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Abstract
In order to meet the time-critical and high-precision positioning demands of massive market applications, real-time Precise 
Point Positioning (PPP) technology has been continuously developed and can achieve a high level of accuracy now. Beyond 
precision, it is also crucial to ensure the security and stability of real-time high-precision positioning services. Nevertheless, 
there are few studies that addressed the fault detection and exclusion (FDE) of real-time PPP correction service to protect 
users from potential faults in the GNSS satellites. This paper introduces a new real-time products quality monitoring method 
that could effectively identify the potential fault of GNSS satellite corrections using an unsupervised learning algorithm 
and provide means to alert the real-time PPP users. The ambiguity-fixed Un-differenced Carrier-phase Residual Statistics 
(UCRS) of large-scale regional stations are first constructed to reflect the status of satellite corrections accurately. A machine 
learning technique, known as Isolation Forest, is employed to identify outliers in the UCRS to detect situations of potential 
satellite faults. Then, the UCRS alarm factors are transmitted to users for PPP processing with a modified weighting scheme 
based on alert information. Experimental validation utilizing 30 monitoring stations in China demonstrates a detection suc-
cess rate exceeding 95% for orbit faults larger than 5 cm and clock faults larger than 0.2 ns. It is also proved that this method 
can effectively identify orbit and clock jump in real-time GNSS products that cause additional positioning errors. With the 
alert information broadcasted by the server, the PPP after FDE (PPP-FDE) presents a significant accuracy improvement of 
27–71% compared with traditional PPP processing.
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Introduction

The surge in demand for high-precision positioning provided 
by Global Navigation Satellite Systems (GNSS) has cap-
tured widespread attention, especially in applications such as 
autonomous car navigation and precision agriculture (Euro-
pean GNSS Agency 2019). Precise Point Positioning (PPP), 
recognized as a prominent technology within the GNSS, 
is capable of achieving global high-precision positioning 
using a single receiver (Malys and Jensen 1990; Zumberge 
et al. 1997; Kouba and Héroux 2001). The announcement 
by the International GNSS Service (IGS) (Dow et al. 2009) 

regarding the availability of real-time precise satellite orbit 
and clock in 2012 significantly sparked interest in real-time 
PPP techniques. Over the past decade, continuous enhance-
ments have been witnessed in real-time PPP technology, 
including multi-frequency and multi-GNSS fusion (Li et al. 
2018, 2021; Geng et al. 2020) and ambiguity resolution 
(Geng and Bock 2013; Li et al. 2014, 2019, 2023). As of 
now, real-time PPP can provide global positioning services 
with centimeter-level accuracy (İlçi and Peker 2022).

In certain real-world navigation applications, achiev-
ing high-accuracy positioning is not the sole requirement; 
the results generated by positioning must also be reliable 
and trustworthy (Zhang et al. 2023). Real-time PPP heav-
ily relies on precise satellite orbit and clock corrections. 
At present, the real-time satellite products are available 
with high accuracy. However, it is inevitable that there are 
outliers or accuracy degradations in the real-time precise 
satellite products. Once these corrections contain sub-
stantial errors or inaccuracies due to system malfunctions 
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or outliers, they could significantly impair the accuracy 
of positioning (El-Mowafy 2018). Currently, none of the 
real-time products from International GNSS Service (IGS) 
real-time service or its real-time Analysis Center (RTAC) 
is provided along with quality information (Ji et al. 2022). 
Therefore, the quality monitoring of real-time satellite 
products has become crucial, and it is urgent to estab-
lish a robust real-time product quality monitoring system. 
Such a system should possess the capability to detect and 
identify potential faults, promptly broadcast alert infor-
mation to users, and ensure the continuity and stability of 
positioning.

The commercial company Trimble has developed an 
integrity monitoring module that detects real-time correc-
tion products (pre-broadcast and post-broadcast) in two 
steps, based on carrier phase residual modeling, monitors 
the entire data transmission chain, and generates alarms 
promptly (Weinbach et al. 2018). Wang and Shen (2020) 
proposed an integrity monitoring method for wide-area pre-
cision positioning system, and the fault simulation experi-
ments for clock error correction proved that the method 
can monitor step and drift faults in the correction. Ji et al. 
(2022) proposed a method based on quality control theory 
to monitor real-time satellite orbit and clock products using 
a network of monitoring stations and evaluated GFZ real-
time products, which proved to be accurate and effective 
in detecting problematic satellites. However, for potential 
sub-decimeter faults in real-time products, there is an urgent 
need for a more accurate and adaptive quality monitoring 
scheme, and its contribution to real-time PPP processing 
needs to be carefully studied. Meanwhile, as real-time PPP 
becomes more and more widely used, it is necessary to pro-
vide quality information on real-time satellite orbits and 
clock products.

This contribution proposes a new server-side quality 
monitoring scheme to accurately identify satellite orbit and 
clock anomalies and further enhance positioning perfor-
mance for real-time PPP. This method employs the Isola-
tion Forest machine learning algorithm (Liu et al. 2008) to 
identify outliers in Un-differenced Carrier-phase Residual 
Statistics (UCRS), facilitating the detection and identifica-
tion of satellite orbit and clock potential faults. With real-
time data from 30 stations distributed in China, this study 
analyzes fault detection and exclusion (FDE) of GNSS orbit 
and clock products and further evaluates its impact on posi-
tioning results.

After the introduction, we first introduce the carrier phase 
residual analysis based on the PPP AR model. On this basis, 
we describe in detail a real-time products quality monitor-
ing method for detecting UCRS anomalies using Isolation 
Forest. Then, we will introduce the specific design of experi-
ments and present a detailed analysis of anomaly detection 
results as well as the PPP after FDE results. Finally, we 

present our conclusions and discuss potential avenues for 
further research.

Method

This section introduces the retrieval of carrier phase residu-
als from the PPP-AR model. Subsequently, the satellite 
UCRS is constructed, and its outlier detection method 
using the Isolation Forest is presented. Finally, the design 
and workflow of the real-time products quality monitoring 
system are detailed.

Carrier phase retrieval from undifferenced PPP AR

For a multi-GNSS system, the linearized observation model 
of Un-Difference and Un-Combined (UCUD) PPP can be 
expressed as follows.

where ps
r,j

 and ls
r,j

 are the observations for pseudorange and 
carrier phase, respectively; the superscript s represents the 
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frequency; us
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receiver, receiver clock, slant ionospheric delay, zenith 
tropospheric wet delay, and integer ambiguity. Given the 
combination of multi-GNSS systems, intersystem bias 
(ISB) also should be considered.

where (4) is obtained by combining (1) and (2) according 
to the estimated parameters in (3); y represents the observa-
tions, B refers to the design matrix of the estimated param-
eters, and � is the measurement noise. After the PPP AR, the 
optimal value X̂ of the estimated parameters can be calcu-
lated. The residuals v can be expressed as follows.

where x̂ denotes the difference between X̂ and X0 ; X0 repre-
sents the initial value of the estimated parameter; y0 repre-
sents the approximate value of y calculated by substituting 
X0 into (4).

For real-time PPP, precise orbit and clock products are 
generally applied for error correction. However, faults may 
arise in these real-time precise products due to system 
malfunctions or prediction outliers. Typically, these faults 
manifest within the residuals, allowing for the analysis of 
residual distribution regularity as a means to detect poten-
tial issues. Given the critical significance of the carrier 
phase in achieving high-precision positioning, this study 
focuses predominantly on the examination of carrier phase 
residuals.

A meticulous analysis of carrier phase residuals is 
critical for the facilitation of quality monitoring. Ideally, 
carrier phase residuals should conform to a Gaussian 
zero-mean distribution. The statistical analysis of carrier 
phase residuals is conducted utilizing data from 34 sta-
tions, employing static PPP AR solutions acquired from 
CNES real-time precise products. The Quantile–Quantile 
Plots method was employed for judging the distribution 
of carrier phase residuals by comparing the quantiles of 
two probability distributions. Figure 1 depicts the distribu-
tion of carrier phase residuals for select satellites from the 
BDS, Galileo, and GPS systems. Here, the red line signi-
fies a zero-mean Gaussian distribution, while the green 
line represents the residual distribution for each satellite’s 
carrier phase. Close alignment between the green line and 
the red line suggests adherence of carrier phase residuals 
to a Gaussian zero-mean distribution. Observation reveals 
that the central segments of carrier phase residuals across 
satellites from all systems closely approximate a Gauss-
ian zero-mean distribution. However, the quantiles of car-
rier phase residuals surpass the quantiles of the Gaussian 

(3)X =
(
rr dtr Is

r
Zr Ns

r
ISB

)T

(4)y = BX + �

(5)v = Bx̂ − (y − y0) distribution in the tail distribution. This discrepancy indi-
cates that constraining the tail distribution of carrier phase 
residuals using a Gaussian distribution permits the identi-
fication of potential satellite faults.

Detecting anomalies in satellite UCRS using 
isolation forest algorithm

In the quality monitoring module, the carrier phase residu-
als obtained by PPP AR are used to calculate the UCRS 
of the satellite. The Un-differenced Carrier-phase Residual 
Statistics (UCRS) are defined as monitoring parameter. It is 
employed to monitor variations in the distribution of satellite 
carrier phase residuals, referring to the expression form of 
the User Range Accuracy (URA) (Wang et al. 2013, 2015), 
defined as follows:

where �s and �s represent the mean and standard deviation 
of the carrier phase residuals for satellite s , respectively. K 
is the Gaussian quantile corresponding to the integrity risk 
P , K = f −1(1 − P) , and f −1(⋅) is the inverse of the normally 
distributed accumulation function (Wang et al. 2015). Here 
P = 2 × 10−2∕h , K = 2.33 . If the satellite UCRS is signifi-
cantly higher than the normal value, it indicates that either 
the mean or the standard deviation of the residuals for the 
satellite’s carrier phase does not conform to the expected 
distribution. Consequently, it is considered that the satellite 
may have experienced a fault at this moment.

After obtaining UCRS for a specific satellite at the cur-
rent epoch, it is necessary to create a dataset by combining 
the UCRS for this satellite with the UCRS from some pre-
vious normal epochs. The dataset is subjected to anomaly 
detection using the Isolation Forest. If the UCRS for the 

(6)UCRSs = (|�s| + K ⋅ �s)∕K

Fig. 1  Carrier phase residual distribution of satellite in GPS\GAL\
BDS, with zero-mean Gaussian distribution
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satellite in the current epoch is identified as an anomaly, the 
satellite is considered a problematic satellite.

After obtaining UCRS for a specific satellite at the cur-
rent epoch, it is necessary to create a dataset by combining 
the UCRS for this satellite with the UCRS from some pre-
vious normal epochs. The dataset is then anomaly detected 
using a data anomaly detection method. If the UCRS of a 
satellite in the current epoch is identified as an anomaly, 
the satellite is considered problematic. Compared with 
the traditional data anomaly detection method based on 
mathematical statistics, the Isolation Forest algorithm is 
more suitable for real-time data anomaly detection because 
the Isolation Forest algorithm does not require actual data 
when building the initial model, and does not require dis-
tance or density calculation, with less memory occupa-
tion, fast speed, and guaranteed accuracy. Therefore, we 
chose the Isolation Forest algorithm as the tool for UCRS 
anomaly detection.

The Isolation Forest is an unsupervised anomaly detec-
tion method commonly used to identify anomalous data 
within a dataset. In the Isolation Forest, anomalous data 
points are defined as easily isolated outliers, meaning they 
are sparsely distributed and far from the densely clustered 
points. Typically, the number of anomalous data points is 
much smaller than the number of normal data points, and 
these anomalies exhibit certain distinct characteristics that 
differentiate them from normal data (Liu et al. 2008). Fig-
ure 2 shows the process of anomaly detection in Isolation 
Forest. Isolation forests do not rely on distance or density-
based measurements to identify anomalies, so they are fast 
and computationally inexpensive.

The Isolation Forest comprises several Isolation Trees. 
Each Isolation Tree divides the overall dataset into smaller 
datasets by recursively splitting the data. The process of 
partitioning the small dataset at each step forms the nodes 
of the tree. Assuming that T  is a node in an Isolation Tree, 

which can be in one of two states: it’s either a leaf node 
with no child nodes or an internal node with two child 
nodes (Tl, Tr).

An Isolation Tree is constructed according to the dif-
ference of features to segment the dataset. This process is 
repeated recursively until one of the following conditions is 
met: the tree reaches a maximum height limit, a node has 
only one sample, or all samples in a node have the same 
feature values. The number of times that a sample point is 
split, which is the number of edges a sample point passes 
from the root node to a leaf node, is called the path length 
h(x) of the sample point x.

The task of anomaly detection is to provide a ranking 
that reflects the degree of anomaly, and the commonly used 
sorting method is to sort based on the anomaly score of 
the sample points. The anomaly score is related to the path 
length of a sample point. The longer the path length, the 
more difficult it is to distinguish a sample point, indicating 
that it is more likely to be normal. Conversely, a shorter path 
length suggests that a sample point is easier to distinguish 
and is more likely to be anomalous. Given a dataset with 
n sample points, the average path length of the tree can be 
computed as:

where H(i) represents the harmonic number, which can be 
estimated as ln (i) + 0.5772156649 . c(n) is the average path 
length for a given number n of samples, and it is utilized to 
standardize the path length of the samples. The anomaly 
score s for sample x is defined as:

where E(h(x)) is the average of h(x) from a collection of 
Isolation Trees. This anomaly score reflects the degree of 

(7)c(n) = 2H(n − 1) − (2(n − 1)∕n)

(8)s(x, n) = 2
−

E(h(x))

c(n)

Fig. 2  Isolation Forest anomaly 
detection process
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anomaly for sample point x , with higher values indicating a 
higher likelihood of being an anomaly.

In summary, the closer the score is to 1 and the shorter 
the path length, the easier it is for the sample to be separated, 
which means there is a greater difference from normal data 
and a higher probability of abnormal data; when the score is 
closer to 0 and the path length is longer, it indicates that the 
sample is less likely to be separated and has a higher probabil-
ity of being normal data. Finally, by establishing a threshold 
for abnormal scores, it is possible to differentiate abnormal 
data from normal data.

According to this method, we can judge whether the UCRS 
of each satellite in the current epoch is abnormal, so as to 
determine whether the satellite is a problematic satellite. All 
problematic satellites and their UCRS are packaged together 
to form alert information, which is then broadcast.

UCRS‑based weighting scheme

Users can perform PPP after FDE (PPP-FDE) by receiving 
alert information. In PPP-FDE, it is necessary to update the 
weights for problematic satellites. Taking satellite s as an 
example, the weight factor as for the satellite is computed as 
follows:

where UCRSs
0
 represents the statistical average of UCRS for 

satellite s in the most recent week, and UCRSs denotes the 
UCRS for satellite s at the current epoch. Subsequently, the 
weights of the problematic satellite s are updated.

(9)as =

(
UCRSs

0

UCRSs

)2

(10)(�s)
2
= as(�s

0
)
2

where (�s

0
)
2 represents the a priori precision of satellite 

observations, encompassing pseudorange and carrier phase 
observations.

Within the PPP process, for the satellites identified as 
problematic, this method is employed to reduce the weight 
assigned to these satellites. This method helps to mitigate the 
impact of problematic satellites on the positioning solution, 
thereby enhancing the overall quality of the positioning.

Quality monitoring system framework

In order to detect and identify potential faults in precise 
products, we propose a framework for a quality monitoring 
system. The overall design is depicted in Fig. 3. The quality 
monitoring system consists of the server and user parts. The 
server detects and identifies potential faults on satellites by 
receiving data from monitoring stations to obtain alert infor-
mation and broadcast it. At the user, a weight scheme based 
on UCRS is used to downgrade the problematic satellites in 
the alert information, so that the PPP results after trouble 
removal can be obtained.

At the server, the observations from the monitoring sta-
tions are passed to the Data Processing Center for data pre-
processing. At the same time, the real-time precise products 
and the real-time UPD products are received for PPP AR, 
to obtain the carrier phase residuals. Then, these residuals 
are passed into the UCRS calculation module to calculate 
the UCRS of all satellites in the current epoch according 
to (6). For each satellite, the UCRS of the current epoch is 
combined with the previous UCRS series to form a dataset, 
which will be used for anomaly detection in Isolation For-
est. If the detection result is abnormal, it is determined that 
the satellite is problematic at this epoch; otherwise, UCRS 
is added to the previous UCRS series. Subsequently, all the 

Fig. 3  Specific process design for quality monitoring system
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problematic satellites and their UCRS are packaged together 
to form the alert information and broadcast.

Users can also perform PPP-FDE by receiving alert infor-
mation broadcasted by the server. In PPP-FDE, the weight 
factor calculation module uses the alert information to cal-
culate the weight factor of the problematic satellite through 
(9). By receiving the observations from the receiver and the 
real-time precise products, the weights of the observations 
are updated using the weight factor. Finally, after PPP with 
the updated weight information, users can get the positioning 
results after trouble removal.

Experimental data and processing strategies

According to the framework of the quality monitoring sys-
tem proposed, we conducted two sets of experiments: the 
fault simulation experiment and the real-time precise prod-
uct quality monitoring experiment to verify the feasibility 
and effectiveness of the proposed method. The data used in 
the experiment were obtained from the observation data of 
a large-scale station network in China. Figure 4 shows the 
distribution of the monitoring stations and experimental sta-
tions used, where the green markers represent monitoring 
stations and the red markers indicate experimental stations.

The data used in the experiment are shown in Table 1. 
The observations used are from base stations, including 

January to July 2022 data. The broadcast ephemeris is 
derived from MGEX. In the fault simulation experiment, 
the precise product utilizes the final orbit and clock prod-
ucts from CODE. In the real-time precise product quality 
monitoring experiment, CNES’s real-time clock products 
and ultra-rapid orbit products (www. ppp- wizard. net/ produ 
cts/ REAL_ TIME) are used. The satellite code biases are cor-
rected by the DCB products from CAS, and the phase biases 
are corrected by the UPD products estimated by an open-
source software called GREAT-UPD (https:// geode sy. noaa. 
gov/ gpsto olbox/) using hundreds of IGS stations around the 
world (Li et al. 2021).

Table 2 details the specific processing strategies used in 
the server PPP and the user PPP. At the server, in order to 
ensure data quality, it is necessary to adjust the satellite ele-
vation angle limit to 15°, whereas the elevation cutoff angle 
is set as 7° at the users. The station coordinates are fixed to 
their a priori values with ambiguity fixed to integers at the 
server, while the coordinates are estimated in the epoch-wise 
kinematic mode at the user.

Fault simulation experiment

To validate the feasibility of this quality monitoring method, 
we conducted fault simulation experiments first. In the 
experiment, we utilized the observation data of 30 monitor-
ing stations on January 5, 2022, along with the final precise 
products provided by CODE. The reason for selecting final 
precise products is their high accuracy and high reliability. 
This choice lets us avoid the impact of inherent potential 
faults in precise products during the experimental process. 
Experiments involve simulating various magnitudes of orbit 
and clock faults, and then detecting and identifying these 
faults using the proposed quality monitoring method.

This experiment simulates the step fault by adding a step 
error on the orbit and clock products at a certain epoch. 
Specifically, step error is introduced into the orbit or clock 
of certain satellites at epochs at every hour, as indicated in 
Table 3.Fig. 4  Distribution of monitoring stations and experimental stations

Table 1  Data used in the 
experiment

Data type Data used Data source Sampling interval

Observation Daily 5-s data Base station 5 s
Navigation data Broadcast ephemeris data MGEX –
Precise products Final orbit COD 5 min

Final clock COD 30 s
Ultra-rapid orbit CNES 5 min
Real-time clock CNES 30 s

Bias products DCB CAS –
UPD Global IGS stations 

estimation
WL UPD, NL UPD 30 s

http://www.ppp-wizard.net/products/REAL_TIME
http://www.ppp-wizard.net/products/REAL_TIME
https://geodesy.noaa.gov/gpstoolbox/
https://geodesy.noaa.gov/gpstoolbox/
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The experiment involves introducing step errors to both 
orbit and clock measurements. For simulated orbit faults, it 
is necessary to add step errors in all three directions of the 
satellite orbit. The simulated orbit faults are divided into 
two groups, with errors of 10 cm and 5 cm, respectively. 
The simulated clock faults are divided into three groups, 
with errors of 0.3 ns, 0.2 ns, and 0.1 ns, respectively. In each 
group of experiments, using precise products contains step 

faults for server quality monitoring, detecting, and identify-
ing fault sources.

Figure 5 presents the results of the experiment simulating 
a 10 cm orbit fault. The left panel displays the UCRS series 
of various satellites, indicating that the UCRS of a satellite 
unusually increases when it encounters a fault. By utilizing 
the Isolation Forest algorithm to detect outliers in UCRS, 
the fault time periods of each satellite can be obtained, as 
depicted in the right panel. In the figure, the gray-shaded 
periods indicate times when the satellite was not monitored, 
the green-shaded periods indicate times when the satellite 
was monitored and in a normal state, and the red-shaded 
periods indicate times when the satellite was identified as 
problematic. From the figure, it can be seen that the method 
can successfully identify all simulated step faults.

The same quality monitoring method was conducted 
for the other experimental groups to obtain alert informa-
tion. The success rates of detecting artificially introduced 
step faults for each group were recorded and are shown in 
Table 4. It is observed that the method achieved a 100% 

Table 2  Processing strategy of experiment

Items Strategies

GNSS system GPS, Galileo and BDS
Combination mode Raw observations
Data sampling interval 5s
Elevation mask Server 15°

User 7°
Weight of observation Weight of observation
Phase ambiguities Server WL-L1 cascade partial fixing

User Float
Receiver coordinate Server Fixed

User Estimated in the epoch-wise kinematic mode
Ionospheric delays Epoch-wise estimated for each satellite
Tropospheric delays Dry component Modeled by Saastamoinen with Global Map-

ping function (GMF)
Wet component Random-walk estimated

Receiver clock Epoch-wise estimated for each system and each fre-
quency

Table 3  Step errors involved to satellites

Time prn Time prn Time prn

2:00 E24 9:00 C09 16:00 E01
3:00 E05 10:00 G09 17:00 G02
4:00 G10 11:00 C12 18:00 G05
5:00 C06 12:00 G30 19:00 E26
6:00 G32 13:00 E21 20:00 C13
7:00 E08 14:00 C11 21:00 G15
8:00 G27 15:00 C10 22:00 E12

Fig. 5  Simulated step faults 
identification results. The left 
panel is the satellite UCRS 
series with 10 cm satellite orbit 
faults, and the right panel is the 
satellite fault period detected by 
the quality monitoring method
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success rate in detecting 10 cm orbit faults and 0.3 ns and 
0.2 ns clock faults. The success rate for detecting 5 cm orbit 
faults also exceeded 95%, while the success rate for detect-
ing 0.1 ns clock faults reached only 76%. The experiments 
demonstrate that the method can successfully detect 5 cm 
orbit faults and 0.2 ns clock faults. However, its detection 
performance decreases for faults with even smaller magni-
tudes. Nevertheless, subsequent experiments revealed that 
faults of smaller magnitudes had little impact on the posi-
tioning results at the user.

The alert information generated by the server-side quality 
monitoring can be used for user-end positioning calcula-
tions. Simulations were conducted using experimental sta-
tion data to represent user-end positioning. PPP and PPP-
FDE positioning calculations were performed for each group 
of simulated faults. Figure 6 displays the results for station 
H053, where the left and right panels correspond to simu-
lated 10 cm and 5 cm orbit faults, respectively. Due to satel-
lite orbit error, the PPP positioning results were affected, 
resulting in divergence. In contrast, PPP-FDE effectively 
mitigated the positioning divergence caused by detected 
problematic satellites. Furthermore, the influence on posi-
tioning results was found to be smaller for 5 cm orbit faults 
compared to 10 cm orbit faults. The experiments demon-
strate that, compared to PPP, PPP-FDE can mitigate the 
impact of faults on positioning results, leading to more sta-
ble and continuous positioning outcomes.

In conclusion, the simulation experiments have demon-
strated the reliability of the quality monitoring method based 
on Isolation Forest for detecting and identifying faults in 
satellite. The method effectively detects orbit faults as small 
as 5 cm and clock faults of 0.2 ns. Furthermore, PPP-FDE 
was shown to mitigate the impact of faults on positioning, 
thereby enhancing the reliability of the positioning results.

Real‑time precise product quality 
monitoring experiment

In this section, real-time clock and orbit products will be 
used for quality monitoring analysis. In this experiment, the 
server performs PPP AR positioning by receiving data from 
the monitoring station network and real-time precise prod-
ucts and bias products. This allows for the calculation of 
carrier phase residuals for each satellite, which are then used 
to generate the UCRS series. The Isolation Forest algorithm 
is subsequently employed to detect and identify problematic 
satellites, providing alert information.

The data from January to July 2022 have been processed, 
and six days (DOY 009, 011, 012, 014, 033, and 185), which 
exhibit obvious anomalies, is selected for detailed analysis. 
Figure 7 displays the detection results on DOY 009. The left 
panel showcases the UCRS series for some GPS satellites, 
while the right panel illustrates the identified time period 
during which these satellites had problems.

The users leverage the alert information disseminated by 
the server to perform PPP-FDE and enhance their own posi-
tioning quality. Consequently, experiments were conducted 
for data of DOY 009, 011, 012, 014, 033, and 185 using 
both PPP and PPP-FDE dynamic positioning. Comparative 
analysis was performed to evaluate the improvement brought 
about by PPP-FDE on the positioning results.

The results of the positioning comparison are illustrated 
in Fig. 8. The figure shows the series of positioning errors 
one hour before and after the abnormal positioning results 
on these days, which may be caused by faults in the precise 

Table 4  Detection success rate of simulated orbit and clock faults of 
different magnitudes

Product Group Number of 
faults

Successful 
detection

Detection 
success rate 
(%)

Orbit 10 cm 21 21 100
5 cm 21 20 95.24

Clock 0.3 ns 21 21 100
0.2 ns 21 21 100
0.1 ns 21 16 76.19

Fig. 6  Positioning error series 
of PPP and PPP-FDE. The 
left panel is the positioning 
error series of the H053 station 
of PPP and PPP-FDE when 
simulating a 10 cm satellite 
orbit fault, and the right panel 
is the results of simulating 5 cm 
satellite orbit fault
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product. After applying fault exclusion in PPP-FDE, there is 
a noticeable improvement in the stability of the positioning.

Table 5 lists the RMS of positioning errors for both PPP 
and PPP-FDE at the time of abnormal positioning results. 
The data indicate that compared to PPP, the positioning 
accuracy of PPP-FDE has been significantly improved in all 
three directions, particularly in the vertical direction, which 
is greatly affected by orbit and clock errors. In addition, 

Fig. 9 shows a 3D RMS comparison of PPP and PPP-FDE. 
It can be found that the 3D RMS of PPP-FDE has improved 
by 29%, 24%, 56%, 71%, 30%, and 60%, respectively.

To investigate the cause of discontinuities in PPP posi-
tioning results, this study provides an in-depth analysis 
of the precise clock and orbit products. The accuracy of 
real-time products can be assessed by differencing real-
time clock and orbit products with final precise products. 

Fig. 7  Potential faults identi-
fication results. The left panel 
shows the UCRS series of the 
GPS part of the satellite on 
January 9, 2022, and the right 
panel shows the fault period 
detected and identified by the 
quality monitoring method

Fig. 8  Positioning error series 
of PPP and PPP-FDE one hour 
before and after the abnormal 
positioning results on DOY 009, 
011, 012, 014, 033, and 185
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Figure 10 shows the anomaly analysis of the DOY 009 and 
012 positioning results. In the figure, “CLK” represents the 
difference between CNES real-time clock products and COD 
final precise clock products, while “ORB_r” represents the 
difference in radial between CNES ultra-rapid orbit prod-
ucts and COD final precise orbit products. The plot only 
displays the satellites detected as problematic by the server. 
The left panel reveals that around 2:00 AM, the positioning 
error series exhibits an anomaly. During this period, two 
problematic satellites, G10 and G23, experienced a jump 
of about 6 cm in radial orbit difference values within 5 min 
after 2:00 AM, resulting in a slow drift in the positioning 
series. Simultaneously, the clock difference values of these 
two problematic satellites also experience a jump of about 

8 cm, causing the positioning series to exhibit a discontinu-
ity. In the right panel, at around 21:08 PM, there is also an 
anomaly in the positioning series. Among the three problem-
atic satellites, their orbit products are all in a normal state. 
However, there has been a mutation of about 20 cm in the 
clock difference values of satellites E26 and E33, resulting 
in a jump in the positioning series. Large errors in real-time 
orbit and clock products may be caused by changes in the 
reference clock (Du et al. 2021). The analysis shows that 
the method successfully identifies potential faults in real-
time precise products. Although there might be some false 
alarms, this hardly affects the improvement achieved by 
PPP-FDE on the positioning results.

Conclusions

We detail a server-side quality monitoring method aim-
ing at detecting and excluding potential faults in satellite 
orbit and clock by leveraging the Isolation Forest algo-
rithm to improve the performance of real-time PPP. The 
method involves meticulous statistical analysis of carrier 
phase residuals and the formulation of the UCRS param-
eter, facilitating anomaly detection using the Isolation 
Forest algorithm. Using the proposed method, the server 
can effectively detect and identify problematic satellites, 
generate alert information, and broadcast it in real time. In 
addition, a weighting scheme based on UCRS is proposed, 

Table 5  RMS statistics of the 
positioning error of PPP and 
PPP-FDE one hour before and 
after the abnormal positioning 
results on each day

DOY PPP (cm) PPP-FDE (cm)

E N U E N U

009 2.91 1.12 3.36 2.62 0.80 1.79
011 6.46 1.13 15.2 6.50 1.21 10.64
012 4.15 5.91 9.03 1.77 3.33 3.43
014 0.60 1.63 3.76 0.26 0.28 1.15
033 4.15 0.98 6.34 4.14 0.46 3.37
185 1.95 1.38 5.32 0.63 1.11 1.95

Fig. 9  3D RMS statistics of the positioning error of PPP and PPP-
FDE one hour before and after the abnormal positioning results on 
each day

Fig. 10  PPP and PPP-FDE 
positioning series, the clock 
and orbit difference series of 
problematic satellites within 
one hour before and after the 
abnormal positioning results
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which is beneficial to reduce the influence of problematic 
satellites on the positioning of the user.

The step faults of orbit and clock with different gra-
dients are simulated in the experiments, and the quality 
monitoring method proposed is used to detect them. The 
results show that the detection success rate of the method 
is more than 95% for orbit faults larger than 5 cm and 
clock faults larger than 0.2 ns. The proposed method is 
also used to detect the potential faults of real-time precise 
products, and the analysis shows that it can effectively 
detect large errors in real-time orbit and clock. In addi-
tion, the UCRS-based weighting scheme is used to per-
form PPP-FDE on the data containing large errors. The 
statistical results show that the accuracy of PPP-FDE is 
significantly improved by 27–71% compared with the tra-
ditional PPP.

The method proposed, integrating the Isolation Forest 
algorithm for anomaly detection, offers distinct advantages 
over conventional server-side quality monitoring methods. 
Its capability is to effectively identify minor real-time pre-
cise product faults minimizing the impact of these faults 
on positioning outcomes, consequently enhancing the 
overall quality and stability of positioning results. While 
the monitoring stations were regionally confined to China 
in this study, future research endeavors could extend their 
coverage globally, enabling comprehensive and continu-
ous monitoring of satellites across systems and benefiting 
users worldwide. At the same time, the method proposed 
can also be extended to real-time PPP-RTK to provide 
users with alert information.
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