vice versa is:

where

� is the average speed of walkers, �t is the unit time-step, and 
D is the intrinsic diffusivity. In this simulation, � is obtained 
from Eq.  2, with �t = 15.6�s and D=2.02 × 10−9m2∕s 
as described in the section Materials and Methods; P is 
obtained from Eq. 1, given � and the permeability k, that is 
the only free parameter of the simulation strictly linked to 
the boundary characterization.

As described above, in our synthetic tissue there are two 
kinds of membranes to characterize: ka and Pa relate to the 
membrane separating the axon from the myelin; kouter and 
Pouter refer to the boundary separating the myelin from the 
extra-cellular space. Notably, in this simulation, Pouter rep-
resents the probability, for a water molecule, to cross the 
whole myelin sheet, thus, we set kouter to obtain physically 
plausible values for Pouter.

Stanisz et  al. conducted a study on the bovine 
optic nerve [59] and reported an overall value of 
ka−outer(1) = 0.9 ± 0.2 × 10−5 m∕s for an axonal membrane 
encompassing the myelin sheath. We set 0.7 × 10−5 m∕s 
as the lower limit of ka. Similarly, an overall value 
ofka−outer(2) = 4.7 ± 3 × 10−5 m∕s , was reported by Boss 
et al., in a cell culture study [58], as the water membrane 
permeability of the mice neurons: we set 5 × 10−5 m∕s as 
the upper limit of ka. Initially, we set the values of ka and 
kouter equal for all the myelinated axons. We performed 
several simulation trials by setting ka values in the range 
[ 0.7 − 5.0] × 10−5 m∕s , and kouter < ka, since the myelin 
sheath is presumably less permeable than a simple cell 
membrane. We evaluated the impact of Pa and Pouter on DW 
signal changes induced by increasing the g-ratio, to simu-
late demyelination, using a typical sequence for DTI analy-
sis. We expected that, with a decrease in myelin, the bulk 
apparent diffusion coefficient (derived from DTI) along the 
axial direction AD should not significantly change, whereas 
the one along the radial direction RD should significantly 

(7)Pin[out]→out[in] = k∕
(

1∕4 ⋅ �in[out]
)

,

(8)�in[out] =
√

6Din[out]∕�t,

increase, as widely reported in DWI studies on shiverer 
mice CNS presenting demyelination but no axonal injury 
or inflammation [60–63]. On the contrary, in silico, when 
kouter values are fixed to be equal for all the axons and lower 
than0.7 × 10−5 m∕s , an increase of g-ratio causes AD to 
decrease and RD to slightly decrease, albeit not signifi-
cantly, regardless of the choice of ka and the thickness of 
the myelin. This means that, if the myelin sheath is mod-
eled as totally impermeable ( kouter = 0m∕s ) or slightly per-
meable ( kouter < 0.7 × 10−5 m∕s ), the trends of AD and RD 
obtained in simulation with increasing g-ratio do not match 
those reported in the literature [60–63].

We obtained the expected trends for AD and RD by mod-
elling Pouter to exponentially decrease with myelin thickness 
and setting ka = 5 × 10−5 m∕s equal for all the axons. This 
kind of model for Pouter is conceived by considering that the 
true myelin sheath is a greatly extended plasma membrane 
of a glial cell (oligodendrocyte in WM) wrapped around the 
axon in a spiral fashion: therefore, a water molecule moves 
through it without being transported through aquaporins, 
crosses N cell membranes with a probability Pouter exponen-
tially decreasing with myelin thickness:

where Pg is the membrane crossing probability of a glial 
cell: in this model we assume that Pg is the same as for the 
axonal membrane crossing probability Pa. To realize such a 
dependence of Pouter on the myelin thickness, we set k*outer 
for one particular axon A* and obtained the relative value 
of P*outer from the Eq. 1. Then, we extracted the number N* 
of membrane turns wrapping around A* by using the Eq. 3. 
Finally, we calculated Ni, and then Pi

outer for all other axons 
Ai, by considering the ratio in myelin thickness between A* 
and Ai.

After implementing the Pouter model, further simula-
tion trials were performed by changing ka in the range 
[0.9 − 5] × 10−5 m∕s . Lower ka values determine AD dec-
rements, and non-significant RD increments, when the 
g-ratio increases, hence we definitely set ka = 5 × 10−5 m∕s

.
Finally, k ∗outer was set to the value 1.5 × 10−8 m∕s to 

set a balance between its effects on the outer membrane 
permeability and the pre-exchange lifetime in myelin, 
which increase and decrease with increasing k ∗outer val-
ues, respectively.

Technically, the pre-exchange lifetime �m is the time 
required for 63% (e−1) of the intra-cellular water to 
exchange [38]. In this regard, many studies conducted on 
animal models [92–94] have reported �m values in the range 
[43 − 150]ms , depending on the distribution of the axonal 
diameters: �m = 43ms was measured by Harkins et al. [92] 

(9)Pouter = PN
g
, with Pg = Pa,
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in a rat spinal cord portion with a mean axonal radius of 
(0.6 ∓ 0.2)�m and a myelin volume fraction of 0.51. In our 
simulation, the mean axonal radius is 0.7�m , and the myelin 
volume fraction is 0.3, therefore, to compare the value of the 
pre-exchange lifetime in real myelin (as reported in [92]) 
with our simulation, we have to take at least into account the 
difference in myelin volume fraction since the mean axonal 
radii are very similar.

Considering the linear dependence between the pre-
exchange lifetime in a given space and volume fraction 
of the same space [38], we expect the following relation:

where MVFr and �r , and MVFs and �s , are, respectively, the 
myelin volume fraction and pre-exchange lifetime in real 
myelin and in simulation. From Eq. 4, given MVFr = 0.51 , 
MVFs = 0.3, and �r = 43ms , we obtain �s = 25ms . In 
this simulation, given all the free parameters (diffusivity 
and permeabilities) set as discussed above, we obtained 
a pre-exchange lifetime in the synthetic myelin equal to 
�m = 10ms : this value is in the correct order of magnitude 
and is physically plausible, considering the different experi-
mental conditions in which the histological ex-vivo values 
[92] were obtained.

Appendix C: MR diffusion signal

The signal loss for each walker is computed considering the 
total time Δta,Δtm,Δtec spent during the TE, respectively, 
in the intra-axonal, intra-myelin, and extra-cellular space. 
Dephasing depends on the net displacement during the dif-
fusion time Δ (assuming the short-pulse approximation). 
Ensemble effects are computed by integrating dephasing in 
time and summing over all the walkers:

cos�(Δ) is the attenuation of the signal for one molecule in 
the case of a dephasing � due to the net displacement during 
the diffusion time Δ; T2o is the T2 relaxation time in the 
intra-axonal and extra-cellular space, while T2m relates to 
the intra-myelin compartment. In vivo [95] and in vitro [96] 
studies on the human brain and ex vivo studies on animal 
models [64, 96–99] support T2 in the range [10 − 20]ms for 
the myelin water. We set T2m = 15ms and T2o = 78ms, as 
Whittall et al. [64] measured, respectively, the intra-myelin 
space of CC and in the whole WM.

(10)
MVFr

MVFs
=

�r

�s
,

(11)S

S0
=

∑

walkers cos �(Δ) ⋅ e
−
�

Δta

T2o
+

Δtm

T2m
+

Δtec

T2o

�

∑

walkers e
−
�

Δta

T2o
+

Δtm

T2m
+

Δtec

T2o

� with Δta + Δtm + Δtec = TE,

Appendix D: Implementation of the axonal 
loss and axonal debris processes

In neurodegenerative lesions, and in particular, in the demy-
elinating diseases, the major contribution to the axonal loss 
is given by the Wallerian Degeneration (WD) occurring 
when a nerve fiber is cut or crushed and the part of the axon 
farther from the neuron cell body degenerates [100–103]. 
Irrespective of the specific mechanism underlying axonal 
loss, the result is a decrease in axonal density together with 
the formation of axonal debris. As reported later, both these 
microstructural changes of tissue substantially affect water 
diffusion.

A decrease in axonal density is modeled considering an 
experimental observation reported in post-mortem [66, 68] 
and in-vivo studies [65, 69–71] on MS lesions: in all the ana-
lysed CNS areas, a selective death of axons with a smaller 
radius, roughly lower than 1�m , occurs in both acute and 
chronic lesions. Thus, a fraction ploss of axonal loss trans-
lates to a random elimination of ploss ∙ Nh axons from their 
distribution in healthy conditions, with Nh the initial number 
of axons. Selective death of smaller axons is implemented 
by extracting the outer radii of the axons to be deleted from 
a sigmoidal distribution function with the inflection point at 
1 μm, and further selecting the axons with a radius smaller 
than 1 μm, if still present in the substrate.

Regarding the axonal debris, histological studies [104, 
105] described what happens immediately after the axonal 
degeneration. Widespread granular disintegration of axo-
plasmic microtubules and neurofilaments occurs in the 
24–72-h interval following axonal degeneration. Amorphous 
granular breakdown products from nerve fibers progressively 
leave the intra-cellular space in 48 h and amorphous granular 
deposits of increasing prominence appear within the space 
around the axonal membranes of the lost axon. The presence 
of such deposits in the lesioned area have been still observed 

30–34-days after nerve degeneration. In a one-year follow-
up diffusion study of stroke patients, Yu et al. [106] reported 
at the second week a sharply decreased DTI-derived FA 
and AD, and increased RD; then, from the second week to 
the third month, MD slightly increased accompanied by a 
decrease in FA, an increase in RD, and no change in AD; 
finally, all diffusion indices remained at a relatively stable 
level after three months. The authors hypothesized that 
such changes of DTI indices might be ascribed to WD fol-
lowed by the formation of axonal debris. In 2012, Qin et al. 
[105] conducted an in-vivo diffusion study combined with a 
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histological validation, on a pathological animal model (felis 
catus) presenting WD. Their results confirmed the trends for 
DTI indices and also the hypothesis of Yu et al. [106]. They 
found quick decreases in FA, and AD, and an increase in RD 
from the second day to the eighth day after axonal injury, 
which was accompanied by progressive axonal disintegra-
tion. Afterward, from the eighth day to the sixtieth day, a 
slow clearance of granular deposits of axonal debris within 
the space around the axonal membranes, caused FA, MD, 
and AD to slightly increase, while RD remained unchanged 
[105]. In detail, after 60 days, the AD value was found 
still 0.83 times lower than its value in a healthy condition. 
Another diffusion study on WD, by Thomalla et al. [107], 
reported an AD value, in the lesioned tissue, to be 0.86 times 
lower than its value in the healthy condition, 2 weeks after 
the damage.

Given all these findings we modeled axonal debris having 
in mind these considerations:

1.	 We hypothesized to scan the tissue when the amorphous 
granular deposits are in the extra-cellular space, around 
the axonal membrane of the lost axon, as mentioned 
before and observed in [104]. Thus, our model repre-
sents the lesioned tissue, at least 2 weeks after the axonal 
degeneration, when AD becomes relatively stable;

2.	 Since the granular deposits are similar to small orga-
nelles, the diffusion motion, occurring in the extra-cel-
lular space in the presence of the amorphous granular 
deposits, may be considered as hindered (Gaussian-
type);

3.	 Compared to a healthy condition, the presence of the 
granular deposits make AD and FA decrease, RD 
increase, and MD slightly increase;

4.	 Given the high and homogeneous density of the axons 
inside the substrate, in the healthy condition, we con-
sider the extra-cellular space as approximately equally 
partitioned among the axons. Thus, for a given fraction 
ploss of lost axons, we assume that a reduction in diffu-
sivity, due to the presence of axonal debris, occurs in the 
same fraction ploss of the extracellular space. Indeed, the 
axonal debris only affects the extracellular space closely 
surrounding each lost axon.

We modeled the presence of axonal debris in the 
extra-cellular space, by decreasing the diffusivity from 
D = 2.02 × 10−3mm2∕s (in the extra-cellular space in the 
healthy condition) to a lower value Ddebris in a fractional vol-
ume of extra-cellular space equal to ploss . Accordingly, the 
average diffusivity 

−

D (ploss) in the extra-cellular space is given 
by:

(12)D
(

ploss
)

= ploss × Ddebris +
(

1 − ploss
)

× D.

We evaluated the effect of different Ddebris on the AD and 
RD trend when ploss increases. We expected a significant AD 
decrement and RD increment with axonal loss, as reported in 
DWI studies on axonal injury [100–105]. If Ddebris = 0, an 
increase in ploss determines an increase in both AD and RD. 
Positive values of Ddebris result in decreasing AD, and in a pro-
gressive reduction of the RD increment, with increasing ploss . 
Further increase in the Ddebris value leads to a point in which 
RD does not significantly change, and then decreases, with 
increasing ploss . The expected AD and RD trends are obtained 
with approximately Ddebris = 1.8 × 10−3mm2∕s . Setting such a 
value implies that when axonal loss affects the whole substrate 
( ploss = 1) , 

−

D (ploss) = 0.89 D , a physically plausible value, 
considering the results reported in the literature (in [107], AD 
value in the lesioned tissue was found to be 0.86 times lower 
than its value in the healthy condition). Figure 6 shows some 
examples of substrates with different degrees of demyelination 
and axonal loss.
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