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Abstract
The inter-satellite link (ISL) has been received increasing attention, as it is a potential way to achieve autonomous clock 
synchronization for envisioned space-based satellite networks with minimal ground segment capability. Existing satel-
lite clock synchronization solutions either rely on prior information or modelling the relative motion by an approximated 
polynomial. In this paper, we propose a deep learning approach based on long short-term memory (LSTM) to decouple the 
clock parameters from pseudo-range measurements. The process of clock parameter estimation solely relies on the observed 
pseudo-range measurements, and the prior information of position and velocity are not required and the nonlinear relative 
motion process is modelled by training on historical data. The simulation results show that the proposed method outperforms 
the benchmark solutions in terms of accuracy.
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Introduction

Background

As the development of integrated electronic technology 
and the growing demand, the number of on-board satel-
lites has experienced explosive growth during the last 
decades. Satellite networks, as opposed to individual large 
spacecraft, offer a myriad of benefits, including abbrevi-
ated development cycles, diminished launch expenses and 
enhanced maneuverability. The collaborative network 
formed by multiple satellites enhances adaptability, scal-
ability, reliability, invulnerability and reconfigurability 
of the system.

When satellite systems perform tasks such as relative 
positioning (Kai et al. 2013), orbit determination (Ruan 
et al. 2020; Xie et al. 2020) and earth observation (Michalak 
et al. 2021), achieving high accuracy clock synchronization 
between each satellite is the fundamental premise, and the 
requirements for time synchronization in these cutting-edge 
scientific fields are still increasing. It should be noted that 
factors including volume, weight and power consumption 
are critical as they determine the overall launch cost of space 
missions. In order to reduce the overall cost and make full 
use of the existing resources, satellite systems normally 
require the fundamental temporal-spatial information pro-
vided by external system to maintain the system function. 
These high-cost infrastructures can provide high-accuracy 
position, navigation and timing (PNT) services. Moreover, 
the cost for users to obtain these services is very low. In 
general, satellite clock synchronization requires external 
assistance from ground stations (Iwata et al. 2010; Fujieda 
et al. 2014) or global navigation satellite system (GNSS) 
(Glennon et al. 2013). However, such a design is not feasible 
for the inaccessible scenarios such as deep space. Moreo-
ver, relying on ground station assistance requires the use of 
a large number of ground-based relay systems and global 
tracking systems, which takes up a considerable amount of 
manpower and material resources. In addition, for satellite 
networks used for military purposes, if ground stations or 
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GNSS satellites are destroyed during wartime, the satellite 
systems that do not have the ability to operate autonomously 
would be paralyzed.

To achieve clock synchronization, a reference clock frame 
must be selected. For low earth orbit (LEO) satellites, espe-
cially CubeSats which have strict restriction on overall cost, 
the GNSS signals are implemented as the reference to per-
form on-board clock steering (Glennon et al. 2013; Meng 
et al. 2020). However, such a method is vulnerable since it 
relies on the external system and the timing service of GNSS 
has limited accuracy (about 20 ns). Although the Galieo 
is developing a new timing service whose highest timing 
accuracy reaches 5 ns (Fernandez-Hernandez et al. 2022), 
it still cannot meet the requirement of some particular mis-
sions. Take the time-of-arrival (TOA) ranging techniques 
for example, nanosecond level clock synchronization per-
formance could lead to centimeter-level ranging error. If 
the GNSS signal is unavailable, the clock synchronization 
accuracy of the CubeSats would decrease, as the clock refer-
ence source turns to the on-board clock in this case and the 
stability of the on-board clock is limited. If one of the system 
member is chosen as the reference and broadcasts its timing 
information, then the other members are able to be synchro-
nized to it remotely (Powers and Colina 2016). Such a one-
way time transfer mechanism requires the accurate position 
information so that the clock deviation can be decoupled 
form the TOA measurements. In order to solve this prob-
lem, the two-way ranging (TWR) technique (Karthik and 
Blum 2020; Domuta and Palade 2021; X. Gu et al. 2021) is 
presented to jointly estimate the clock parameters and rela-
tive distance. In comparison to one-way ranging, TWR is 
capable of achieving higher estimation accuracy and estimat-
ing the clock parameters under unknown relative distance. 
However, the positions of nodes must be fixed during the 
TWR process, so that the relative distance of the forward 
link equals to that of the reverse link. On the other hand, 
since the satellites are in high dynamic motion, whose effect 
on TWR-based clock synchronization must be taken into 
account. In this case, the signal propagation delays of the 
forward link and the reverse link are not equal, and thus the 
number of unknown ranging parameters increases. In addi-
tion, the signal propagation delay becomes a time varying 
parameter due to relative motion.

All these facts reveals that the problem of constructing 
a full column rank matrix to perform estimation based on 
statistical signal processing needs to be addressed. The 
prior information provided by the ephemeris can be used 
to decouple the clock parameters from the pseudo-range 
measurements, namely, the positions and velocities of the 
satellites are implemented to calculate the signal propaga-
tion delay so that the number of unknown parameters can be 
reduced to meet the requirement of full column rank (Kim 
and Tapley 2003; Xu et al. 2012; Xiaobo Gu et al. 2015). 

However, in scenarios involving the ISL where communica-
tion between ground stations and satellites is unavailable, 
it becomes imperative to explore clock bias estimation by 
leveraging satellite velocity, position, and pseudo-range 
information. The estimation accuracy strongly relies on this 
information, and thus the absence of certain information 
might significantly degrade the accuracy.

In recent years, researchers have been working on meth-
ods to achieve clock synchronization by relying solely on 
ranging information without the assistance of prior informa-
tion. In (Rajan and Veen, 2015), a least square (LS) method 
is presented which requires a number of rounds of TWR 
measurements to jointly estimate the parameters of rang-
ing and clock for nano-satellites, and it is able to perform 
estimation only by exchanged timing tags. A step further, a 
LS estimator based on pseudo-range measurements is pro-
posed in (X. Gu et al. 2020), which reduces the communi-
cation load by utilizing the synchronous two-way ranging 
(STWR) technique. Moreover, to reduce the computation 
complexity and apply off-line computation, the iterative 
estimators such as Kalman filter (KF) are proposed (X. Gu 
et al. 2021). In theory, the performances of these statistical 
signal processing approaches rely on the proposed kinetic 
model, which aims to adopt a polynomial to characterize the 
relative motion model over a short period of time. In addi-
tion, a number of approximations are required to reduce the 
dimension of information matrix to get a unique solution. 
However, the relative kinetic model for satellite networks is 
complicated and varies over time, which makes it difficult to 
be expressed as a linear function with respect to time. There-
fore, how to accurately model the non-linear relative motion 
process becomes a challenging work which determines the 
performance of clock synchronization.

Due to the excellent performance in nonlinear param-
eter estimation, the machine learning (ML) and deep 
learning (DL) approaches have been adopted to estimate 
the states of satellite networks. In data-driven solution 
scenarios, methods based on ML and DL can exploit data 
features to uncover abstract relationships between data. 
The satellite orbit prediction, which is a nonlinear func-
tion with respect to time, is a applicable scenario for ML 
methods (Haidar-Ahmad et al. 2022). On the other hand, 
clock parameters estimation can also be estimated, as the 
clock parameters are coupled with the nonlinear ranging 
parameters. Most existing studies involve modeling clock 
bias data provided by precision data service centers such 
as the international GNSS service (IGS) data center to 
forecast clock bias data for a period of time (Huang et al. 
2021). This process encompasses various data analysis 
methods based on ML and DL. A wavelet neural network 
(WNN) model based on the single difference sequence 
of satellite clock bias is proposed to predict the next sin-
gle difference values (Wang et al. 2017). In (Ya et al. 
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2022), an improved BP neural network based on the beetle 
swarm optimization (BSO-BP) algorithm is presented to 
solve the local optimum problem of BP neural network, 
and the experimental results in third-generation Beidou 
satellite navigation system (BDS-3) perform its validity 
in terms of accuracy. In (Huang et al. 2021) and (He et al. 
2023), the authors established a satellite clock bias pre-
diction model based on long short-term memory (LSTM) 
that can accurately express the nonlinear characteristic 
of satellite clock bias after preprocessing the outliers in 
the original clock bias. These methods aim to address the 
challenge of maintaining satellite clock bias data even in 
the event of interruptions in the real-time satellite obser-
vation data stream. Accordingly, it appears to be reason-
able to use artificial neural networks (ANNs) to solve the 
problem of the satellite clock bias prediction (Wang et al. 
2017). However, the complexity of atomic clock can lead 
to limitations in the accuracy of clock bias predictions.

The DL model has an outstanding advantage that it can 
be trained to fit a function that matches the distribution 
of the values by adjusting the weights. The existence of 
relational transformations between satellite information 
makes it possible to use satellite pseudo-range, velocity, 
position and other information to estimate the satellite 
clock bias. The input data required for the model in a 
time-series prediction problem is usually in the form of 
feature data and the corresponding result data. The inter-
nal operation of the neural network is to use the feedback 
error to minimize the loss function while continuously 
learning and updating the model parameters through for-
ward and backward propagation, resulting in a functional 
mapping between the feature data and the result.

In recent years, the application of deep-learning mod-
els has gained significant traction in time series analy-
sis. Particularly, the advent of recurrent neural networks 
(RNNs) has revolutionized the field by incorporating 
the temporal dimension into traditional neural networks, 
allowing for the establishment of temporal relationships 
within the data. However, as the time span of the analyzed 
sequence increases, RNNs models encounter challenges 
such as vanishing gradients and gradient decent issues 
during the back-propagation process. To mitigate these 
challenges, the LSTM variant of RNNs has been devel-
oped (Lipton 2015). The LSTM architecture consists of 
three gates, and all of them employ the sigmoid activa-
tion function. This choice ensures that the gate outputs 
are confined to values close to either 0 or 1. Outputs 
approaching 1 facilitate the effective propagation of gra-
dients, while outputs close to 0 indicated that the informa-
tion from the preceding time step has negligible influence 
on the current time step, thereby eliminating the necessity 
of propagating gradients to update the model parameters.

Potential applications

Our motivation for this work is to enable the satellite network 
to achieve clock synchronization as accurate as possible, with 
the absence of time, distance and position information from 
any external system. The pseudo-ranges among the satellite 
members are the only observable parameters to carry out 
clock synchronization. Different from the existing methods, 
the proposed estimator gets rid of the process of linearizing 
the complex relative motion model, and free the constraint of 
relying on prior information. Therefore, the proposed method 
can be applied in other networks of self-organized, complex 
moving trajectory and limited prior information, such as 
unmanned aerial vehicle swarm, robot system, cooperative 
man-unmanned system, indoor positioning and deep space 
aircraft.

Contributions

The main contributions of this paper compared with the exist-
ing TWR-based clock synchronization literature are three 
folds.

1.	 We introduce a clock synchronization framework 
based on STWR. Unlike the traditional timing stamps 
exchanged mechanism, only a pair of pseudo-range 
measurements are exchanged for each communication 
cycle to perform parameter estimation.

2.	 A LSTM-based parameter estimation method is derived 
to model the nonlinear relative motion process, which 
is able to estimate the clock bias using previously 
observed pseudo-range measurements based on relative 
kinematics. Additionally, compared with the existing 
approaches, the information of velocity and position are 
no longer required.

3.	 We evaluate the performance of the proposed method 
and benchmark solutions using the satellite orbit data 
generated by the satellite tool kit (STK), the results show 
that the proposed estimator outperforms the benchmark 
solutions in terms of clock synchronization accuracy.

The rest of this paper is organized as follows. The basic 
ranging model and clock model are introduced in Sec. "System 
model". We conclude by comparing the proposed approach 
(outlined in Sec. "Proposed estimator" and Sec. "Parameter 
selection") to existing methods in Sec. "Case studies".
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System model

Clock bias model

We consider a network structured in a master/slave architec-
ture. In such a setup, there exists a central entity known as 
the master satellite, which serves as the reference satellite 
for coordination and calibration. Thus, the on-board clock 
of the master satellite is assumed to be perfectly stable and 
accurate, while multiple slave satellites communicate with 
it directly by way of the ISLs. As synchronous time divi-
sion duplex (STDD) is adopted in this study, that ensure the 
consistent states among all the transceivers. In theory, it has 
been demonstrated that the accuracy of the STWR technol-
ogy under the STDD communication framework surpasses 
that of polling time division duplex (PTDD) scheme (Xu 
et al. 2012).

The clock bias model can be expressed as:

where the coefficients a0 signifies an initial clock offset 
between the local clock and the reference clock, which is 
denoted as the phase deviation; a1 represents the frequency 
deviation, and a2 the fractional frequency drift rate, denoted 
as frequency drift (Allan et al. 1972), while �(t) denotes 
the aggregated phase noise, which can be expressed as a 
linear superposition sum of five independent noises, and the 
power-law spectral density expression is given by

where the random noise terms are known in the metrological 
literature as.

� = −2 : random walk frequency modulation (RWFM).
� = −1 : flicker frequency modulation (FFM).
� = 0 : white frequency modulation (WFM).
� = 1 : flicker phase modulation (FPM).
� = 2 : white phase modulation (WPM).

STWR​

In general, to achieve clock synchronization, one satellite is 
designated as the master satellite, and the others are called 
slave satellites. The onboard clock of the master satellite is 
designated as the reference clock, so there is a clock offset 
between the master satellite and the slave satellites. It is pos-
sible to compensate for this difference by estimating the clock 
bias, thus reducing the effect of the clock deviation and then 
achieving clock synchronization. Although it is possible to 
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extend the pairwise mode to a star topology that includes one 
master satellite and a plurality of slave satellites, this study 
only focuses on a master–slave structure involving twin satel-
lites for the sake of description.

At the initiation of the specified global transmission slot, 
the communication state of each satellite switches into sig-
nal transmission mode and dispatches the information frame 
with the analogous structure. These frames encapsulate the 
local pseudo-range measurements derived from the last com-
munication round. Due to the fact that the local clock of 
the satellite is generated independently from the local fre-
quency synthesizer, there must be a time difference between 
the local time and the global time. The satellites receive 
the signal at the commencement of the reception time slot. 
Subsequent processes include the acquisition, tracking and 
demodulation of these signals to recover the original signal.

Assuming constant visibility and uninterrupted communi-
cation between the two satellites, both the master and slave 
satellites are required to simultaneously transmit ranging 
signals to each other per � seconds. The system operation 
period is divided into a number of identical frames, which 
are composed of several time slots. The satellites execute a 
round of signal transmission and reception operation within 
a time slot, and repeat this operation continuously. All the 
satellites are required to simultaneously transmit signals to 
other satellites at the beginning of the transmission slot and 
switch to the receiving mode at the beginning of receiving 
slot (Xu et al. 2012). We define the duration of each time 
frame as the time interval � for each round of inter-satellite 
communication. However, due to the presence of clock bias 
between the satellites, the actual transmission times of the 
two satellites are not identical. Figure 1 illustrates the princi-
ple of STWR measurement. Notably, we designate the signal 
transmission time of the master satellite as the reference time 
for each round of two-way communication. For the ith round 
of STWR, the clock bias Δti between slave satellite B and 
master satellite A can be deduced by

As the signal transmitted by the master satellite propa-
gates through space and then receipt by the slave satellite, 
a number of delays occur during the whole process. There-
fore, the pseudo-range measurements consist of the signal 
transaction time, clock bias and other delays, which can be 
expressed as

where �AB(tiA)∕�BA(t
i
B
) denotes the signal propagation delay 

from A∕B to B∕A , ZAB∕ZBA denotes the unidirectional 
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combined device delays from A∕B to B∕A , IAB∕IBA denotes 
the ionospheric delay of the signal from A∕B to B∕A . ��A and 
��B denote the measurement noise. It should be noted that the 
error sources including device delay, ionospheric delay and 
other delays can be ignored or be compensated by the cor-
responding solutions, as discussed in (Xu et al. 2012; Xiaobo 
Gu et al. 2015). The aggregated residual errors are assumed 
to be Gaussian components with zero mean. Therefore, after 
the open-loop clock bias compensation process, the pseudo-
range measurements � in Eq. (4) consist of signal propaga-
tion time � , clock bias Δt and residual error. If the ephemeris 
data can be utilized, the signal propagation time � can be 
calculated as the positions and velocities of the satellites 
are known, and then the clock bias can be decoupled from 
� . In order to remove reliance on the prior information, we 
aim to estimate the clock bias solely based on pseudo-range 
measurements in this paper.

Proposed estimator

Based on the discussions above, we can infer that the key is 
how to decouple the clock bias from the observed pseudo-
range measurements. According to Sect. "Introduction", 
the existing solutions either utilize the velocity and position 
information to directly calculate the signal propagation time, 
or jointly estimate the clock and range parameters based on 
statistical signal processing algorithm. Although the latter 
is able to achieve clock synchronization with the absence 
of the prior information, the complex relative motion is 

difficult to be modelled by the Taylor series with respect 
to the reference time. Moreover, determining the order of 
the Taylor series is also difficult owing to the time varying 
relative motion.

Although the pseudo-range is the only observable meas-
urement, a series of pseudo-range measurements over a 
period of time comprises the statistical correlation in clock 
bias and relative motion. In light of this investigation, a 
LSTM-based clock bias prediction framework is proposed 
to improve the estimation accuracy.

In the RNN system, the state of the hidden layer combines 
the current input information and the previous hidden layer 
state. This tight coupling between the readout signal at one 
step and the state signal at the next step directly impacts 
the gradient of the objective function with respect to the 
state signal (Sherstinsky 2020). The gradient is propa-
gated through the time steps, using the chain rule to cal-
culate the gradient at each time step. The problem arises 
in long sequences where gradients can become very small 
or very large, making parameter updates unstable. LSTM 
addresses the vanishing gradient problem by introducing a 
gating mechanism. The key components in LSTM structure 
are the input gate, forget gate and output gate, which regu-
late information flow. The forget gate allows the network 
to selectively remember or forget information, preventing 
the vanishing gradient by controlling the flow of gradients 
through time.

Figure 2 shows the time series processing diagram of 
LSTM, which has showcased capabilities in demonstrating a 
high level of sensitivity toward temporal patterns. This neural 

Fig. 1   The schematic diagram 
of STWR during the i th round 
of signal transactions, satellite 
A is selected as the master
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network architecture is the advancement of the RNN, which 
introduces the concept of cell states, enabling the model to 
retain information about prior predictions. Through the manip-
ulation of these cell states, LSTM effectively addresses the 
issue of vanishing gradients inherent to RNN, thus compensat-
ing for their deficiency in long-term memory retentio.

As shown in Fig. 2, the LSTM nodes are defined as follows:

where the functions �(⋅) and �(⋅) are given by

(5)gt = �
(
Wgx ∗ xt +Wgh ∗ ht−1 + bg

)

(6)it = �
(
Wix ∗ xt +Wih ∗ ht−1 + bi

)

(7)ft = �
(
Wfx ∗ xt +Wfh ∗ ht−1 + bf

)

(8)ot = �
(
Wox ∗ xt +Woh ∗ ht−1 + bo

)

(9)Ct = gt ∗ it + Ct−1 ∗ ft

(10)ht = �
(
Ct

)
∗ ot

(11)�(�) =
1

1 + e
−�

(12)�(�) =
e� − e−�

e� + e−�

xt denotes the current moment, while ht−1 is the hidden 
state from the last moment. W∗ and b∗ are the weight matrix 
and bias, respectively. � and � denote the sigmoid activa-
tion function and tanh activation function. Ct denotes the 
cell state of LSTM. The data processing of LSTM involves 
three internally designed gates: Input Gate, Forget Gate and 
Output Gate. In Eq. (7), the current input and hidden layer 
state of the previous state are multiplied by weight matri-
ces Wfx ∈ ℝ

dh×dx and Wfh ∈ ℝ
dh×dh , where dx and dh denote 

dimension of the input data and the hidden layer state, 
respectively. After passing through a sigmoid function to 
map the value from 0 to 1, this processing can determine 
what information to discard from the previous state of cell. 
In Eq. (6) and Eq. (9), the input gate incorporates the data 
that has already been processed by the Forgot Gate to update 
the current state of the cell. The Output Gate is responsible 
for passing the updated cell state to the next cell, passing the 
current cell state through tanh function and merging it with 
xt and ht−1 to update the hidden layer state ht.

Unlike specialized time series models focusing solely 
on satellite clock bias data, our proposed model harnesses 
historical pseudo-range data to forecast satellite clock 
bias variations over an extended future timestamp, ensur-
ing a certain degree of estimation accuracy. This approach 
stands apart from typical regression problems, as we uti-
lize the time series of pseudo-range data, with clock bias 
data between satellites as the output, which preserves the 
continuity characteristics of the data in the time dimension. 

Fig. 2   LSTM neural network 
structure
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While intuitively satellite clock bias data and pseudo-range 
data might not exhibit direct correlations and do not directly 
derive from each other, which contains the effect of complex 
relative motion. Thus, the analyzing these time series data 
through LSTM enables the establishment of internal patterns 
and trends between them.

In the majority of satellite clock bias prediction studies, 
many scholars employ the precise clock bias data obtained 
from ground stations. They segment such data using dif-
ferencing operations and sliding windows, generating new 
time series data characterized by fixed time steps. The goal 
of prediction is the satellite clock bias data for a future time 
period. Although LSTM offers training modes for multi-step 
and single-step predictions, current prediction values must 
be restructured as ground truth data for the next step predic-
tion due to the inherent structure of model's input and out-
put. This unavoidably leads to an accumulation of prediction 
errors. However, the proposed training approach circumvents 
this drawback, which requires the proper functioning of sig-
nal transmission and reception so that the corresponding 
pseudo-ranging measurements can be collected. This data 
prediction methodology always takes pseudo-range measure-
ments as model input, effectively mitigates the accumulation 
of errors.

Figures 3 and 4 shows the process of data processing 
and sequence construction. The above aspects need to be 
improved as following steps:

Step 1. In the context of pseudo-range data of each round 
of signal transactions from the master satellite and slave 
satellite, we form them into two-dimensional vectors and 
convert this time sequence into a multi-feature variable using 
an equidistant interval, representing multiple time steps. For 
the whole-time sequence X = {X1,X2,X3, ...,XN} is the data 
of a known pseudo-range sequence of satellite-link. We use 

the window size as the time-steps for pseudo-range data. 
By rolling this window, we reconstruct the data into mul-
tiple segments and reassemble the segments to new time 
sequences. The time-step dimension p through the way of 
equidistant interval satisfies p ≪ N . Then, it produces a new 
pseudo-range sequence:

Step 2. We employ a training approach within the LSTM 
model whose format is multi-input and single-output, essen-
tially constituting supervised learning problem. We regard 
the clock bias data Y = {Y1, Y2, Y3, ..., YN−1, YN} as target 
values. Commencing from the pth clock bias data point, we 
obtain a new sequence of clock bias: {Yp, Yp+1, ..., YN} using 
the same sliding distance as described in Step 1.

Step 3. In the context of Step 1 and Step 2, a new data set 
is established to capture the relationship between pseudo-
ranges and clock bias. Their correspondence is defined such 
that each segment of fixed time-step pseudo-range values 
corresponds to the clock bias value at the final moment:

Step 4. All data need to be normalized firstly, as this pro-
cess can enhance the accuracy and speed of model conver-
gence. In the final step of clock bias prediction, it is nec-
essary to perform inverse normalization to revert it to its 
original scale, ensuring the integrity of information.

(13)

⎡
⎢⎢⎢⎣

�
X1,X2,X3,… ,Xp−1,Xp

�
�
X2,X3,X4,… ,Xp,Xp+1

�
…�
XN−p+1,XN−p+2,XN−p+3,… ,XN−1,XN

�

⎤
⎥⎥⎥⎦

(14)

⎡⎢⎢⎢⎣

�
X1,X2,X3,… ,Xp−1,Xp, Yp

�
�
X2,X3,X4,… ,Xp,Xp+1, Yp+1

�
…�
XN−p+1,XN−p+2,XN−p+3,… ,XN−1,XN , YN

�

⎤⎥⎥⎥⎦

Fig. 3   Process of rearranging the pseudo-range measurement values obtained from each round of STWR to input vectors
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We establish a mapping relationship between the sequence 
of pseudo-range and clock bias. This approach involves min-
ing the trends in clock bias in a data-driven way. It is different 
from the multi-step prediction approaches based on the clock 
bias, which regard the predicted value as a new observation 
to further extrapolate future periods. The shortcomings of the 
multi-step predicting method have been discussed in (He et al. 
2023). When the multi-step predicting method is implemented 
to predict the clock bias for a long period of time, the previ-
ously obtained prediction must be used as the input of the 
model. It is worth noting that such a process will lead to the 
gradual accumulation of model errors over time. In order to 
solve this problem, we transform the time series prediction 
problem of clock bias into regression problem. We let the 
observed pseudo-range measurements of each communica-
tion cycle be features, as they are more reliable and accurate 
than the clock bias prediction value in the “clock bias”-based 
approaches using multi-step prediction. This effectively 
mitigates the issue of error accumulation during long-term 
predictions, resulting in increased precision and reliability. 
Additionally, it offers a degree of interpretability. The detailed 
procedure of data processing is illustrated in Fig. 5.

Parameter selection

The method we propose is based on a neural network model 
rooted in the fundamental principles of LSTM networks, 
constructed using the Keras deep-learning framework. 

Neural network parameters play a significant role in deter-
mining the performance and efficiency of the model. In 
time series problems, data is typically structured in a three-
dimensional format, requiring the shape (samples, time-
step, features). The choice of the time-step length varies 
across different scenarios of time prediction problems. In 
cases with limited data samples, the time-step length may 
be constrained by the small data set size. Our original data 
consists of satellite-related information collected at sampling 
frequencies of 5 Hz and 1 Hz, allowing for the selection of 
relatively larger time-step lengths to capture temporal cor-
relations. However, the determination of the time-step length 
is considered a hyper-parameter in neural network modeling 
and necessitates extensive experimentation to find an appro-
priate length tailored to the specific data set and its nonlinear 
temporal features between pseudo-range and clock bias.

Theoretically, limited time-step length makes the 
model difficult to capture temporal relationships in data 
changes trend, while larger time-step length can obtain 
higher accuracy but result in the cost of increased com-
putational complexity. Therefore, the chosen of time-step 
length should be taken into account. The details of the 
final specific parameters we set are listed in Table 1. The 
pseudo-range data and clock bias data in a day have a 
total of 86,400 sampling points with 1 s sampling inter-
val. The first 80% samples of clock bias and pseudo-range 
are used as training data and validation data, and the last 
20% samples are used as the true values of the predicted 
data for comparative analysis. This LSTM model is trained 

Fig. 4   Process of constructing multi-variable sequence
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by using Adam algorithm as the optimizer with learning 
rate of 0.01 (Kingma and Ba 2014). To analyze the optimal 
time-step in this scenario, we take the root mean square 
error (RMSE) result of different time-step lengths in the 
GRACE mission as an example for analysis. The RMSE 
is defined as follows:

(15)RMSE =

√√√√1

n

n∑
k=1

(yk − ŷk)
2

where ŷk and yk are the predicted and true values of satellite 
clock bias at sequence number k , respectively, and n is the 
prediction times.

Figure 6 shows the RMSE of the estimated and true val-
ues with time-step from ts = 10 to ts = 200 . The slight vari-
ations in results are caused by the randomness of the initial 
weights and bias values of neural network model. This vari-
ability is normal and fluctuates within a certain range. As 
shown in the shapes of boxes, the training results are less 
stable from ts = 10 to ts = 120 , and they have more outli-
ers. It indicates the model we proposed still can not capture 
the pattern of the data effectively. However, from ts = 120 
to ts = 200 , the RMSE becomes more stable and gradually 
converges with less outliers, which is able to provide a ref-
erence to the model parameter selection strategy. Although 
the increasing time-step can improve the accuracy, it also 
extends the training duration. Additionally, this analysis 
result also suggests that the increasing time-step has certain 
limitations on the model accuracy when ts ≥ 120 . Based on 
the discussions above, for the sake of comprehensively con-
sidering training time and accuracy, we set ts = 200 in this 
paper.

Fig. 5   The flowchart of the proposed LSTM-based approach

Table 1   List of the LSTM model parameters

No Parameter Value

1 Number of LSTM layers 1 layer (64 units)
2 Number of dense layers 1
3 Number of training epochs 200
4 Input dimension size (200,2)
5 Output dimension size 1
6 Batch size 100
7 Learning rate 0.01
8 Validation data rate 0.2
9 Loss function MSE
10 Optimizer Adam
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Case studies

In this section, we evaluate and analyze the performance of 
the proposed method in the scenario of the GRACE mis-
sion. The original satellite data are obtained by the STK, 
which is capable of simulating satellite constellations. To get 
the pseudo-range measurement information, we regard the 
GRACE satellites motion over a day as the input of STWR 
model. After operation of data processing, we transform the 
pseudo-range measurements and clock bias into the input 
format of LSTM model in a ratio of 60% training data, 20% 
validation data, 20% test data. Without loss of generality, we 
let the phase deviation a0 = 1 × 10−8 s, the frequency devia-
tion a1 = 1 × 10−12 , and the frequency drift a2 = 1 × 10−16

/s. As a comparison, we also present the estimation results 
under different clock stabilities. We set the speed of light 
c = 3 × 108 m/s, and the Allan deviation (ADEV) of each 
phase noise component at � = 1 s is shown in Table 2.

Effect of clock stability

First, we consider the impact of noise with different stand-
ard deviations on the estimation performance of the LSTM 
model. Let the time interval of STWR � = 1 s. Figures 7, 
8, 9, 10, 11, 12, 13 and 14 depict the simulation results of 
the proposed LSTM estimator, the LS estimator proposed 
in (X. Gu et al. 2020) and the method based on the prior 
information (Xu et al. 2012), which are represented in red 
color, green color and blue color, respectively.

From Figs. 7, 8, 9 and 10, it is evident that on the test 
data, after converting pseudo-range data into the correspond-
ing format and subsequently inverse normalization to be the 
input of LSTM model, we can obtain highly accurate clock 
bias data for the corresponding time instant, exhibiting a 
trend consistent with the original clock bias model. The 
residual value for this result is also presented in Figs. 7, 8, 
9, 10b. By comparison, we note that the decoupling method 
based on the prior information outperforms the others due 
to the accurate position and velocity can be used to calcu-
late the signal propagation time so that the clock bias can 
be decoupled accurately. But the proposed method achieves 

Fig. 6   Box plot of the estimated 
and true values for varying 
time-step values

Table 2   ADEVs of four clocks 
with different stabilities

Number Designation RWFM FFM WFM FPM WPM

1 � at � = 1s 1.2 × 10−11 1.0 × 10−10 1.0 × 10−10 1.0 × 10−9 1.0 × 10−9

2 � at � = 1s 1.2 × 10−12 1.0 × 10−11 1.0 × 10−11 1.0 × 10−10 1.0 × 10−10

3 � at � = 1s 1.2 × 10−13 1.0 × 10−12 1.0 × 10−12 1.0 × 10−11 1.0 × 10−11

4 � at � = 1s 1.2 × 10−14 1.0 × 10−13 1.0 × 10−13 1.0 × 10−12 1.0 × 10−12
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Fig. 7   Comparison of the proposed method and existing methods using No.1 clock in Table 2 for � = 1 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively

Fig. 8   Comparison of the proposed method and existing methods using No.2 clock in Table 2 for � = 1 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively

Fig. 9   Comparison of the proposed method and existing methods using No.3 clock in Table 2 for � = 1 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively
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Fig. 10   Comparison of the proposed method and existing methods using No.4 clock in Table 2 for � = 1 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively

Fig. 11   Comparison of the proposed method and existing methods using No.1 clock in Table 2 for � = 0.2 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively

Fig. 12   Comparison of the proposed method and existing methods using No.2 clock in Table 2 for � = 0.2 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively



GPS Solutions (2024) 28:147	 Page 13 of 16  147

a better performance than the LS method in accuracy. In 
addition, it can be found that changing phase noise does 
not affect the actual effect of this model. It signifies that the 
LSTM model has effectively learned and fitted the relation-
ship between pseudo-range and clock bias within the neural 
network during the training process with the absence of posi-
tion and velocity information.

Observing Figs. 7, 8, 9, 10b, it can be found that the 
LSTM has an oscillation performance. The reason is that, 
for neural network algorithms, the residuals normally fluctu-
ate instead of converging to a constant value. As the relative 
motion between satellites, the pseudo-range measurements 
change over time, the LSTM model has difficulty to per-
fectly capture all the slight changes but it still can achieve 
better accuracy than LS approach. On the other hand, the 
results shown in Figs. 7, 8, 9, 10c also indirectly describe 
this phenomenon. The long-term stability performance of 

the proposed method is slightly worse than LS owing to the 
oscillation.

Effect of communication time interval

The corresponding clock bias estimation plots for vary-
ing clocks under time interval of communication � = 0.2 
s are displayed in Figs. 11, 12, 13 and 14. The error plots 
illustrate the performance of the model by depicting the 
disparity between the estimated and true clock bias val-
ues. From the result we present, it can be found that the 
decreased communication time interval can enhance the 
performance of LSTM approach. When communication 
time interval � = 0.2 s, the proposed method achieves a 
better performance in estimation accuracy, signifying the 
correlation of data can be captured more efficiently in 
this case. As for the performance of stability, the shorter 

Fig. 13   Comparison of the proposed method and existing methods using No.3 clock in Table 2 for � = 0.2 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively

Fig. 14   Comparison of the proposed method and existing methods using No.4 clock in Table 2 for � = 0.2 s. The results of a the estimated clock 
bias, b residual clock bias and c ADEVs of the residual clock bias are given, respectively
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communication time interval also improves the long-term 
stability, which is shown in Figures 7, 8, 9, 10, 11, 12, 13 
and 14c. Therefore, both the accuracy and stability can be 
improved as the communication time interval decreases. 
However, the value of communication time interval can-
not be set as small as possible, since the other factors such 
as power consumption, calculation time and complexity 
of the network topology must also be taken into account.

The random property and uncertainty of the data will lead 
to the fluctuation of residuals. According to Figures 7, 8, 9, 
10, 11, 12, 13 and 14c, it can be found that when the noise 
component decreases, the degree of oscillation of residuals 
is reduced. In addition, in comparison to the results shown 
in Figs. 7, 8, 9, 10c for � = 1 s, the difference in long-term 
stability performance between the proposed method and the 
LS method becomes smaller. Therefore, we can infer that 
the communication time interval relates to the accuracy and 
stability performances of the proposed method.

Moreover, according to Figures 7, 8, 9, 10, 11, 12, 13 
and 14b, it can be seen that the varying communication 
time interval also have different effects on the estimation 
accuracy of the LSTM and LS. As the communication time 
interval decreases, the deviation of LS is always stable at 
around 1.5 × 10−8 s, while the estimation accuracy of LSTM 
improves significantly. The reason is that the LS is a batch 
filter, changing communication time interval results in a nar-
rower time window, if the size of the input data does not 
change. In this case, the fitting performance of the ranging 
coefficient to the relative motion state determines the esti-
mation accuracy.

LSTM model evaluation

The experimental results are summarized in Figs. 15(a), (b) 
and 16, which provide a comprehensive comparison of RMSE 
for the neural network models established for the GRACE mis-
sion satellite system under varying levels of phase noise and 
time interval of communication in the clock bias models. Fig-
ure 15(a) and (b) offer valuable insights into the performance 
of our neural network models across different noise scenarios, 

Fig. 15   a: RMSEs[sec] for different on-board clocks with communication time interval � = 1 s. b: RMSEs[sec] for different on-board clocks 
with communication time interval � = 0.2 s

Fig. 16   RMSEs of the proposed method and existing estimators for 
communication time intervals � of 0.2 s, 1 s, 60 s using No.4 clock
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allowing us to assess their robustness and accuracy in handling 
variations in phase noise and time interval of communication. 
As we can see from Fig. 16, with the increase in time inter-
val of communication, there is a tendency for a reduction in 
effective information on the time sequence. This will impact 
the performance of the LSTM clock bias estimation model. 
In the context of satellite motion, when the time interval of 
communication reaches 60 s, significant variations in satellite 
information become apparent. Despite this challenge, the accu-
racy of this estimator remains an order of magnitude higher 
than that of the LS estimator.

Since the model is built on the relationship between pseudo-
range variations and clock bias trends, it becomes particularly 
useful when satellites lose continuous and precise information 
support regarding their orbits and velocities. Therefore, when 
the master satellite and slave satellites perform clock synchro-
nization via STWR, the proposed approach provide a novel 
aspect to decouple the clock error frrom pseudo-range meas-
urements without modelling the non-linear relativc motion, 
which results in a higher accuracy compared with the LS-
based approach. 

Conclusion

In this paper, a LSTM-based parameter estimation method 
was proposed to solve the satellite clock synchronization 
problem using ISL ranging measurements. We investigated 
the LSTM-based estimation method based on STWR ranging 
measurements under various clock models and communication 
time intervals. Simulation results indicate that the proposed 
LSTM-based approach achieves a very close performance 
to the algorithm which utilizes ephemeris data, and outper-
forms existing clock bias estimation algorithms which use 
pseudo-range measurements or exchanged timing tags. The 
proposed approach can also be applied in other networks with 
unsynchronized clocks and limited observable measurements. 
Future work may include dealing with the problem of clock 
synchronization under partial one-way ranging measurements 
in complex environments.
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