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Abstract
Objective  ADC (Apparent Diffusion Coefficient) derived from Diffusion-Weighted Imaging (DWI) has shown promise as a 
non-invasive quantitative imaging biomarker in Wilms’ tumours. However, many non-Gaussian models could be applied to 
DWI. This study aimed to compare the suitability of four diffusion models (mono exponential, IVIM [Intravoxel Incoherent 
Motion], stretched exponential, and kurtosis) in Wilms’ tumours and the unaffected contralateral kidneys.
Materials and methods  DWI data were retrospectively reviewed (110 Wilms’ tumours and 75 normal kidney datasets). The 
goodness of fit for each model was measured voxel-wise using Akaike Information Criteria (AIC). Mean AIC was calculated 
for each tumour volume (or contralateral normal kidney tissue). One-way ANOVAs with Greenhouse–Geisser correction 
and post hoc tests using the Bonferroni correction evaluated significant differences between AIC values; the lowest AIC 
indicating the optimum model.
Results  IVIM and stretched exponential provided the best fits to the Wilms’ tumour DWI data. IVIM provided the best fit 
for the normal kidney data. Mono exponential was the least appropriate fitting method for both Wilms’ tumour and normal 
kidney data.
Discussion  The diffusion weighted signal in Wilms’ tumours and normal kidney tissue does not exhibit a mono-exponential 
decay and is better described by non-Gaussian models of diffusion.
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Introduction

Wilms’ tumour is the most common paediatric renal tumour 
[1], and in Europe patients are treated with chemotherapy 
prior to surgery to reduce tumour size [2]. Following a full 
or partial nephrectomy, histological analysis classifies the 
tumour as a subtype depending on the predominant cell type 
[3]. Patients will often have multiple MRI scans to moni-
tor response to treatment, with Diffusion Weighted Imaging 
(DWI) being frequently acquired.

The Apparent Diffusion Coefficient (ADC) can be derived 
from DWI by applying a mono-exponential fit (Eq. 1) to the 
diffusion data.

where S(b) is the signal at a given b value, and S0 is the 
signal with no diffusion weighting.

ADC has shown great promise as a quantitative imaging 
tool in Wilms’ tumour. For example, ADC has been used to 
distinguish benign from malignant tumours (a subset of this 
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cohort being Wilms’ tumours) [4], separate neuroblastoma 
from Wilms’ tumour [5], monitor chemotherapy response [6, 
7], identify histological subtypes [7], and assist in identify-
ing necrotic Wilms’ tumour tissue [8].

While ADC is a useful parameter, there are other non-
Gaussian models (IVIM [9] [Intravoxel Incoherent Motion], 
stretched exponential [10], and kurtosis [11]) which can be 
applied to DWI data to produce a wide range of diffusion 
metrics. IVIM (Eq. 2) is a bi-exponential model which not 
only describes water movement within the extra-vascular 
space but also in the randomly oriented micro capillary net-
work. It produces the parameters D (the diffusion coefficient 
free from the influence of fast-flowing water in the capillary 
network, referred to as ‘slow’ diffusion), D* (the diffusion 
coefficient due to the randomly-orientated motion of water 
in the blood in the capillary network – ‘fast’ diffusion), 
and f (the volume fraction associated with the fast-flowing 
component).

The stretched-exponential model (Eq. 3) describes het-
erogeneity in diffusion within a single voxel, describing the 
deviation from a mono-exponential decay. It produces the 
parameters DDC (the distributed diffusion coefficient) and 
⍺ (the stretching parameter to describe the deviation from 
homogenous diffusion).

The kurtosis model (Eq. 4) describes the deviation from 
the displacement of water molecules following a Gaussian 
distribution and produces the parameters Dk (the diffusion 
coefficient corrected for the non-Gaussian displacement), 
and K (the kurtosis).

These models have the potential to provide supplemen-
tary information regarding tissue microstructure. Addition-
ally, they have been shown to provide superior descriptions 
of diffusion data compared to the mono-exponential model 
in rectal cancer [12], prostate cancer bone metastases [13], 
ovarian cancer [14] and in healthy renal tissue [15]. How-
ever, there is limited research into applying these models in 
Wilms’ tumour where they may be useful, due to the highly 
heterogenous cellular environment of the tumour tissue. 
Furthermore, it is hypothesised that due to the high levels 
of perfusion in the kidneys, and that IVIM is designed to 
account for a perfusion-related component in the diffusion 
signal, this model model may provide a superior fit to this 
DWI data [16].

The aim of this research was to determine whether these 
models (IVIM, stretched exponential and kurtosis) provide 
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superior fits to the diffusion-weighted signal compared to 
a mono-exponential model, in Wilms’ tumours and the 
contralateral normal kidney. The goodness of fit was cal-
culated using the Akaike Information criterion (AIC) [17], 
which penalises models containing more free parameters 
than are supported by the raw data. Additionally, as a sec-
ondary aim, Wilms’ tumours were separated by histologi-
cal subtype to determine whether certain models favoured 
certain subtypes.

Materials and methods

Study population

Institutional ethical approval was granted and waived the 
need for consent for this single centre study. A 10-year ret-
rospective review (April 2007–March 2017) of the radiol-
ogy imaging system at our institution was performed for all 
abdominal MRI data in children with a proven histological 
diagnosis of Wilms’ tumour. Inclusion criteria were those 
with multiple b value DWI data (including a maximum b 
value of 1000 s/mm2), and tumour size covering at least 2 
axial slices on DWI. DWI with extreme motion artefacts 
were also removed. MRI data were collected from Wilms’ 
tumour patients both pre- and post-chemotherapy. Histo-
logical subtypes were confirmed post-surgery for a subset 
of the tumours. For normal kidney data, the contralateral 
unaffected kidney was used, except in patients with bilateral 
disease.

MRI

All imaging was performed on a 1.5 T Siemens Magnetom 
Avanto scanner equipped with 40 mT/m gradients. Depend-
ing on patient size, one or two body matrix coils were used 
to obtain full coverage (6 element design, Siemens). Patients 
were either awake or anaesthetised depending on their age.

Multiple b value DWI was obtained for all patients and 
was acquired during free breathing. The DWI protocol was 
as follows: 7 or 8 b values in 3 orthogonal directions (0, 
50, 100, 250, 500, 750, 1000 s/mm2 or 0, 50, 100, 150, 
200, 250, 500, 1000 s/mm2) slice thickness: 6 mm, TR/
TE: 2800 ms/89 ms, field of view: 350 × 350 mm, voxel 
size: 1.4 × 1.4  ×  6 mm, number of slices: 19, matrix size: 
128 × 96 × 19. Nine averages were acquired for each b value, 
and trace images (mean over 3 directions) were used for 
analysis. Standard clinical sequences were also acquired in 
conjunction, including fat-suppressed T1w before and after 
administration of gadolinium-based contrast; full details of 
the clinical imaging sequences can be found in [18].
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Post‑processing

Diffusion data were processed using the trace images 
and in-house model fitting routines designed in Matlab 
(version 2019a, MathWorks Inc., Natick, MA, USA) on a 
voxel-by-voxel basis using four different models of diffu-
sion: mono exponential (Eq. 1), IVIM (Eq. 2), stretched-
exponential (Eq. 3), and kurtosis (Eq. 4).

In each case S0 was defined as the signal at b = 0, and 
for the mono-exponential model a linear fit of ln(S/S0) 
against all b values was performed. For the non-Gaussian 
models, fitting was performed using the Levenberg–Mar-
quardt nonlinear least squares algorithm (using the ‘lsq-
curvefit’ function in Matlab), across all b values (except 
for the IVIM model). For the IVIM model, firstly, a linear 
fit of ln(S/S0) against b was calculated at high b values 
(200–1000 s/mm2) to determine the value of D. Follow-
ing this, D* and f were fit simultaneously (with a fixed 
D). D* had no constraints on upper boundaries, and f was 
constrained between 0 and 1. For the stretched-exponen-
tial model DDC had no upper boundary conditions, and 
α was constrained between 0 and 1. For kurtosis neither 
Dk nor K were constrained by upper boundaries, and K 
had a lower bound of 0.

Regions of interest (ROIs)

ROIs were generated using Mango Software (Research 
Imaging Institute, UTHSCSA). ROIs were drawn on the 
b0 images around the entire tumour volume, these were 
edited and verified by a radiologist specialising in paedi-
atric radiology (M.V. 3 years dedicated paediatric radi-
ology). Normal kidney tissue was also defined on the b0 
images using the contralateral kidney (excluding those 
with bilateral disease) around entire kidney volume and 
areas of high flow, such as the areas which surround the 
renal pelvis were excluded; an example can be seen in 
Fig. 1. All analysis regarding model comparisons was 
confined to these ROIs.

Model comparison analysis

AIC was used to compare the four models (mono exponen-
tial, IVIM, stretched exponential and kurtosis). For every 
voxel within the tumour ROIs and normal kidney ROIs, 
AIC was calculated per model. The mean AIC was calcu-
lated across the entire ROI volume per model. Mean AIC 
values for each model were then compared using a one-
way repeated measures ANOVA with a Greenhouse–Geis-
ser correction to account for non-equal variance, and post 
hoc tests were performed using the Bonferroni correction. 
A significant difference was defined as p < 0.05. ANOVAs 
were calculated for the entire Wilms’ tumour and normal 
kidney populations, as well as within different subgroups 
(pre-chemotherapy, post-chemotherapy, and different b 
value acquisitions [7 and 8 b value ranges]). Additionally, 
models were compared between Wilms’ tumour histological 
subtypes to determine whether a certain subtype favoured a 
particular model. The post-chemotherapy data were used for 
this comparison as it was the nearest time point to histology.

Results

Study population

A total of 110 Wilms’ tumours were included for diffusion 
model comparison analysis; consisting of 49 pre-chemo-
therapy and 61 post-chemotherapy tumours (38 of the pre-
chemotherapy tumours were included as part of the 61 post-
chemotherapy cohort). A flow chart detailing inclusions and 
exclusions of cases can be seen in Fig. 2. The mean age of 
patients at their pre-chemotherapy scan was 2.43 years (SD: 
2.2), and the mean age at their post-chemotherapy scan was 
3.0 years (SD: 2.8).

The diffusion data were acquired using either 7 or 8 
b values (0, 50, 100, 250, 500, 750, 1000 s/mm2 or 0, 
50, 100, 150, 200, 250, 500, 1000 s/mm2). This was due 
to the protocol changing during the period of this study, 
for reasons un-related to this study. Forty-nine tumours 
had the 7 b value protocol (22 pre-chemotherapy and 27 

Fig. 1   An example of a 
representative Wilms’ tumour. 
Displayed is a central axial 
slice of a T1w image (a) and 
b0 image (b). The abdomen is 
shown at the level of the kidney 
of a Wilms’ tumour patient 
post-chemotherapy (age at time 
of scan: 1.22 years). ROIs are 
shown surrounding the tumour 
(red) and normal renal tissue 
(green)
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post-chemotherapy), and 61 tumours had the 8 b value pro-
tocol (27 pre-chemotherapy and 34 post-chemotherapy).

Of the 61 post-chemotherapy tumours, 56 had histo-
logically confirmed subtypes: 7 blastemal, 9 epithelial, 13 
stromal, 8 regressive, 18 mixed and 1 completely necrotic. 

Subtypes were defined according to SIOP-2001 protocol 
[3].

The contralateral unaffected kidney was used as the 
normal kidney data. Due to the need to exclude bilateral 
cases, a total of 75 normal kidney datasets were included; 38 

Fig. 2   Flowchart of study 
population showing inclusions 
and exclusion criteria. DWI 
diffusion-weighted imaging. 
npnumber of patients, ntnumber 
of tumours
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from patients who had received chemotherapy and 37 from 
patients who had not. Of the 75 normal kidney datasets 31 
had the 7 b value protocol (15 pre- chemotherapy and 16 
post-chemotherapy), and 44 had the 8 b value protocol (22 
pre- and 22 post-chemotherapy).

Wilms’ tumour results

One-way ANOVAs with a Greenhouse–Geisser correction 
revealed that AIC values differed significantly between 
diffusion models, in all conditions: entire cohort: (F(1.08, 
117.91) = 157.08, p = 1.68 × 10–24), pre-chemotherapy: 
(F(1.05, 50.53) = 79.35, p = 3.11 × 10–12), post-chemother-
apy: (F(1.13, 67.92) = 85.92, p = 1.34 × 10–14), 7 b values: 
(F(1.21, 58.16) = 76.23, p = 2.10 × 10–13), and 8 b values: 
(F(1.04, 62.49) = 95.51, p = 1.68 × 10–14).

Figure 3 shows the boxplots of each condition, with sig-
nificance bars highlighting the post hoc test results using the 
Bonferroni correction. In all conditions AIC values for the 
mono-exponential model were significantly higher than the 
other three models, indicating that this was the least appro-
priate model for the Wilms’ tumour data. For the entire 
Wilms’ tumour and post-chemotherapy cohorts, stretched 
exponential was the best model for fitting the diffusion data, 
as this provided the lowest AIC values. Figure 4 shows an 
example of how well the models fit to the diffusion decay 
signal in a single voxel of a post-chemotherapy Wilms’ 
tumour.

For the pre-chemotherapy cohort and when data were 
split into 7 and 8 b value ranges, both IVIM and stretched 
exponential were deemed to be the most appropriate models, 
with no significant difference between the AIC values for 
these two models.

Additionally, one-way ANOVAs were used to investigate 
whether the best fit model was related to Wilms’ tumour his-
tological subtypes, using the post-chemotherapy data as they 
were the closest timepoints to histology. Only one tumour 
was classified as necrotic and was therefore removed from 
this section of the analysis. Figure 5 shows the AIC values 
for each subtype based on different diffusion models. There 
were no significant differences between AIC values across 
the subtypes (blastemal [n = 7], epithelial [n = 9], mixed 
[n = 18], stromal [n = 13], regressive [n = 8]), for any of the 
models (p > 0.05).

Normal kidney results

One-way ANOVAs with a Greenhouse–Geisser correc-
tion also revealed that AIC values differed significantly 
between diffusion models, in all conditions for the nor-
mal kidney data: entire cohort: (F(1.51, 85.2) = 276.07, 
p  =  2 .57  × 10 –30) ,  p re -chemotherapy:  (F (1 .43 , 
41.13) = 119.38, p = 1.16 × 10–14), post-chemotherapy: 

(F(1.16, 42.81) = 157.33, p = 1.10 × 10–15, 7 b values: 
(F(1.14, 34.10) = 90.49, p = 1.06 × 10–11), and 8 b values: 
(F(1.14, 49.10) = 193.30, p = 1.19 × 10–19).

Figure 6 shows the boxplots of each condition, with sig-
nificance bars highlighting the post hoc test results using 
the Bonferroni correction. The normal kidney data provided 
similar results to the Wilms’ tumour data: in all conditions 
AIC values for the mono-exponential model were signifi-
cantly higher than the other three models, indicating that 
this was the least appropriate model for the normal kidney 
data. Unlike the Wilms’ tumour data, for all conditions, the 
normal kidney data showed that IVIM provided the lowest 
AIC values, indicating it was the most appropriate model 
for this diffusion data. Figure 7 shows an example of how 
well the models fit to the diffusion decay signal in the con-
tralateral normal kidney data of a post-chemotherapy Wilms’ 
tumour patient.

Discussion

This study compared four models of diffusion (mono expo-
nential, IVIM, stretched exponential and kurtosis) based 
on how well they fit to the DWI signal decay, according 
to AIC. These comparisons were made in Wilms’ tumours, 
both pre- and post-chemotherapy, and on the contralateral 
unaffected kidney, as a measure of normal renal tissue. The 
diffusion data came from both 7 and 8 b value ranges. For 
the Wilms’ tumour data, it was shown that the stretched-
exponential model provided the best fit overall. This result 
was maintained when analysis was confined to the post-
chemotherapy group. However, when analysis was focused 
on pre-chemotherapy data and when separated by b value 
acquisition there were no significant differences between 
IVIM and stretched exponential, with both models provid-
ing the lowest AIC values. Additionally, there were no par-
ticular model preferences when the tumours were grouped 
by histological subtype. For the normal kidney data IVIM 
provided the best fit in all analyses. The mono-exponential 
model was shown to be the least appropriate model accord-
ing to AIC; providing consistently significantly higher AIC 
values compared to the other models for both the Wilms’ 
tumour and normal kidney datasets.

The main finding from this investigation was that non-
Gaussian models provided better descriptions of the diffu-
sion data compared to mono exponential, in both Wilms’ 
tumour and normal renal tissue. The deviation from a mono-
exponential decay has been previously highlighted and 
explored: it has been shown that there was a rapid decline in 
signal at lower b values followed by a more gradual decline 
at higher b values in the liver [19]. This initial decline was 
suggested to be due to vascular perfusion, as lower b val-
ues are thought to be sensitive to signal attenuation from 
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Fig. 3   Box and whisker plots highlighting the distribution of AIC 
(Akaike Information Criterion) values for different diffusion models 
in Wilms’ tumours. The ends of the blue boxes represent the 25th and 

75th percentiles, the red line indicates the median. *significant differ-
ences p < 0.05, **significant differences p < 0.001. a Entire Cohort, b 
Pre-chemotherapy, c Post-Chemotherapy, d 7 b values, e 8 b values
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perfusion [9], making the IVIM model well suited to these 
data. This has been shown to be the case in healthy renal 
tissue [20, 21], where signal was shown to be bi-exponential 
as opposed to mono exponential; as the kidney is a well-
perfused organ. The present study supports these findings 
as IVIM was favoured over the other models in normal renal 
tissue. This finding was maintained in the post-chemother-
apy normal kidney dataset, suggesting that treatment did 
not affect the normal kidney tissue in a way which could be 
detected by the DWI data.

The stretched-exponential model provided a good fit to 
the DWI Wilms’ tumour data. The previously mentioned 
studies in rectal cancer and healthy rectal tissue [12], pros-
tate cancer bone metastasis [13] and ovarian cancer [14], all 
showed this model to provide the best fit to DWI data when 
compared to IVIM and mono exponential. The stretched-
exponential model provides two parameters, α and DDC; 
while the exact physiological basis of α is unknown, it 
is thought to represent tissue heterogeneity, with a lower 
value suggesting a more heterogenous environment [10]. As 
Wilms’ tumour tissue is very heterogenous, it is unsurprising 
that the stretched-exponential model describes these data 
well.

In addition to the stretched-exponential model, IVIM pro-
vided an equally good fit to the pre-chemotherapy Wilms’ 
tumours, whereas this was not case post-treatment. Follow-
ing treatment there is likely to be an increase in necrotic 
tissue and thus a decrease in perfusion, therefore IVIM (a 
model which focuses on perfusion effects) may become less 
suitable.

No particular histological subtype appeared to favour a 
certain model, however, the numbers in each group were 
small. Furthermore, it is important to note that histologi-
cal subtypes are defined after analysing only a subsection 

of the entire tumour volume. Wilms’ tumours are very het-
erogeneous and across a single tumour, there will be areas 
of distinct cellular environments. The voxels within these 
distinct regions may have shown variable diffusion model 
preferences. However, due to the lack of advanced histology 
this analysis was not possible.

Using non-Gaussian models may not only provide bet-
ter fits to the data but may also provide additional clinical 
information. For example, it has been shown that Dk from 
kurtosis could provide higher diagnostic accuracy compared 
to ADC in differentiating tumour from non-tumour in pan-
creatic cancer [22]. Additionally, α (stretched exponential) 
had higher levels of sensitivity and specificity when dis-
criminating between minimal fat angiomyolipoma and renal 
cell carcinoma compared to ADC [23]. Furthermore, both 
D and f (IVIM) have shown promise in highlighting kidney 
function, with both parameters being related to estimated 
glomerular filtration rate in those with chronic kidney dis-
ease [24]. Therefore, non-Gaussian models may also have 
the potential to provide further information about the renal 
tissue microstructure.

While the mono-exponential model did not provide the 
best fit to the DWI data, it does not mean that it should not 
be used clinically. As previously mentioned, ADC has been 
shown to be clinically useful in Wilms’ tumour [4–8]. Addi-
tionally, ADC does not require multiple b values, which is a 
benefit as many centres may not acquire DWI with multiple 
b values as standard. Therefore, despite the present study 
showing a deviation from a mono-exponential signal decay, 
it is important to be aware that while the model may not be 
the best descriptor of the DWI data, it is nonetheless clini-
cally useful.

The method for selecting the model which provided the 
best fit is a potential weakness of this study. AIC takes into 
account the complexity of the model and goodness of fit, and 
therefore seemed an appropriate choice for model compari-
son and selection. It is important to consider if one model 
is clearly the best for the entire tissue or if there is only a 
small difference between the models. This was previously 
highlighted by Manikis et al. [25] in rectal cancer, where 
although overall mono exponential was preferred to IVIM, 
there was high heterogeneity across the tissue. This was also 
demonstrated in Wilms’ tumours in the present study, with 
both IVIM and stretched-exponential models demonstrat-
ing good fits to the data. With this in mind, one should be 
cautious before claiming that a particular model best fits 
the data, as it may be that many models are near equal in 
fitting quality.

Furthermore, the maximum b value of 1000 s/mm2 may 
have been a limitation for the kurtosis model as it becomes 
more sensitive at higher b values [26]. Therefore, with a 
more optimised b value range this model may have per-
formed better than with the current data. However, in a 

Fig. 4   An example of the model fits to the diffusion decay signal in a 
single voxel (8 b values) of a post-chemotherapy Wilms’ tumour (age 
at scan: 4.03 years)
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study regarding the feasibility of kurtosis in the kidneys a 
maximum of b = 1000 s/mm2 was also used [27]. Addition-
ally, the present study wanted to focus on fitting to routinely 
acquired clinical data which does not have extremely high 
b values. This sentiment has also been suggested in previ-
ous work which compared the mono-exponential model to 
kurtosis in the liver also using a maximum of b = 1000 s/
mm2 [28].

Overall this study demonstrated that the mono-exponen-
tial model does not fit DWI data as well as IVIM, stretched 
exponential or kurtosis in Wilms’ tumour tissue or normal 
renal tissue. Additionally, there was no model preference for 

the distinct cellular subtypes. IVIM provided the best fit for 
the normal renal tissue, and in Wilms’ tumours both IVIM 
and stretched-exponential models provided the best descrip-
tors of the data. ADC is frequently used in clinical research 
and therefore the assumption is that the signal decay is mono 
exponential. However, these results suggest that in Wilms’ 
tumour and normal renal tissue, the DWI signal does not 
exhibit a mono-exponential decay. Therefore, utilising other 
models may provide more accurate representations of the 
underlying tissue environment, and the derived parameters 
may provide clinically useful information.

Fig. 5   Box and whisker plots highlighting the distribution of AIC 
(Akaike Information Criterion) values for different subtypes of 
Wilms’ tumour using various diffusion models. The ends of the blue 

boxes represent the 25th and 75th percentiles, the red line indicates 
the median. No significant differences were found (p > 0.05) a Mono 
exponential, b IVIM, c Stretched Exponential, d Kurtosis
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Fig. 6   Box and whisker plots highlighting the distribution of AIC 
(Akaike Information Criterion) values for different diffusion models 
in normal kidney data. The ends of the blue boxes represent the 25th 
and 75th percentiles, the red line indicates the median. *significant 

differences p < 0.05, **significant differences p < 0.001. a Entire 
Cohort, b Pre-chemotherapy, c Post-Chemotherapy, d 7 b values, e 
8 b values
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