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Abstract
Traditional automated offset detections on global navigation satellite system (GNSS) station coordinate time series still 
cannot fully replace manual detections in practical applications due to their high false positive detection rates. We developed 
preliminary and enhanced offset detection approaches and tested them against the solutions from the International GNSS 
service 2nd and 3rd data reprocessing campaigns (Repro2 and Repro3). Their manually detected offset recordings in 
International Terrestrial Reference Frame (ITRF) 2014 and ITRF2020 are used as evaluation criteria. In the preliminary 
approaches, stochastic models based on covariance matrix, white noise model, and white noise plus flicker noise model of 
both univariate and multivariate are studied. Although we achieved true positive, false positive, and false negative (TP, FP, 
FN) rates of (0.44, 0.40, 0.16) for Repro2 and (0.42, 0.44, 0.13) for Repro3, the preliminary automated detections still lead 
to many false positive detections. Thus, based on the preliminary approaches, and ancillary data, an enhanced detection 
approach is proposed. Enhanced detections significantly reduce 56% ~ 80% false positive detections compared to preliminary 
approaches. As a result, for Repro3, the optimal overall performance is attained with (TP, FP, FN) rates of (0.57, 0.25, 
0.18), along with a detection rate of 75%; for Repro2, the rates are (0.58, 0.20, 0.22), accompanied by a 73% detection rate. 
The current enhanced approach may serve as a supplementary or reference to manual detection, although still not being 
perfect. Furthermore, 20 manually detected unknown offsets in ITRF2020 are found to correspond to some known events 
(13 earthquakes and 7 equipment changes); 34 automated detections that correspond to known events but are not collected 
in ITRF2020 are manually checked as offsets (14 earthquakes and 20 equipment changes).
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Introduction

Nearly 40 years of observational data from the global navi-
gation satellite system (GNSS) permanent station have been 
accumulated since the 1980s. Based on the accurate veloc-
ity and uncertainty estimation of these time series, many 
geodetic and geophysical applications and phenomena 
could be researched, such as global and regional reference 
frame realization, plate tectonic deformation, glacial iso-
static adjustment, and crustal loading deformation (Bock 
and Melgar 2016; Herring et al. 2016). In the increasing 
number of stations and longer time series, offsets that occur 
at a high frequency and potentially stem from various causes 
can damage the accuracy of estimating velocities (Williams 
2003b; Griffiths and Ray 2015; Lian et al. 2018). Especially, 
known and unknown offsets covered in noise is an obstacle 
to the scientific research objectives of 0.1 mm/y velocity 
uncertainty.
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Detecting discontinuities has been a pivotal task in the 
preprocessing analysis during the establishment process 
of the international terrestrial reference frame (ITRF). The 
ITRF is constructed based on the long-term continuous 
observations of four space geodetic techniques: very 
long baseline interferometry (VLBI), global navigation 
satellite system (GNSS), satellite laser ranging (SLR), 
and Doppler orbitography and radiopositioning integrated 
by satellite (DORIS). To establish and maintain the 
ITRF, each technique's analysis center submits solutions 
utilizing the latest models and strategies to its combination 
center. IGS Repro2 and Repro3 are combined solutions 
of GNSS, specifically used to establish ITRF2014 and 
ITRF2020, respectively. Currently, the ITRF is a long-
term solution that requires estimating station velocities as 
accurately as possible. However, during the observational 
process spanning many years, stations may experience 
discontinuities due to earthquakes (EQ), antenna changes 
(AT), receiver changes (RE), non-linearity (NL, such as ice 
melting), unknown reasons (UK), and so forth, resulting in 
abrupt changes in station coordinates. Presently, the method 
for handling these abrupt changes involves accurately 
detecting their occurrence epochs in the time series and 
conducting segmented fitting.

However, detecting offsets perfectly is challenging. 
ITRF offsets (discontinuities) are visually inspected using 
external information from equipment changes in site logs 
and co-seismic deformation of registered earthquakes in the 
Global Centroid Moment Tensor Project (Altamimi et al. 
2016, 2023). Although the well-known Detection of offsets 
in GPS Experiment (Gazeaux et al. 2013, DOGEx) indicated 
that manual methods (where offsets are hand-picked) almost 
always gave better results than automated or semi-automated 
methods, it is essential to note that manual methods still 
suffer from high false detection rates and are not efficient 
enough. Thus, effective and stable automated offset detection 
algorithms are highly important and have been the research 
focus over the years.

Generally, offsets as a bias in GNSS times series 
analysis are investigated on two aspects: offset influence 
and offset detection. First, the influence of offsets to model 
parameter estimates depends on different observational 
noise types (Williams 2003a; Williams et al. 2004; Wang 
and Herring 2019), the positions of the offsets within the 
time series (Perfetti 2006) and the offset magnitudes. Even 
though growing offset numbers could increase the velocity 
uncertainties, offsets remaining undetected could have worse 
impacts (Williams 2003a; Gazeaux et al. 2013). Therefore, the 
recommended way is to estimate velocities, offsets, and noise 
components simultaneously (Williams 2003b; Perfetti 2006).

Concerning on offset detection, various offset detection 
methods and procedures have been investigated, including 

finding outliers and discontinuities in time series (FODITS) 
in Bernese by Ostini et al. (2008), Sigseg by Vitti (2012), L1 
regularization by Wu et al. (2018), STARS by Bruni et al. 
(2014), multivariate analysis by Khazraei and Amiri-Simkooei 
(2021). However, the performance of these offset detection 
methods on real data has not been extensively researched. 
Actually, there are only a few studies on the application 
performance of automated offset detection in real data and 
their findings are reviewed as follows.

Perfetti (2006) applied classical detection identification 
adaptation (DIA) method (Teunissen 1998) to detect offsets 
in the Italian GNSS Fiducial Network. When an offset 
candidate is detected by DIA, it will be checked manually, 
and as a result 70% of the offsets are identified. However, 
it is worth noting that Perfetti (2006) only utilized data 
from 8 real stations, if the station number increase, manual 
checking becomes inefficient. Najder (2020) used 10 real 
stations to investigate the confidence level of automated 
offset detection for FODITS, the results indicate that false 
detections almost damage the automated detections. Similar 
results can be found in Gazeaux et al. (2013). Most recently, 
Lahtinen et al. (2021) proposed a semi-automatic offset 
detection method and achieved a detection performance of 
49% for true positive (TP), 15% for false negative (FN), and 
35% for false positive (FP), compared to manual detection 
results. Generally, Lahtinen et  al. (2021) have attained 
superior outcomes with real datasets until now. However, 
their FP rate remains relatively high, and the data included 
268 stations in Nordic Geodetic Commission (NKG) rather 
than global network.

Furthermore, regarding on improving the automated 
offset detection, several studies have been conducted. 
Amiri-Simkooei et al. (2018) consider colored noise and 
apply the multivariate analysis method in offset detection. 
They conclude that ignoring flicker noise existing in the 
time series will lead to lower offset detection performance. 
However, Lahtinen et al. (2021) find that small-size offsets, 
behaving like flicker noise, can remain undetected if flicker 
noise model is used. Consequently, they only applied the 
white noise model. Further investigation is required to 
determine which noise model should be utilized.

This work aims to propose a globally applicable and 
automated offset detection method on real datasets. We 
take advantage of the classical DIA method to detect offsets 
and simultaneously estimate velocity parameters, offset 
magnitudes, and their uncertainties. The DIA method, 
originating from Teunissen (1985, 1990), has been further 
explored by Teunissen (2017), Zaminpardaz and Teunissen 
(2019), and Yang et al. (2021). Additionally, in order to 
study the impact of noise on offset detection, we employ the 
noise analysis method proposed by Amiri-Simkooei et al. 
(2018), which focused on the least square estimates of noise 
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component for both univariate and multivariate. The theory 
and applications of the multivariate analysis are presented 
in Amiri-Simkooei (2008) and Amiri‐Simkooei et al. (2007, 
2017, 2018).

The rest of this paper is organized as follows. 
"Fundamental theories" section briefly reviews the 
fundamental theories used in this study. "Data introduction" 
section introduces the utilized data. "Detection approaches" 
section presents numerical preliminary automated detection 
approaches, results, and analysis to discuss the performance 
of offset detection in real data, as well as the impact of 
the noise model and coordinate component. "Results and 
analysis" section proposes enhanced detection approaches 
based on preliminary findings and utilizing ancillary data. 
Finally, "Conclusion" section concludes the study.

Fundamental theories

The proposed approaches are based on hypothesis testing 
and noise analysis, fundamental theories are briefly reviewed 
here.

Functional model

Traditional functional model of GNSS time series takes 
consideration of the deterministic effects: a linear trend 
generally caused by plate tectonic deformation, potential 
periodic signal caused by geophysical effects, and known 
offsets caused by various reasons, it is written as

where y
(
ti
)
 is the station coordinates at time ti , D is the inter-

cept, v means the station velocity; Aj , �j , and �j refers to the 
amplitude, frequency, and phase of the j-th harmonic; n is 
the harmonic number; gk and Tk is the magnitude and occur-
rence moment of the kth offsets; ng is the number of offsets 
and C

(
ti − Tk

)
 is the step function where C = 0 for ti < Tk and 

1 for ti ≥ Tk . Annual and semiannual period components are 
used in this work.

Stochastic model

Covariance‑based stochastic model

In this paragraph, we introduce how to define the stochastic 
model based on covariance (COV) matrices. The computed 
COV for X, Y, and Z components of station s at time ti are 

(1)

y
(
ti
)
= D + v ⋅ ti +

n∑
j=1

Aj ⋅ cos
(
�jti + �j

)
+

ng∑
k=1

gk ⋅ C
(
ti − Tk

)

converted to the local reference system through the error 
propagation law. Since the applied data is already expressed 
in the same reference frame, no further transformation is 
required. The resulting stochastic model for station s 
becomes:

���enu

(
ti
)
 refers to the variances of east, north, or up 

component at time ti.

Noise‑based stochastic model

To construct the noise-based stochastic model, several prior 
studies have been referred to. As like many geophysical 
phenomena, the power spectra of noise in GNSS time series 
can be effectively approximated by

where P0 is a constant, � is the spectral index (0 for white 
noise, 1 for flicker noise, and 2 for random walk noise), f  
is the frequency (Agnew 1992). The Fractional Brownian 
motion is described in more detail in e.g. Zhang et  al. 
(1997), Mao et al. (1999) and Williams et al. (2004). The 
noise structure is found to be a combination of white noise 
(WN) and flicker noise (FN) for the majority of GNSS time 
series (Zhang et al. 1997; Amiri-Simkooei 2008).

Then, the least square variance component estimate 
(LSVCE) methods proposed by Amiri-Simkooei (2008) 
are applied to estimate the noise component on both 
univariate and multivariate. For brevity, the multivariate 
form is reviewed first and then the univariate form is given 
as a special case. Assuming a linear model of observation 
equations formed as:

where E(⋅) is the expectation operator, D(⋅) is the dispersion 
operator, vec(∙) is the vector operator, � is the design matrix 
based on equation (1), ⊗ is the Kronecker product, �r ∈ ℝ

r×r 
is the r-dimension identity matrix, � ∈ ℝ

n×r is the 
observable matrix, � ∈ ℝ

m×r is the matrix of unknown 
parameters, �vec(�) ∈ ℝ

nr×nr refers to the variance matrix 
of� , and � ∈ ℝ

r×r refers to the to-be-determined correlation 
matrix of r time series. � ∈ ℝ

n×n is the cofactor matrix and 
is expressed as a linear combination of cofactor matrix 
�p ∈ ℝ

n×n . �2

p
 , p = 1,⋯ , p0 are the unknown noise variance 

components to be estimated. When r=1, this formulation 
reduces to the univariate model. The noise structures of the 

(2)���s =

⎡
⎢⎢⎣

���enu

�
t1
�
⋯ 0

⋮ ⋱ ⋮

0 ⋯ ���enu

�
tn
�
⎤
⎥⎥⎦

(3)P(f ) = P0f
−�

(4)

E(vec(Y)) =
(
�r ⊗ �

)
vec(�)

D(vec(�)) = �vec(�) = �⊗� = �⊗

p0∑
p=1

�
2

p
�p
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r components are assumed to be the same here. As the noise 
structure adopted in this contribution is a linear combination 
of white noise plus flicker noise (WFN). According to Zhang 
et  al. (1997) and Amiri-Simkooei (2008), the assumed 
cofactor matrices is given by � = �2

w
�w + �2

f
�f  , where �w

,�f  , �2

w
 , and �2

f
 are the cofactor matrices and the variance 

components of WN and FN, respectively. Thus, 
�
2 =

[
�2

w
�2

f

]T
 reads

where � ∈ ℝ
2×2 and l ∈ ℝ

2 . can be obtained by

where  tr(∙) i s  t he  t r ace  ope ra to r , p, q = 1, 2  , 
�⊥

A
= � − �

(
�T�−1�

)−1
�T�−1 is an orthogonal projec-

tor, and � =
�̂T�−1�̂

m−n
 ( ̂� = �⊥

A
� is the least square residuals 

matrix).
For a univariate model, � = 1,r = 1 , and �̂ = ê in equa-

tion (6) ( ̂e = �⊥
A
y is the least square residuals). Then, the 

variance matrix of y in equation (4) is expressed as 
�yy = �2

w
�w + �2

f
�f  ,  a n d  �

2 = �−1l  w i t h 

npq =
1
2 tr

(

�−1
yy �

⊥
A�p�−1

yy �
⊥
A�q

) , lp =
1

2

(
êT�−1

yy
�p�

−1
yy
ê
)

.

Hypothesis testing

The offset and outlier detection approach theoretically based 
on hypothesis testing, similar test theory can be referred to 
Teunissen (2017) and Amiri-Simkooei et al. (2018).

The null hypothesis H0 means what one believes to 
be valid and the alternative hypothesis Hk means that a 
misspecification is assumed occurred. For a r-dimension 
linear model, H0 and Hk are usually formed as:

where Ck ∈ ℝ
m is the mean shift matrix and Gk ∈ ℝ

1×r is 
the functional model misspecification that impacts the mean 
of �.

The search for potential model misspecifications 
is carried out through an identification step under the 
alternative hypothesis. Once the vector Ck is determined, 
the alternative hypothesis is specified, and the test statistic 
for r-dimension multivariate model reads

(5)�
2 = �−1l

(6)
Npq =

r

2
tr
(
𝐐−1𝐖⊥

A
𝐐p𝐐

−1𝐖⊥
A
𝐐q

)
, lp =

1

2
tr

(
𝐄̂T𝐐−1𝐐p𝐐

−1𝐄̂𝚺
−1
)

(7)H0 ∶ E(vec(�)) =
(
�r ⊗ �

)
vec(�)

(8)
Hk ∶ E(vec(�)) =

(
�r ⊗ �

)
vec(�) +

(
�r ⊗ Ck

)
vec

(
Gk

)

(9)Tk =
CT
k
𝐐−1𝐄̂𝚺

−1
𝐄̂T𝐐−1Ck

CT
k
𝐐−1𝐖⊥

A
Ck

for univariate, substitute � = 1 and �̂ = ê into equation (9) 

yields Tk =
(
CT
k
�−1

yy
ê
)2

CT
k
�−1

yy
�⊥

A
Ck

.

The maximum value of Tk , denoted as max
k

Tk , corre-
sponding to a specific epoch, is regarded as a potential offset 
candidate and is subjected to testing at a specified signifi-
cance level �0 . Under the null hypothesis, the test statistics 
follow a central chi-squared distribution with r-degree of 
freedom. The null hypothesis will be accepted if 
max
k

Tk < 𝜒2

𝛼0
(r) and rejected if max

k
Tk ≥ �2

�0
(r) If the 

alternative hypothesis Hk is accepted, adjustments to the null 
hypothesis are required to eliminate model misspecifications 
in the solution. Identified outliers are excluded, and detected 
offsets are incorporated into the function model. 
Subsequently, the null hypothesis is changed accordingly. 
The testing procedure is iterated until no outliers or offsets 
can be identified.

Based on the above basic principles, the unified detection 
procedure is as follows: First, establish functional and 
stochastic models. Second, starting from the 2nd observation 
epoch, iterate through all remaining epochs to compute Tk 
and findmax

k
Tk . If max

k
Tk ≥ �2

�0
(r) , it is considered as the 

existence of outliers or offsets. Remove the outliers or 
incorporate the offsets into the functional model. Then, 
return to the first step to re-establish the models and continue 
the detection process until max

k
Tk < 𝜒2

𝛼0
(r) in the second 

step.

Data introduction

IGS Repro2 and Repro3 represent the second and third 
reprocessed campaigns which combine the contributions 
from various analysis centers to establish ITRF2014 and 
ITRF2020. To evaluate the performances of our automated 
detection approaches, manually detected offset recordings in 
ITRF2014 and ITRF2020 are used as ground truth. Weekly 
solutions are used in this work rather than daily solutions. 
In general, the coordinates of a station are considered 
unchanged within a week, hence weekly solutions are 
derived from the combination of solutions from seven 
days of the week. Weekly solutions also have practical 
applications such as JPL Kalman filter and smoother 
realization of the International Terrestrial Reference Frame 
2014 (JTRF2014). Therefore, our main focus is currently 
on weekly solutions. However, it should be noted that daily 
solutions and weekly solutions differ in noise characteristics. 
We hope to further analyze daily solutions based on the 
current work in the future. The URLs for the relevant data 
are provided in the Data availability section.
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The features of offsets should be taken into consideration, 
including offset reasons, offset numbers, offset occurrence, 
and offset spatial and magnitude distributions. Regard-
ing the reasons for offsets, there are five main categories: 
earthquakes, antenna changes, receiver changes, unknown 
reasons, and nonlinearities. Other minor causes, such as 
volcanic activities and cable repairs, are not analyzed here. 
Specifically, the statistical information of offsets in Repro2 
and Repro3 are listed in Table 1. 72 stations were excluded 
from Repro2 and 11 stations were excluded from Repro3 
because their corresponding codes could not be found in 
the ITRF discontinuity files based on the code field in the 
weekly solution files. The frequency of offsets, calculated 
following Williams(2003b) by offset numbers dividing the 
combined data span, occurs every 4 years for Repro2 and 
every 6 years for Repro3. In reality, offsets increase at an 
accelerated pace with the growing number of stations and 
equipment changes, highlighting the importance of an effec-
tive automated offset detection procedure.

As to the offset spatial and magnitude distributions, we 
present the Repo3 offset recordings in Fig. 1a and b. From 
Fig. 1b, we can see that different offset reasons and coordi-
nate components indicate distinct magnitude distribution 
characteristics: the distribution dispersions of offsets caused 
by receiver change and non-linearity is smaller compared to 
that of unknown, antenna change, and earthquake in the two 
horizontal components. Notably, offsets caused by earthquake 
exhibiting the maximum dispersion in the horizontal compo-
nents. In contrast, in the vertical components, offsets caused 
by earthquake have the smallest dispersion. Actually, offset 
magnitude is highly correlated with the detection rates, and we 
will elaborate this point in the following content.

Detection approaches

The preliminary detection approaches

Preliminary detection approaches are grounded in the fun-
damental theories introduced in "Fundamental theories" 
section. In order to assess the detection performance and 
evaluate the influence of both the noise (stochastic) models 
and the coordinate components, thirteen experiments are 
designed and listed in Table 2, along with their designated 

codes. Specifically, 3 types of noise models are constructed, 
including COV (covariance), WN (white noise), and WFN 
(white noise plus flicker noise); 4 coordinate components 
are considered, namely E, N, U, and multivariate (M), where 
multivariate consider east, north, and up simultaneously. 
Both univariate and multivariate models are included in WN 
and WFN. As a result, the former eleven experiments are 
designed and tabulated in Table 2.

The latter two experiments 12 and 13 are designed upon 
the former results. We find that utilizing only the WN model 
in offset detection leads to significant over-segmentation when 
employing the test statistic in equation (9). Nevertheless, test 
statistics that consider penalties, such as Bayesian Information 
Criterion with fixed C (BICC, where the subscript C represents 
the stochastic model, see Bos et al. (2013) and Lahtinen et al. 
(2021)), can effectively mitigate this over-segmentation. 
Consequently, we introduce the 12-th experiment WN

P

M
 

(‘P’ denotes penalties, ‘M’ denotes multivariate model) to 
incorporates BICC. As for the 13-th experiment, we calculate 
the intersection of the offset detection results from WN

P

M
 and 

WFNM (detailed in notes for Table 2) to reduce false positive 
detections. If a detected offset epoch is identified in WN

P

M
 , and 

there are detections within ± 3-points (namely ± 3 weeks in 
case of weekly solutions) range in WFNM , the epoch will be 
accepted in the intersect results.

The enhanced detection approaches

Based on the research in preliminary detections, we select 
WN

P

M
 , WFNM , and WN

P

M
∩WFNM from the preliminary 

13 experiments due to their overall better performances. 
However, their results still yield high FP rates. Considering 
the fact that most of the offsets correspond to known events, 
we propose enhanced detection approaches that utilize the 
ancillary data to improve the offset detection performance. 
To eliminate the influence of non-linearity, 124 and 38 
stations which have offsets caused by non-linearity are 
excluded from the preliminary 996 and 666 stations for 
Repro3 and Repro2, respectively. The remaining ITRF 
manual offset recordings are listed in Table 3.

We collected ancillary data from site logs and earthquake 
catalogues to help identify offsets. Basic information on sta-
tion antenna changes and receiver changes recorded in site 
logs are gathered from online resources. The earthquake 

Table 1   Offset numbers 
classified by offset reasons and 
the total numbers are both filled 
in the table

Furthermore, the number of stations that happened at least one offset and the number of weekly solutions 
are listed in the table. These offset recordings are sourced from ITRF2014 (Altamimi et  al. 2016) and 
ITRF2020 (Altamimi et al. 2023)

Data set EQ UK AT RE NL Total Stations Solutions

Repro 2 536 313 779 108 54 1790 666 1100
Repro 3 676 566 1345 153 185 2925 996 1409
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catalogues are established by Nevada Geodetic Laboratory 
(NGL) based on the following formula: 10

M

2
−0.79 , where M 

is earthquake magnitude (Blewitt et al. 2018). We gathered 
11,369 ancillary epochs for Repro3 and 5,318 for Repro2. 
Offset candidates detected within ± 3 points on both sides of 
these epochs will be considered as true offsets. Candidates 
that are not verified by the ancillary data will undergo addi-
tional testing using an enhanced test statistic. To confirm 
that no offsets indeed exist, the enhanced test statistic is also 
applied to the remaining ancillary epochs.

We choose the Sequential t-test analysis of regime shifts 
(STARS) from Bruni et al. (2014) as the enhanced test 
statistic, because STARS can identify offsets that exhibit 

clear step-change characteristics regardless of their positions 
in the time series. The theories of STARS are briefly 
reviewed here. An offset candidate xj and its k-th right 
neighbor point xj+k will undergo the test statistic: 
m1 + t

√

2�2L∕L < xj+k < m1 − t
√

2�2L∕L(k = 0, 1,… ,L − 1) , where, L 
is the window lengths, �L is the average standard deviation 
of all the possible L-point intervals, and t is the value of the 
t-distribution with 2L − 2 degrees of freedom at a given 
significance level � . At first, a mean m0 and a standard 
deviation �0 are computed given equal weights to the left 
neighbor points xj−k(k = 1, 2,… ,L) . Then, a weighted mean 
of the left neighbor data is calculated using weights defined 
on the basis of the Huber parameterH  . We define 

Fig. 1   The spatial and 
magnitude distribution of the 
offsets in Repro3. a The spatial 
distribution of offsets classified 
by reasons, namely EQ, AT, RE, 
UK, and NL. b The distribution 
of offset magnitudes in hori-
zontal (E, N) and vertical (U) 
components categorized by the 
above five reasons, respectively
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dj−k = xj−k − m0 and the weights of xj−k will be set to 1 if 
dj−k < H𝛿0 , otherwise, d−1

j−k
 . The final value m1 is iteratively 

calculated by updating m0 and �0 . In this study, H is set to 3, 
and L is set to 10.

In summary, the enhanced detection process can be 
concluded in 3 steps:

Step 1: Matching offset candidates detected in 
the preliminary experiments with ancillary epochs, 
candidates within ± 3 points on both sides of these epochs 
are identified as offsets;

Step 2: Applying enhanced detections to the rest 
unidentified offset candidates, epochs of which meet the 
enhanced test statistic (i.e., STARS) will be identified as 
offsets;

Step 3: Applying enhanced detections to the rest ancillary 
epochs with no matching offset candidates, epochs meet the 
enhanced test statistic will be identified as offsets.

The enhanced detection experiments are denoted by the 
codes WN

P

M
+ , WFNM+ , and WN

P

M
∩WFNM+ , these experi-

ments are also applied to both IGS Repro2 and Repro3 data-
sets. The detection results include the identified epochs with 

their corresponding site log events (antenna or receiver), 
earthquake events, or no events. The results are analyzed in 
the following content.

Results and analysis

Results and analysis of the preliminary detection 
approaches

Outliers

According to our results, around 1% to 2% of the 
observations are identified as outliers. The percentage of 
outliers detected by multivariate detection experiments 
are almost twice of the univariate detection experiments, 
because multivariate experiments simultaneously detect 
outliers across all three coordinate components. The 
slightly lower outlier detection rates for Repro3 compared 
to Repro2 may be attributed to less outliers within Repro3, 
considering its improvements in processing strategies.

Table 2   The detection 
experiments are denoted 
by abbreviations: COV for 
covariance-based model, WN 
for white noise model, WFN for 
white noise plus flicker noise 
model, E, N, and U for east, 
north, and up, respectively

M refers to multivariate that consider east, north, and up simultaneously. For instance, the experiment 
WN

M
 means applying the white noise model on multivariate components. For the initial eleven experi-

ments, the test statistic is referenced to equation (9), while in the 12-th experiment WN
P

M
 , a test statistic 

considering penalties (denoted by P), such as Bayesian information criterion with fixed C (BICC, where the 
subscript C represents the stochastic model), is utilized to alleviate over-segmentation. The last experiment 
is the intersection of the offset detection results from WN

P

M
 and WFN

M
 , denoted as WN

P

M
∩WFN

M

Experiment 
Number

Components Stochastic model Critical value Code

1 E COV �2

0.999
(1) COV

E

2 N COV �2

0.999
(1) COV

N

3 U COV �2

0.999
(1) COV

U

4 E WN �2

0.999
(1) WN

E

5 N WN �2

0.999
(1) WN

N

6 U WN �2

0.999
(1) WN

U

7 ENU WN �2

0.999
(3) WN

M

8 E WFN �2

0.999
(1) WFN

E

9 N WFN �2

0.999
(1) WFN

N

10 U WFN �2

0.999
(1) WFN

U

11 ENU WFN �2

0.999
(3) WFN

M

12 ENU WN BICC ���

�

13 ENU – – ���

�
∩����

Table 3   Offset numbers 
classified by offset reasons and 
the total numbers in enhanced 
detections

Furthermore, the numbers of stations, where at least one offset occurred, are listed in the last column of the 
table

Data set EQ UK AT RE Total Stations

Repro 2 501 301 741 99 1642 628
Repro 3 528 490 1204 126 2348 872
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Overall performance

To evaluate the overall performance, the true positive (TP), 
false positive (FP) and false negative (FN) rates had been 
counted as like Gazeaux et al. (2013). TP defines an off-
set that was collected in ITRF and also had been detected 
by our automated detection methods. More precisely, a TP 
is defined as a detected offset, the epoch of which is ± 3 
points either side of an ITRF offset. FP refers to an offset not 
collected in ITRF but detected by our approaches. Finally, 
FN means an offset is collected in ITRF but has not been 
detected. Figure 2 illustrates the values of TP, FP and FN by 
their positions in a ternary plot which sum to 100 percent. 
Better performance will appear on the bottom right corner 
of the triangle. Moreover, we define detection rate as TP/
(TP + FN).

It is evident that WN
P

M
∩WFNM performs the best, and 

achieves (TP, FP, FN) rates at (0.44, 0.40, 0.16) for Repro2 
and (0.42, 0.44, 0.13) for Repro3. Then the performances 
of the rest experiments from high to low are WN

P

M
 , WFNM , 

WFN (including E, N, U), COV and WN (including E, 
N, U), and WNM . As to the influence of both the noise 
(stochastic) models and the coordinate components, 
we find that considering WFN model can improve the 
detection performance compared to COV and WN models. 
Multivariate detection approaches can almost detect all of 
the TP offsets detected by univariate approaches and achieve 
less FP detections. On the other hand, if we only use WN 
model, experiment with penalties WN

P

M
 is recommended 

to reduce FP detections and over-segmentation, and WN
P

M
 

performs similar to WFNM in TP and FN rates, but achieve 
lower FP rates. The intersection of WN

P

M
 and WFNM can 

further improve the detection performance. From this, we 
observe that, aside from offsets, offset-like bias detected by 
WN

P

M
 and WFNM are not entirely consistent.

To evaluate the results of the preliminary detections, we 
can review some previous studies. Bruni et al. (2014) tested 
the offset detection performance of the STARS method on 
50 synthetic time series, achieving (TP, FP, FN) rates of 
(0.48, 0.28, 0.24). Amiri-Simkooei et al. (2018) examined 
the application of multivariate analysis in offset detection by 
500 synthetic time series and their study showed that when 
the simulated offset magnitudes ranged from 1 to 3 mm 
horizontally and 2 to 6 mm vertically, the best detection 
rate (TP/TP + FN) reached 87.1%. Additionally, when the 
simulated offset magnitudes ranged from 0.5 to 1.5 mm 
horizontally and 1 to 3 mm vertically, the best detection rate 
was 31.6%. Gazeaux et al. (2013) evaluated offset detection 
results submitted by laboratories worldwide on 50 synthetic 
time series. The best results were approximately (0.4, 0.2, 
0.4) got by manual detection and approximately (0.35, 0.30, 
0.35) got by automatic detection, with the automatic method 
being FODITS in Bernese by Ostini et al. (2008). Khazraei 
and Amiri-Simkooei (2021) improved the multivariate 
analysis method proposed by Amiri-Simkooei et al. (2018) 
using spline function theory and tested its performance on 
Gazeaux et al.'s synthetic time series, achieving (0.33, 0.32, 
0.34). These are some detection results from simulated 
data. Moving on to real data, Lahtinen et al. (2021) detected 
offsets in time series from 268 stations, reaching (0.49, 0.35, 

Fig. 2   TP, FP and FN rates of 
the 13 experiments in Table 1. 
Hollow and solid markers 
are used for IGS Repro2 and 
Repro3 respectively. Color 
green indicates COV-based sto-
chastic model, color red refers 
to WFN stochastic model, blue 
color indicates WN stochastic 
model and purple color indi-
cates WN detection approaches 
with penalties considered. 
Circle, pentagram, triangle and 
square refers to component E, 
N, U and multivariate respec-
tively
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0.16). It should be noted that due to differences in the data 
used and the descriptions of the results, direct comparisons 
cannot be made. However, based on the results of Gazeaux 
et al. (2013), we can adopt the criteria of a TP rate greater 
than 20%, an FN rate less than 40%, and an FP rate less 
than 40% to select relatively reliable offset detections. 
According to this threshold, Gazeaux et al.'s study shows 
that only two manually detected results, "NOCLMANL" 
and "SDPWMANL," and one automatic detection result, 
"AIUBCOD2," meet the requirement. As a result, our 
automatic detection results have, to some extent, reached a 
relatively high TP rate with a relatively low FN rate, but the 
FP rate is still somewhat high.

Figure 3 illustrates the detection rates of Repro3. WN
P

M
 , 

WFNM , and WN
P

M
∩WFNM still perform better than other 

experiments. Although the detection rate of WNM exceeds 
90%, too many FP detections make it an unsuitable option. 
The most detectable offsets are caused by EQ, AT, and 
UK. Reviewing the magnitude distributions plot in Fig. 1b, 
we can say offset magnitude is highly correlated with the 
detection rates. However, it is important to note that we 
cannot conclude that offsets caused by unknown reasons 
are easier to detect, as ITRF only incorporates very clear 
offsets caused by unknown reasons, while smaller or less 
clear offsets may still be hidden in the time series. The low-
est detection rate is in offsets caused by non-linearity. We 
should pay attention to this type of offset (more precisely, 
discontinuity), because nonlinearity in time series primarily 
manifests as the continuous change of velocity rather than 
abrupt jumps (Altamimi et al. 2016), and needs to be inves-
tigated separately. We also re-evaluated the performance of 
WN

P

M
∩WFNM after excluding stations where non-linearity 

offsets occurred, which slightly improved the performance, 
from (TP, FP, FN) rates at (0.44, 0.40, 0.16) and (0.42, 0.44, 

0.13) to (0.46, 0.40, 0.14) and (0.45, 0.43, 0.12) for Repro2 
and Repro3, respectively. That’s to say, nonlinearity is not 
the primary reason for the high FP rate. Therefore, stations 
where nonlinearity offsets exist will be excluded in enhanced 
detections.

Results and analysis of the enhanced detection 
approaches

Overall performance

Results represent by TP, FP, FN rates are illustrated in 
Fig. 4, and the results from Lahtinen et al. (2021) are also 
included for comparison. But we should note that Lahtinen 
et al. used data from 268 stations in the Nordic Geodetic 
Commission, which differs from our work. As we can see in 
Fig. 4, the overall performances are improved significantly 
from preliminary to their enhanced detections. As a result, 
the best overall performance is achieved by the enhanced 
experiment WN

P

M
∩WFNM+ , with rates of (0.58, 0.20, 0.22) 

and (0.57, 0.25, 0.18) for Repro2 and Repro3, respectively. 
Based on our statistical analysis, the enhanced approach 
results in a 62% reduction in FPs for Repro2 and a 56% 
reduction for Repro3, amounting to 673 and 997 FP off-
sets, respectively, compared to the preliminary experiment 
WN

P

M
∩WFNM . In the enhanced experiments WN

P

M
+ and 

WFNM+ , FPs are reduced by 70% to 80%. However, it's 
noteworthy that a few TPs are also mistakenly excluded by 
the enhanced approaches. The decreasing of TPs can also be 
reflected by the declining detection rates as shown in Fig. 5 
under the 'ALL' column. Specifically, the excluded TPs for 
WN

P

M
∩WFNM+ are 53 (4%) and 75 (4%) for Repro2 and 

Repro3. The excluded TPs for WN
P

M
+ and WFNM+ range 

from 6 to 8%. By comparing the significantly reduced FPs 

Fig. 3   Detection rates of the 13 
experiments in Table 1 classi-
fied by offset reasons. EQ, UK, 
AN, RE, NL offsets are indi-
cated by different type of lines 
and colors. The total detection 
rates of all offsets (ALL) are 
indicated in the dotted line. We 
only take Repro3 as an example 
because Repro2 performs 
similarly
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and the slightly decreased TPs, we can conclude that our 
enhanced approaches demonstrate a substantial overall per-
formance improvement.

Detection rates of the enhanced experiments for Repro3 
are shown in Fig. 5, from which we can see, enhanced 
detection rates of EQ, AT, and RE offsets closely align with 
the preliminary experiment results, in contrast, UK offsets 
show nearly 20% (95 out of 490) decreasing. Essentially, 
offset detection is the process of identifying unfitted model 
biases, which are often intertwined with other errors, 

potentially leading to the misclassification of these errors 
as offsets. Therefore, achieving a perfect differentiation 
between offsets and other biases from detection results is 
challenging. With the help of ancillary data, we distinguish 
EQ, RE, AT offsets from detection results successfully. 
For detections without corresponding ancillary data, the 
enhanced detection approach excludes 1072 instances, out 
of which 95 pertain to UK offsets, and the remaining 977 
are accurately excluded. As a result, almost 84% EQ, 80% 
AT, 60% UK, and 56% RE offsets are correctly identified.

FP detections and FN detections

To gain a deeper understanding of the automated detec-
tions, we provide an illustrative example in Fig. 6. Notably 
in Fig. 6a, an abrupt change occurring at the start of the 
time series remains unrecorded as an offset in the ITRF. 
Such observation errors may have been removed during the 
manual offset detection in ITRF. However, in automated 
detections, they are treated as outliers or offsets. These dis-
crepancies underscore the distinctions between automated 
and manual detection strategies. FPs can be considered rea-
sonable, as they provide valuable insights into potential off-
sets or other biases that require attention in the time series. 
Additionally, between 2000 and 2005 in Fig. 6a, two points 
were detected as offset candidates, and visually appeared to 
exhibit some discontinuous characteristics, but they were 
excluded after enhanced detection.

Two more examples are shown in Fig. 6b and c. From 
Fig. 6b, it can be observed that two offset candidates at the 
left end of the time series were excluded after enhanced 

Fig. 4   TP, FP and FN rates of 
the enhanced detection experi-
ments. Hollow and solid mark-
ers are used for IGS Repro2 and 
Repro3. Preliminary detection 
results and the results from 
Lahtinen et al. (2021) are also 
illustrated as comparison. 
Markers with dark color and 
light color represent enhanced 
detections and preliminary 
detections, respectively

Fig. 5   Detection rates of the enhanced detection experiments classi-
fied by offset reasons (EQ, UK, AT, RE, and the sum of the four rea-
sons, ALL). The preliminary detection results are also depicted with 
lighter-colored and wider bars for comparison. Repro3 is used as an 
illustrative example
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detection, but the detection corresponding to the site log on 
the right side near 1995 was not recorded as an offset in the 
ITRF. An offset caused by unknown reasons on the left side 
near 2005 existed in the offset candidates but was excluded 
after enhanced detection. However, in the N direction, a 
significant offset point can be seen on the left side in 2005, 
which is not recorded in the ITRF.

From Fig. 6c, it can be seen that during the period from 
2000 to 2005, an offset caused by earthquake was recorded 
in the ITRF but was not detected, while a more obvious jump 
detected near 2020, corresponding to the site log, was not 
recorded in the ITRF.

To evaluate the impact of the missed offsets (which 
correspond to FNs) on parameter estimations, which 

include velocities and the amplitudes of annual and semi-
annual signals, we further take into account the FNs of 
WN

P

M
∩WFNM+ and re-estimate these parameters. WFN 

models are still used here. The RMSs of the parameter 
differences between scenarios with or without FNs are 
then calculated and presented in Table 4. Consequently, 
the influence of FNs on velocity estimates is observed to 
be less than 0.1 mm/y horizontally and less than 0.2 mm/y 
vertically.

Manual check

We manually checked detections that correspond to ancillary 
data but are not consistent with ITRF offset recordings. As 

Fig. 6   Detection examples of 
station BILL (49916M001), 
CRO1 (43201M001), CUIB 
(41603M001). BILL, CRO1 and 
CUIB are the station codes and 
the number in parentheses is 
the DOMES number. Observa-
tions refer to residuals of E, N, 
U components after removing 
trend, annual and semiannual 
signals. The circles in pink 
represent offset candidates from 
WN

P

M
∩WFN

M
 . Gray dots refer 

to automated detection results 
of WN

P

M
∩WFN

M
+ , green 

dots refer to detections that 
correspond to known events, 
red dots refer to detections that 
not recorded in ITRF offsets. 
Short vertical lines in red and 
blue refer to equipment change 
epochs extract from site logs 
and EQ epochs documented 
in earthquake catalogues, 
respectively. ITRF offset epochs 
are represented by long vertical 
lines classified by offset rea-
sons. The numbers in the legend 
correspond to the counts of the 
respective categories



	 GPS Solutions (2024) 28:123123  Page 12 of 16

a result, we identified 20 unknown offsets in ITRF2020 that 
align with known events (13 earthquakes and 7 equipment 
changes). Additionally, 34 automated detections that corre-
spond with known events but are not collected in ITRF2020 
are manually checked as offsets (14 earthquakes and 20 
equipment changes). The details of these findings are pro-
vided in Appendix Tables 5 and 6.

Conclusion

This study introduces preliminary and enhanced automated 
offset detection approaches applied to IGS Repro2 and 
Repro3 datasets. Our results indicate that applying a white 
noise plus flicker noise (WFN) model significantly reduces 
false positive (FP) detections and can improve detection 
performance compared to the covariance-based stochastic 
model and white noise (WN) model.

Based on our research, several conclusions can be 
drawn. If we only use the WN model, penalties for adding 
parameters should be taken into consideration to avoid 
heavily FP detections. Multivariate detection approaches 

can almost detect all of the TP offsets detected by univari-
ate approaches and achieve less FP detections. Further-
more, by combining the results from approaches utiliz-
ing the WFN and WN models, namely WN

P

M
∩WFNM , 

we achieved somewhat “good” detections with (TP, FP, 
FN) rates of (0.42, 0.44, 0.13) for Repro3 and (0.44, 0.40, 
0.16) for Repro2.

We further improved the detection performance by 
employing an enhanced approach that incorporates ancillary 
data and an extra test statistic. Our enhanced approaches exhibit 
a significant overall performance improvement compared to 
the preliminary methods, with a 60% reduction in FPs and a 
4% decrease in TPs. The best overall performance is achieved 
by the enhanced approach, i.e., WN

P

M
∩WFNM+ with rates of 

(0.57, 0.25, 0.18) and a 75% detection rate for Repro3 and rates 
of (0.58, 0.20, 0.22) with a 73% detection rate for Repro2. In 
comparison, results from Lahtinen et al. (2021) yielded rates 
of (0.49, 0.35, 0.16) with a 74% detection rate. Concerning the 
influence of FNs on velocity estimation for WN

P

M
∩WFNM+ , 

the RMSs of velocity differences between scenarios with or 
without FNs, are less than 0.1 mm/y horizontally and less 
than 0.2 mm/y vertically. Both our study and the research by 

Fig. 6   (continued)

Table 4   RMSs of the parameter 
differences (including velocity 
and amplitudes of annual and 
semi-annual signals) between 
scenarios with or without FNs 
for WN

P

M
∩WFN

M

IGS Repro3 IGS Repro2

E N U E N U

Velocity (mm/y) 0.03 0.03 0.08 0.05 0.06 0.15
Annual (mm) 0.013 0.012 0.034 0.021 0.016 0.051
Semi-annual (mm) 0.005 0.006 0.019 0.011 0.008 0.026
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Lahtinen et al. (2021) have demonstrated the effectiveness of 
applying ancillary data in offset detection. Further research is 
needed to explore how to reduce false positive detections and 
obtain more reliable offset detection results.

Based on our study, despite certain inconsistencies in results 
between manual and automatic detection due to detection strat-
egies and other factors, we have demonstrated the promise of 
applying automatic offset detection in real coordinate time 
series. We believe that the automated offset detection strategies 
we proposed have the potential to serve as valuable references 
and viable alternatives to the traditional manual approach. We 
can observe that the detection rate of offsets can reach 80% 

or even 90%. However, apart from velocity, period signals, 
white noise, flicker noise, and offsets, there may be many other 
model errors mixed in the real station time series. This is also 
the reason for the high false positive rate and is a problem 
that must be considered for more reliable, stable, and practical 
automated offset detection.

Appendix

See Tables 5 and 6.

Table 5   ITRF unknown offsets which are found correspond with known events

There are two kinds of events, namely earthquake (EQ) and equipment change. Data regarding EQ events are sourced from the Nevada Geodetic 
Laboratory (NGL) earthquake catalogue, providing details such as EQ epoch, EQ magnitude (M), and EQ name. Information about equipment 
change events is extracted from site logs, which include the equipment changes epoch and the associated reasons for the changes. The fields 
‘Soln’, ‘Start epoch’, and ‘End epoch’ are derived from the ITRF2020 discontinuity file

Code EQ epoch M EQ name Soln Start epoch End epoch

Unknown offsets correspond 
with EQ events

AB21 14JUN23 7.9 usc000rki5 5 13:242:59103 14:175:00000
CKIS 09SEP29 8.1 usp000h1ys 1 00:000:00000 09:278:00000
CN00 16MAR19 6.0 us20005azy 3 15:032:19860 16:096:00000
CRO1 08OCT11 6.1 usp000gjyf 7 06:055:00000 08:290:00000
GUAM 20JUN23 5.9 us6000ahcr 4 19:066:03480 20:162:00000
GUUG​ 20JUN23 5.9 us6000ahcr 4 19:161:04020 20:162:00000
HKOH 11MAR11 9.1 official2011031 

1054624120_30
2 10:222:00000 11:067:00000

KSMV 18JUL07 5.9 us2000fz0q 4 11:070:20783 18:175:00000
OWMG 16NOV13 7.8 us1000778i 1 00:000:00000 16:320:00000
TSK2 18JUL07 5.9 us2000fz0q 9 12:157:00000 18:167:00000
TSKB 18JUL07 5.9 us2000fz0q 11 11:242:05220 18:167:00000
VALP 08DEC18 6.2 usp000gqvv 2 01:099:32457 08:355:00000
ISHI 18JUL07 5.9 us2000fz0q 2 17:159:00000 18:177:00000

Code Equipment change epoch Equipment change 
reason

Soln Start epoch End epoch

Unknown offsets correspond with 
equipment change events

AMC2 1999–09-01T15:43Z Receiver 1 00:000:00000 99:238:00000
ANCG 2012–10-21T00:00Z Antenna 1 00:000:00000 12:295:00000
CLAR 1996–09-12T00:00Z Receiver 5 96:171:00000 96:247:00000
KOUR 2004–09-30T15:00Z Receiver 4 02:030:00000 04:294:00000
RCM5 2004–02-20 T00:00Z Antenna 1 00:000:00000 96:051:00000
SMO0 2018–05-02T09:00Z Antenna 3 13:358:00000 18:122:00000
TIAS 2018–01-16T12:00Z Antenna 1 00:000:00000 18:017:00000
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Table 6   Detections correspond with known events which are not recorded in ITRF

The fields in Table 6 are mirror those in Table 5

Code EQ epoch M EQ name

Manually checked detections correspond with 
known EQ events

DAEJ 04DEC26 9.1 official20041226005853450_30
DSMG 11MAR11 9.1 official20110311054624120_30
HKSC 11MAR11 9.1 official20110311054624120_30
HKSL 11MAR11 9.1 official20110311054624120_30
LHAZ 11MAR11 9.1 official20110311054624120_30
HKSC 12APR11 8.6 official20120411083836720_20
HKSL 12APR11 8.6 official20120411083836720_20
HNIS 16DEC17 7.9 us200081v8
IQQE 20DEC06 6.1 us7000cnnz
KARA​ 09JUL15 7.8 usp000gz8j
QUAR​ 09JUL15 7.8 usp000gz8j

Code Equipment change epoch Equipment change reason

Manually checked detections correspond with known equipment 
change events

AHID 2000-12-20T00:00Z Receiver
BAKO 1998-02-07T00:00Z Receiver and antenna
CMP9 1997-01-28T00:00Z Receiver
COSO 2018-03-30T20:58Z Receiver
CSAR 2018-04-09T09:10Z Receiver
CUIB 2020-02-13T14:59Z Receiver and antenna
DWI1 2012-01-11T00:00Z Receiver
KARL 2006-02-08T13:37Z Receiver
KTVL 2017-01-09T14:59Z Receiver
LONG 2015-11-18T18:48Z Receiver
LONG 2017-02-14T20:24Z Receiver
LURA​ 2016-12-14T23:59Z Receiver
NKLG 2010-10-26T08:15Z Receiver
PIN2 1997-09-21T00:00Z Antenna
PRDS 2002-11-01T00:00Z Antenna
SBRB 2011-04-15T18:29Z Receiver
SMID 2020-03-17T16:15Z Receiver
SVTL 2004-12-01T12:00Z Receiver and antenna
URUM 2020-11-12T09:55Z Receiver
WUHN 2018-05-05T00:00Z Receiver

https://cddis.nasa.gov/archive/gnss/products/
http://geodesy.unr.edu/NGLStationPages/
http://geodesy.unr.edu/NGLStationPages/
ftp://garner.ucsd.edu/pub/docs/station_logs/
ftp://garner.ucsd.edu/pub/docs/station_logs/
ftp://ftp.geonet.org.nz/gps/sitelogs/logs/
ftp://igs.org/pub/station/log/
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