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Abstract
Safety-critical navigation systems often involve multiple sensor types, including global navigation satellite system (GNSS), to 
enhance positioning accuracy. Additionally, the systems’ reliability has been significantly improved through the application 
of fault detection and exclusion (FDE) techniques. An enhanced AIME (Autonomous Integrity Monitoring by Extrapola-
tion) method is introduced in our approach to identify faulty satellites. This is accomplished by analyzing the measured 
Kalman filter (KF) innovations and their covariances within a sliding window. Furthermore, a strategy for fault separation, 
detection, and exclusion is developed for GNSS and IMU, making use of their relationship within the KF innovation vector 
derived from the GNSS measurement model. Similarly, the innovation vector derived from the visual measurement model 
is employed to detect visual faults, with the assumption that the inertial measuring unit (IMU) is fault-free. Upon detecting 
faults, we proceed to redesign the system noise matrix and measurement noise matrix within the KF using test statistics, 
effectively excluding measurement faults from satellites and IMU. In order to assess the performance of our proposed 
method, we conducted a field test utilizing the collected vehicle-mounted dataset. The results demonstrate the effectiveness 
of our FDE method in accurately identifying faulty satellites, detecting IMU faults of varying magnitudes, and excluding 
abnormal visual observations. Furthermore, after fault exclusion, the maximum position error during the fault time period 
decreased by an average of 62%.

Keywords GNSS/INS/Vision integration · Kalman filter · Sensor faults · Enhanced AIME · Fault detection and exclusion

Introduction

Accurate and reliable navigation information is essential in 
safety-critical applications, including autonomous driving, 
service robotics (Yin et al. 2021), and unmanned aerial vehi-
cles (UAVs) (Groves 2013; Wang et al. 2020). To improve 
the positioning accuracy of the system in intricate envi-
ronments, integration of global navigation satellite system 
(GNSS) with inertial navigation systems (INS) and visual 
navigation systems is a common practice. This integration 
is preferred due to their complementary characteristics 

(Backén et al. 2012; Cao et al. 2021; Groves 2013; Li et al. 
2019). Furthermore, the extended Kalman filtering (EKF) 
algorithm, known for its optimal estimation capabilities, 
finds extensive use in the fusion of multi-sensor data. Con-
currently, there has been growing interest in fault detection 
and exclusion (FDE) techniques for multi-sensor integrated 
navigation systems, which protect users from the risk of 
potential sensor faults.

The occurrence of sensor faults in integrated navigation 
systems is a critical issue, that not only affects navigation 
performance but is also closely related to safety. In the sys-
tem, typically two types of faults are encountered: step errors 
and slow-growing errors (SGEs). SGEs, which are common 
faults in pseudorange measurements, pose a particular chal-
lenge in terms of detection (Bhatti et al. 2007). This diffi-
culty arises because SGEs exhibit gradual growth over time, 
leading to a gradual degradation in the accuracy of estimated 
states without early detection. Several FDE methods have 
been explored for tightly coupled GNSS/INS integration in 
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recent years. These methods can be classified as observation-
domain or position-domain methods, depending on whether 
the fault detection (FD) method is derived from measure-
ments or position solutions (Jing et al. 2022). In the case 
of observation-domain methods, typical approaches include 
AIME (Autonomous Integrity Monitoring by Extrapola-
tion) (Diesel and Luu 1995) and CRAIM (Ochieng and 
Feng 2008) methods. These methods utilize use the vector 
of measurement residuals within the filter algorithm (KF 
or EKF) to calculate the test statistic. Many other algo-
rithms have been developed based on this foundation. For 
instance, Yang (2014) introduced an improved MEMS-INS/
GNSS integrated system with fault detection and exclusion 
capabilities for land vehicle navigation in urban areas, while 
the rate detector (RD) algorithm was proposed by (Bhatti 
et al. 2012). These algorithms are specifically designed to 
enhance the system’s positioning performance during GNSS 
data disturbances and improve the capacity for detecting 
SGEs, respectively. Among the position-domain methods, 
multiple solution separation (MSS) (Brenner 1996), multiple 
hypothesis solution separation (MHSS) (Tanil et al. 2019), 
and advanced RAIM (ARAIM) (Blanch et al. 2007, 2018; 
Pan et al. 2019) are the most representative FDE algorithms. 
The test statistic in these methods is computed by compar-
ing the full set solution with subset solutions. However, it 
should be noted that these methods can be computationally 
intensive in certain situations. The FD methods can also 
be divided into “snap-spot” and “sequential” algorithms 
according to whether they are derived from current infor-
mation or historical information. In the above-mentioned 
methods, AIME is a “sequential” algorithm, while MSS is 
a “snap-spot” algorithm.

The methods mentioned above primarily concentrate on 
GNSS faults, with limited attention given to IMU faults. 
Nonetheless, it is worth noting that IMU can also produce 
faulty measurements, particularly in the case of MEMS IMU 
(Pasquale and Soma 2010). These faulty IMU measurements 
can have a severe worse impact on the system, potentially 
leading to critical incidents in various domains, including 
civil aviation accidents (Crispoltoni et al. 2018). In the con-
text of vehicle navigation, where cost-effective IMUs are 
often utilized, the significance of addressing IMU faults can-
not be overstated. IMU FDE is indispensable to ensure the 
reliability and safety of the navigation system. Recently, Lee 
and Liu et al. (Lee et al. 2018; Liu et al. 2019) conducted 
an integrity monitoring scheme tailored for UAVs to handle 
IMU faults. However, it is important to note that these meth-
ods primarily focus on deriving position error overbounding 
rather than IMU FDE. On the other hand, Wang et al. (2020) 
presented a two-step FDE approach designed to detect both 
GNSS and IMU faults within a system. Simulation experi-
ments conducted on aircraft have demonstrated the effec-
tiveness of this method. However, these methods cannot 

quickly detect faulty satellites, and there is no simple and 
effective fault exclusion strategy; this approach still has a 
serious impact on the positioning performance of the system 
when IMU faults occur. In addition, when the satellite signal 
is blocked, the positioning performance and fault detection 
performance of the system both significantly deteriorate.

To ensure accurate and safety-assured navigation solu-
tions for vehicle systems, we present an effective FDE 
method that includes all-source faults through tightly 
coupled GNSS/INS/Vision integration. Initially, a sliding 
window of size l is established, and the innovation vec-
tor of the EKF is categorized based on satellite numbers. 
Subsequently, following the approach described in (Wang 
et al. 2020), we employ a two-step FDE method to identify 
fault sources. In the third step, fault exclusion strategies are 
devised to mitigate the impact of faulty measurements on 
the estimated system state. To assess the performance of 
our proposed method, we conduct a thorough analysis of the 
detection capabilities of AIME and our method. Addition-
ally, we evaluate the positioning accuracy of the system both 
before and after the implementation of the FDE schemes.

Our paper begins by introducing the tightly coupled 
GNSS/INS/Vision integration with FDE, including the sys-
tem architecture, the GNSS/INS/Vision integration model, 
and a comprehensive analysis of fault sources. This is fol-
lowed by an intricate explanation of the fault detection and 
exclusion methodologies. We then analyze field test results 
to measure the effectiveness of the proposed method. Finally, 
the conclusions are presented.

Tightly coupled GNSS/INS/Vision integration 
with fault detection and exclusion

This section first introduces the coordinate frames (Cao et al. 
2021). Subsequently, we detail the architecture of the tightly 
coupled GNSS/INS/Vision integration, which includes fault 
detection and exclusion mechanisms. Following that, we 
provide a comprehensive description of the tightly coupled 
GNSS/INS/Vision integration model. Lastly, we elucidate 
the sources of faults within the system.

Architecture of tightly coupled GNSS/INS/Vision integration 
with fault detection and exclusion

The system’s architecture is visually represented in Fig. 1. 
The system is segmented into four distinct components: INS 
mechanization, GNSS measurement modeling, visual meas-
urement modeling, and fault detection and exclusion. The 
initial component, INS mechanization, utilizes raw IMU data 
to generate navigation solutions, including position, velocity, 
and attitude. Moving to the second part, GNSS measure-
ment modeling, the difference between GNSS pseudorange 
and pseudorange rate measurements, and the pseudorange 
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and pseudorange rate predicted by the INS are employed as 
measurement vectors. These vectors are utilized to update 
the states of the EKF, following the approach outlined in 
(Chen et al. 2021). The third component involves visual 
measurement modeling, and the integration of vision and 
INS is executed using the classic MSCKF model (Mour-
ikis and Roumeliotis 2007). When a new image is received, 
the error state and covariance of the current IMU pose are 
incorporated into the EKF. Additionally, the extraction and 
tracking of features are carried out. This method employs 
the reprojection errors of feature points as measurement 
vectors for updating the system’s state. Following the EKF 
update, the estimated state error vector is utilized to correct 
the navigation solutions produced by the INS and adjust the 
IMU bias. The final component, fault detection and exclu-
sion, is geared toward preventing inaccurate state estimation 
results from adversely affecting the system’s performance. 
The innovation vector and covariance matrix of the EKF are 
used to calculate the test statistic, which is compared with 
the corresponding test threshold to assess whether the sensor 
measurements are faulty.

Tightly coupled GNSS/INS/Vision integration model

Based on the various combinations of sensors utilized, this 
system can be categorized into two segments: tightly coupled 
GNSS/INS integration and Vision/INS integration. These seg-
ments are interconnected through the IMU poses. The INS 

dynamic model is formulated within the earth-centered earth-
fixed (ECEF) frame, and the bias error of the IMU is repre-
sented as a first-order Gauss–Markov process. The error state 
vector of the system at epoch k can be expressed as follows:

Then, �xI,k and xG,k are expressed as:

where �pe
I,k
, �ve

I,k
 , and ��e

I,k
 are the position, velocity, and 

attitude error vectors of the IMU in the e-frame, respectively; 
bg and ba are the bias errors of the gyroscope and acceler-
ometer, respectively; and �br and �dr are receiver clock bias 
and its drift. ��C,ki and �pe

C,ki
 ( i = 1…M ) are the attitude 

and position error vectors corresponding to the  i -th IMU 
fixed to the camera; M denotes the total number of poses in 
the sliding window. In the IMU frame, the accelerometer f̃ b 
and gyroscope w̃b

ib
 can be measured as follows:

(1)�xk =
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Fig. 1  Architecture of the tightly coupled GNSS/INS/Vision integration with fault detection and exclusion. EKF extended Kalman filtering, FDE 
fault detection and exclusion), GNSS global navigation satellite system, IMU inertial measuring unit, and INS Inertial navigation system
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where f b and wb
ib

 represent the noise-free measurements of 
the accelerometer and gyroscope, respectively; wa and wg 
represent the random noise of the gyroscope and acceler-
ometer, respectively.

GNSS measurement model

The measurement vector comprises two components: the 
pseudorange measurement vector and the pseudorange rate 
measurement vector. In the discrete-time domain, it can be 
represented as follows:

where �G and �̇G represent the pseudorange and pseudorange 
rate vectors of GNSS measurements, respectively; �I and 
�̇I represent the pseudorange and pseudorange rate vectors, 
respectively, predicted by INS; �GI,k denotes the measure-
ment matrix; and �GI,k represents the measurement noise 
vector, which is modeled as zero-mean Gaussian White 
Noise (GWN) with covariance matrix RGI,k.

For pseudorange measurements, after correcting all the 
errors except for receiver errors (noise and clock bias), the 
pseudorange for the m-th satellite can be modeled as Misra 
and Enge (2001):

where �̃�m denotes the measured pseudorange from the m-
th satellite to the receiver; c denotes the speed of light; �tr 
denotes the receiver’s clock offset; �m denotes the total 
effect of residual errors; and �m denotes the actual distance 
between the receiver and satellite, which can be written as 
follows:

where x =
[
x y z

]T and xm =
[
xm ym zm

]T represent the 
actual receiver position and the m-th satellite position in 
the e-frame, respectively. The corresponding pseudorange of 
the INS mechanization output can be expressed as follows:

where xI =
[
xI yI zI

]T is the position of the INS mechaniza-
tion output in the e-frame.

In order to satisfy the fundamental assumptions of the 
EKF, it is necessary to linearize the measurement equation. 
Then, the difference between the result of the first-order 

(4)

[
�I − �G

�̇I − �̇G

]
=

[
�k,𝜌

�k,�̇�

][
�xI,k
�xG,k

]
+ �GI,k

= �GI,k

[
�xI,k
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]
+ �GI,k

(5)�̃�m = 𝜌m + c𝛿tr + 𝜀m

(6)�m =∥ x − xm ∥=

√
(x − xm)2 + (y − ym)2 + (z − zm)2

(7)�m
I
=

√(
xI − xm

)2
+
(
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)2
+
(
zI − zm

)2

Taylor expansion of �m
I

 around x and �̃�m can be presented 
as follows:

where em,x =
x−xm

∥x−xm∥
 , em,y =

y−ym

∥y−ym∥
 , em,z =

z−zm

∥z−zm∥
 ; �br = c�tr ; 

�x =
[
�x �y �z

]T is the estimated position error. For Nsat 
visible satellites, Eq. (8) can be written as follows:

And ��
N×3

 can be expressed as follows:

where �I =
[
�1
I
�2
I ⋯ �

Nsat

I

]T
 ; �G =

[
�̃�1 �̃�2 ⋯ �̃�Nsat

]T
.

For pseudorange rate measurements, the measured 
pseudorange rate can be modeled as follows:

where v =
[
vx vy vz

]T and xm =
[
xm ym zm

]T are the veloc-
ity of the receiver and m-th satellite in the e-frame, respec-
tively. Similarly, the corresponding pseudorange rate of the 
INS output is expressed as follows:

where vI =
[
vI,x vI,y vI,z

]T is the velocity of the INS mecha-
nization output in the e-frame. Then, the difference between 
the INS output pseudorange rate and the GNSS measured 
pseudorange rate is written as follows:

(8)
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For Nsat visible satellites, Eq. (13) can be expressed as 
follows:

According to (4), (9), and (14), �GI,k is written as:

where 0N×3 denotes a matrix with N  rows and 3 columns 
and all of its elements are zero; 1N×1 denotes a vector with N 
rows and 1 column and all of its elements are one.

Visual measurement model

A single static feature point f j is observed by the camera 
pose Ci . The measurement innovation of f j on Ci can be 
written as follows:

where z(j)
i

 is the feature position measurements; ẑ(j)
i

 is the 
predicted feature position measurements. Linearizing (16) 
around �xI,k and feature position p̂e

j
 in the e-frame, we can 

obtain the following:

where �(j)

Xi
 and �(j)

fi
 are the Jacobians of ��(j)

i
 for �xI,k and p̂e

j
 , 

respectively; 𝜹p̂e
j
 is the error of p̂e

j
.

Generally, a static feature point is observed by multi-
ple consecutive image frames; therefore, the measurement 
innovation of f j in the sliding window can be expressed 
as follows:

To convert ��(j) into an equation, which is related only 
to �xI,k , both sides of the equation are simultaneously 

(14)
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multiplied left by the left zero space matrix �T of �(j)

f
 . 

��(j) can be rewritten as follows:

Then, the measurement equations for all feature points 
are expressed as follows:

where the measurement noise vector nC,k is modeled as a 
zero-mean GWN with covariance matrix RC,k . The detailed 
derivation of the equations for the visual measurement 
model can be found in Mourikis and Roumeliotis (2007).

For the tightly coupled GNSS/INS/Vision integration 
based on the EKF model, the state update equation at k 
epoch, as GNSS or visual measurements arrive, can be writ-
ten as follows:

where �k is the gain matrix, X̂k∕k−1 and X̂k are the predicted 
and optimized state vector, respectively, and rk is the innova-
tion vector of the EKF. For example, as GNSS measure-
men t s  a re  upda ted ,  rk  c an  be  marked  a s 

rGI,k =

[
r�I,k
r ⋅

�I,k

]
=

[
�I − �G

�̇I − �̇G

]
 , which is only associated with 

the GNSS measurement vector. Besides, it plays an impor-
tant role in FDE.

Error and fault source of the system

In previous research, the concepts of error and fault are usu-
ally confused, so a distinction is dictated here.

• Error This typically pertains to the difference between 
the sensor measurements and their corresponding true 
values.

• Fault Various sources of error that cause a navigation 
system to not work properly or it cannot provide accurate 
navigation solutions (unreliable navigation solutions).

The positioning accuracy of the system is strongly 
affected by fault sources, especially for multi-sensor inte-
grated navigation systems, which increases the probability 
of system faults. Table 1 first summarizes the common error 
types and sources in GNSS/INS/Vision integration and sub-
sequently analyzes the possible fault sources.

Constant bias and IMU bias can effectively be mitigated 
and estimated through sensor calibration and modeling, 
resulting in minimal impact on the navigation solutions once 

(19)

𝛿�(j)
o

= �T
(
z(j) − ẑ(j)

)

= �T�(j)
x
�xI,k + �Tn(j)

= �(j)
o
�xI,k + n(j)

o

(20)rCI,k = �C,k �xI,k + nC,k

(21)X̂k = X̂k∕k−1 +�krk
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corrected. Consequently, they are not classified as system 
faults. In contrast, step errors are more prevalent within this 
system and exert a significant influence on its positioning 
performance, while SGEs are challenging to detect and can 
lead to the unavailability of navigation solutions. Conse-
quently, they are treated as faults.

As indicated by Eq. (21), the innovation vector of the 
EKF directly affects the accuracy of the filter states, even 
when it is affected by faults. Hence, the development of 
a fault detection and exclusion scheme is imperative. To 
illustrate this, taking the GNSS measurement vector as an 
example, and after compensating for receiver clock bias and 
drift correction, rGI,k is redefined as follows in case of GNSS 
faults and IMU faults:

where bG and �G indicate the GNSS fault vector and noise 
vector, respectively; �I denotes the noise vector of the INS-
derived navigation solution; and bI is regarded as the bias 
vector of INS-derived navigation solutions impacted by IMU 
faults.

Fault detection and exclusion scheme

First, the principles of AIME are described. Following this, 
we introduce an enhanced AIME method, referred to as PS-
AIME. Subsequently, the two-step FD method is employed 

(22)rGI,k = �
�
Nsat×3

⋅
(
�I + bI

)
− �G − bG

to identify the source of the fault. Finally, the fault exclusion 
strategy is presented to ensure positioning performance in 
case of system faults.

An enhanced AIME algorithm

AIME, being a typical fault detection method, exhibits supe-
rior performance in detecting SGEs in tightly coupled GNSS/
INS integration (Bhatti et al. 2007). The test statistic of the 
AIME is computed as follows:

�avg and ravg is given by:

where Ts,k follows a chi-square distribution and has the same 
freedom (DOF) as the number of visible satellites Nsat ; l is 
the length of the sliding window; and �GI,k is the covariance 
matrix of the innovation vector rGI,k , which can be calculated 
by:

(23)Ts,k = rT
avg

⋅ �−1
avg

⋅ ravg

(24)

⎧⎪⎪⎨⎪⎪⎩

�−1
avg

=
k∑

i=k−l+1

�−1
GI,i

ravg =
�
�−1

avg

�−1 k∑
i=k−l+1

�−1
GI,i

rGI,i

(25)�GI,k = �GI,k �
−
k
�T

GI,k
+ �GI,k

Table 1  Errors in the tightly coupled GNSS/INS/Vision integration (Jing et al. 2022)

Types Shapes Causes

Step error Satellite clock jumps, severe vibration, abnormal temperature in the IMU, light 
changes, moving objects in the camera, etc.

SGEs Satellite clock drifts, accumulation of errors in INS and visual navigation system, etc.

Constant Bias IMU is not properly calibrated, inconsistent coordinate conversion, etc.
While noise GNSS measurement noise, visual measurement noise, and IMU measurement noise

Random walk noise Integration of white noise
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where �−
k
 is the covariance matrix of the predicted state vec-

tor at epoch k . When Ts,k is greater than the test threshold 
Td,k , the measurements are usually considered to be faulty. 
Td,k is determined based on the probability of a false alarm 
PFA and Nsate , and it can be calculated by Jing et al. (2022):

where F(∗) is the cumulative distribution function of the 
central chi-squared distribution.

To identify faulty satellites, we introduce an improved 
AIME algorithm named PS-AIME. Once the innovation vector 
rGI,k and its covariance matrix �GI,k are computed, an innova-
tion vector is categorized by satellite number and extended 
throughout the sliding window. Figure 2 provides a visual 
representation of this process.

As shown in Fig. 2, rGI,ki (i = 1, 2… l) indicates the innova-
tion vector of the EKF algorithm at epoch ki in the sliding 
window, and Sv

GI,ki
 is composed of the principal diagonal ele-

ments of the covariance matrix �GI,ki of rGI,ki . Here, 
S
Sj

ki

(
j = 1, 2...SNsat

)
 can be considered as the covariance of rSj

ki
 . 

rsj is composed up of the elements of the innovation vector 
associated with the satellite Sj at different moments in the slid-
ing window. Then, inspired by the AIME algorithm, we cal-
culated the test statistics for all visible satellites to enhance the 
detection ability of SGEs and identify faulty satellites. Taking 
satellite S1 as an example, its test statistic can be expressed as 
follows:

�avg,S1
 and ravg,S1 are obtained as follows:

(26)1 − PFA = F
(
Td,k Nsat

)

(27)TS1 = rT
avg,S1

⋅ �−1
avg,S1

⋅ ravg,S1

Notably, the test threshold Td,S1 of TS1 is derived from the 
probability of a false alarm PFA and the length of the sliding 
window l.

Separation of the GNSS, IMU, and visual fault

The AIME was designed to detect SGEs in GNSS meas-
urements; however, determining the source of the fault is 
difficult in the case of (22). The primary objective is to dis-
tinguish and subsequently exclude sensor faults. Figure 3 
visually depicts the various sensor fault scenarios within 
the state estimation process. Faults can originate from three 
sources: a satellite, an IMU, and a feature point. These faults 
directly impact GNSS and visual measurement models. The 
method for separating these faults is outlined as follows.

For the GNSS measurement model, first, test statistics 
affected only by GNSS faults are constructed. According 
to (22), the corresponding innovation-based vector can be 
formulated as follows:

where �Nsat×Nsat
 denotes the identity matrix with Nsat rows and 

Nsat columns and � are expressed as:

(28)

⎧
⎪⎪⎨⎪⎪⎩

V−1
avg,S1

=
k∑

i=k−l+1

S
S1−1

ki

ravg,S1 =
�
V−1
avg,S1

�−1 k∑
i=k−l+1

S
S1−1

ki
r
S1
ki

(29)
rG,k =

(
�Nsat×Nsat

−�
�
Nsat×3

⋅ �

)
⋅ rGI,k

=
(
�

�
Nsat×3

⋅ � − �Nsat×Nsat

)
⋅
(
�G + bG

)

Fig. 2  Flowchart of the innovation vector grouped by satellite number in the sliding window
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Then, the covariance matrix of rG,k is written as:

As PS-AIME method in (27), the test statistic for each 
satellite can be calculated by rG,k and �G,k in the same way. 
Secondly, the test statistic TI,k impacted by IMU faults is 
built as follows. The innovation-based vector is expressed 
as follows:

As shown in (32), r̂I,k cannot be directly used to calcu-
late the test statistic TI,k because GNSS faults also occur. 
These faults are handled by excluding GNSS faults and 
reducing their impact on vectors r̂I,k . Similarly, the covari-
ance matrix of rI,k is given as follows:

(30)A =
(
�

�T
Nsat×3

�
�
Nsat×3

)−1

⋅�
�T
Nsat×3

(31)
�G,k =

(
�

�
Nsat×3

� − �Nsat×Nsat

)
⋅ �GI,k ⋅

(
�

�
Nsat×3

� − �Nsat×Nsat

)T

(32)r̂I,k = A ⋅ rGI,k = �I + bI − A ⋅
(
�G + bG

)

(33)�I,k = A ⋅ �GI,k ⋅ �
T

Then, the test statistic TI,k is compared with the cor-
responding detection thresholds TdI,k to assess whether an 
IMU fault has developed.

In the case of the visual measurement model, the influ-
ence of minor visual faults on navigation performance is 
considered negligible. Furthermore, when dealing with a 
substantial number of feature points, employing the AIME 
method for visual fault detection not only requires a higher 
detection threshold but also imposes a substantial compu-
tational load. To tackle these issues, a detection strategy 
for visual faults is developed. The specific steps are out-
lined as follows.

Step1 Calculating the corresponding innovation rCI,k and 
its variance matrix �CI,k.

Step2 Calculating the normalized value of the j-th ele-
ment of rCI,k.

where rCI,ki denotes the j-th element of rCI,k, and �j

�CI,k
 indi-

cates the normalized variance of rCI,kj , which isTd,Cj calcu-
lated by �CI,k . If there is no visual fault,

(34)�CI,k = �C,k �
−
k
�T

C,k
+ �C,k

(35)rCj =
rCI,kj

�j

�CI,k

Fig. 3  Illustration of the state estimation process for different sensor fault situations
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Step3 Calculating the test statistic of ri.

Here, Ts,rCj can be considered as following a chi-square dis-
tribution with a degree of freedom 1. When Ts,rCj is greater than 
its corresponding detection threshold, the feature point 

(36)rCj ∼ N(0, 1)

(37)Ts,rCj = rCj ⋅ rCj

Fig. 4  Flowchart of the fault 
detection and exclusion strategy 
based on the innovation and 
covariance matrix of extended 
Kalman filtering

i
i

j

j

Fig. 5  Experimental vehicle and 
equipment for data collection

Table 2  Key IMU parameters of the MYNTEYE-s1030 and POS320 
equipment

IMU sensors Parameters MYNTEYE-
s1030

POS320

Gyro Bias (°/h) 845 0.5
Noise (°/sqrt(h)) 0.4 0.05

Accel Bias (mg) 8450 25
Noise (m/s/sqrt(h)) 0.4 0.1
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measurement is deemed faulty in the absence of an IMU fault. 
Note that the probability of a false alarm PFA is set to 10−5 , 
which aligns with the standards in civil aviation fields. Moreo-
ver, 30%, 20%, and 50% of PFA is allocated to IMU, GNSS, 
and visual fault detectors, respectively, under the principle that 
a high probability of a false alarm should be high if the prior 
probability of the sensor is large (Wang et al. 2020).

Fault exclusion strategy

The purpose of fault exclusion is to ensure the continuity 
of the system and the accuracy of the navigation solutions. 
There are different fault exclusion functions for satellites, 
IMU, and visual measurements due to their characteristics. 
For satellite measurements, when the number of visible sat-
ellites exceeds 4, the detected faulty satellites are excluded 
from consideration. However, if the number of visible satel-
lites is 4 or fewer, the corresponding innovation is weighted. 
This approach is employed to eliminate faulty satellites 
while preserving the global positioning performance of the 
system to the greatest extent possible. The weight matrix 
�G,k is calculated by:

where αG,ki denotes the element of row i and column i of 
�G,k ; Ts,rGi indicates the test statistic of the i-th element in 
rGI,k , which can be calculated by rGI,k and �GI,k in the same 
way as TrCi (34–37); and Td,Gi is the corresponding detection 
threshold.

(38)𝛼G,ki =

{
1, Ts,rGi ≤ Td,Gi
Ts,rGi

Td,Gi
, Ts,rGi > Td,Gi

Fig. 6  Trajectory of the experimental vehicle in the test

Fig. 7  Environment of the field test case

0 200 400 600 800 1000 1200
time (s)

0

5

10

15

20

25

30 Number of GNSS satellites
PDOP

Fig. 8  Number of satellites and the corresponding position dilution of 
precision (PDOP) in the field test
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Then, the state update equation at k epoch, as GNSS 
measurements arrive, can be rewritten as follows:

The IMU faults seriously deteriorate the navigation per-
formance of the system because it is tightly fused with both 
the GNSS and visual measurements. In this section, once the 
IMU faults are detected, the system noise matrix �k is recal-
culated to ensure the accuracy of the navigation solutions.

(39)

⎧⎪⎨⎪⎩

�G,k = �G,k ∗ �G,k

�k = �−
k
�T

G,k

�
�G,k �

−
k
�T

G,k
+ �G,k

�−1

X̂k = X̂k∕k−1 +�k ⋅ rGI,k

(40)

{
�k = �k ⋅�k

�−
k
= �k∕k−1�

+
k−1

�T
k∕k−1

+�k

where �k∕k−1 denotes the state transition matrix of the EKF; 
�+
k−1

 denotes the corrected covariance matrix of the EKF at 
epoch k − 1.

For visual measurements, faulty measurements are 
directly excluded owing to the large number of feature points 
in an outdoor environment. Figure 4 provides an illustrative 
flowchart of the FDE strategy, which relies on the innovation 
and covariance matrix of the EKF.

As shown in Fig. 4, the FDE strategy first separates GNSS 
and IMU faults using the GNSS measurement modeling and 
second detects IMU faults in the presence of detecting and 
excluding faulty satellites. Finally, visual measurement mod-
eling is used to detect and exclude visual faults under the 
premise of excluding IMU faults.

(41)𝛽k =

{
1, TI,k ≤ TdI,k
TI,k, TI,k > TdI,k

Table 3  Different fault situations

Case Fault source (fault time) Fault information

1 GNSS (500–620 s) SGEs of magnitude 0.1 m/s to SV-133
2 SGEs of magnitude 0.1 m/s to SV-1 and SV-127
3 IMU (500–510 s) 0.005 rad/s and 0.05 m∕s2 step faults to each gyroscope and accelerometer axis, respectively
4 0.05 rad/s and 0.5 m∕s2 step faults to each gyroscope and accelerometer axis, respectively
5 0.5 rad/s and 1 m∕s2 step faults to each gyroscope and accelerometer axis, respectively

Fig. 9  Test statistics for GNSS SGEs of magnitude 0.1 m/s occurring 
in single satellite pseudorange measurements

Fig. 10  Test statistics for GNSS SGEs of magnitude 0.1  m/s occur-
ring in two satellite pseudorange measurements
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Case 3 in Table 3: 0.005 rad/s (gyroscope) and 
0.05 m/s2 (accelerometer) 

Case 4 in Table 3: 0.05 rad/s (gyroscope) and 0.5 
m/s2 (accelerometer)   

Case 5 in Table 3: 0.5 rad/s (gyroscope) and 1 
m/s2 (accelerometer)  

Fig. 11  Test statistics for step faults with different amplitudes occurring in IMU measurements
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Evaluation of field tests

A field test was conducted to validate the proposed algo-
rithm on April 1, 2023, in Beijing, China. Figure 5 pro-
vides an overview of the experimental vehicle and equip-
ment utilized for data collection. The raw GNSS data were 
gathered using a u-blox F9P board at a sampling rate of 
10 Hz, while the raw IMU data and images were collected 
using the MYNTEYE-s1030 module. It is important to note 
that the timestamp associated with the GNSS data is based 
on GPS time, whereas the timestamp associated with the 
IMU data and images is Coordinated Universal Time (UTC). 
Currently, there is an 18-s time difference between the two 
timestamps. The IMU timestamp and image timestamp are 
hardware-synchronized. The reference trajectory was deter-
mined by the postprocessing kinematic mode of NovAtel 
Inertial Explorer software with tactical-grade GNSS/INS 
POS320.

The POS320 navigator was linked to antenna 2, while the 
U-blox F9P board was connected to antenna 1. Key IMU 
parameters for both the MYNTEYE-s1030 and POS320 
equipment are summarized in Table 2. Additionally, Fig. 6 
provides a visual representation of the driving trajectory 
followed by the experimental vehicle during this test. The 
GNSS observation conditions along the test route are exhib-
ited in Fig. 7.

Figure 8 shows the number of observed satellites and the 
corresponding position dilution of precision (PDOP) values. 

The results show that the PDOP values in field tests are com-
monly low (in the test case 1 environment) and sometimes 
high (in the test case 2 environment). Overall, this approach 
is good for positioning.

Verification of the fault detection capability

To evaluate the fault detection capability of the proposed 
method, various faults were manually introduced into the 
satellite pseudorange and IMU raw measurements, as out-
lined in Table 3. Specifically, we focused on satellites 133 
(SV-133) and 127 (SV-127). For pseudorange measure-
ments, SGEs with a slope of 0.1 m/s were introduced as 
typical faults, while different magnitudes of step faults were 
applied to each gyroscope and accelerometer axis for IMU 
raw measurements. These step faults were selected based on 
the principle that they should be an order of magnitude less 
than, equal to, and greater than the current IMU raw data, 
as applicable.

Figures 9 and 10 depict the test statistics for AIME and 
the proposed PS-AIME method in the GNSS fault scenarios 
(Cases 1 and 2 in Table 3). The results show that while there 
is a slight difference in the fault detection time between the 
two methods, the proposed PS-AIME method is effective in 
identifying faulty satellites. Furthermore, the test statistic 
for the IMU consistently remains below its corresponding 
threshold in the GNSS fault situation, providing further 
evidence of the effectiveness of the GNSS fault exclusion 
approach.

Figure 11 displays the test statistics for step faults with 
varying amplitudes in the IMU fault scenarios (Cases 3, 
4, and 5 in Table 3). The findings reveal that significant 
step faults are promptly detected, whereas minor faults go 
undetected. This discrepancy arises from the fact that the 
EKF is capable of estimating and compensating for small 
IMU faults in real time, resulting in minimal impact on the 
residual vector in Eq. (32).

Positioning performance before and after fault exclusion

To provide further evidence of the fault exclusion strategy’s 
effectiveness, Fig. 12 contrasts the positioning errors in the 
east, north, and up (ENU) directions both before and after 
FDE in the GNSS fault situation. The outcomes demonstrate 
that the system’s position error during the fault occurrence 
is reduced from a maximum of – 6.2 to – 0.6 m after fault 
detection and exclusion. This results in a 90% reduction in 
positional error. The proposed FDE method is effective at 
detecting and excluding faulty satellites to ensure the posi-
tioning performance of the system.

Figure 13 shows the positioning errors in the ENU direc-
tion before and after FDE in the IMU fault situation. As 
depicted in this figure, the results indicate that in the case of 

Fig. 12  Positioning error in east, north, and up direction before and 
after fault detection and exclusion in the GNSS fault situation. FDE 
(fault detection and exclusion)
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Case 3 from Table 3, although minor IMU faults go unde-
tected, as shown in Fig. 10, they exert negligible influence 
on the system’s positioning performance. Furthermore, for 
Cases 4 and 5 in Table 3, the positioning performance expe-
riences a significant degradation before FDE, highlighting 
the effectiveness of the proposed fault exclusion method. 
The findings reveal that the system’s position error during 
fault occurrence is reduced from a maximum of – 13.8 to 

1.3 m before and after fault detection and exclusion. This 
represents a 91% reduction in positional error. Specifically, 
when an IMU fault is detected, its impact on the accuracy of 
the system state estimation can be mitigated by increasing 
the process matrix �k.

Figures 14 and 15 provide information on the number of 
feature points and the positioning error in ENU direction 
before and after FDE in a real-world visual fault scenario. 

Case 3 in Table 3: 0.005 rad/s (gyroscope) and 
0.05 m/s2 (accelerometer)  

Case 4 in Table 3: 0.05 rad/s (gyroscope) and 0.5 
m/s2 (accelerometer)  

Case 5 in Table 3: 0.5 rad/s (gyroscope) and 1 
m/s2 (accelerometer)  

Fig. 13  Positioning error in east, north, and up directions before and after fault detection and exclusion in the IMU fault situation
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The results reveal a significant alteration in the number of 
feature points before and after FDE, but the improvement in 
the system’s positioning accuracy is relatively minor. This 
discrepancy arises from the fact that the global positioning 
accuracy of the system is primarily influenced by the perfor-
mance of the GNSS. The contribution of the visual naviga-
tion system to positioning accuracy becomes more apparent 
when GNSS signals are heavily obstructed or unavailable.

To further assess the effectiveness of the proposed 
method, Table  4 compiles the maximum values of the 

system’s position error in ENU directions before and after 
FDE for various sensor faults. The results demonstrate that, 
in comparison with the pre-FDE state, the maximum system 
position error at the time of fault is reduced by an average of 
72% and 56% in the scenarios involving GNSS fault modes 
and IMU fault modes, respectively.

To further illustrate the performance of visual navigation, 
Fig. 16 displays the positioning errors in the ENU directions 
for GNSS/INS integration and GNSS/INS/Vision integration 
when the GNSS signal was completely obstructed from 20 
to 70 s. As depicted in the figure, the maximum position 
errors for GNSS/INS integration and GNSS/INS/Vision 
integration were − 495 m and − 21 m, respectively, when 
satellite signals were blocked. The system’s position error 
was reduced by 96% with the assistance of visual navigation. 
This approach significantly enhances the system’s position-
ing performance and robustness. This improvement stems 
from the fact that GNSS/INS integration relies solely on 
IMU mechanization and is not constrained by environmental 
factors.

Fig. 14  Number of feature points before and after fault detection and 
exclusion

Fig. 15  Positioning errors in east, north, and up directions before and 
after fault detection and exclusion in real-world visual fault situation

Table 4  The maximum values of position error in east, north, and up 
directions before and after fault detection and exclusion (FDE) for 
different sensor faults

Fault source Fault-NO FDE
North/East/Up (m)

Fault-with FDE
North/East/Up (m)

Case 1 in Table 3 − 3.8/− 3.9/− 3.7 0.2/1.5/1.4
Case 2 in Table 3 − 6.1/5.7/5.8 − 0.6/2.1/2.2
Case 3 in Table 3 2.3/− 1.2/− 6.8 2.3/− 1.2/− 6.8
Case 4 in Table 3 − 4.1/− 3.9/− 9.5 2.4/− 1.3/− 6.9
Case 5 in Table 3 − 14.1/7.2/− 11.3 2.3/− 1.5/− 7.1

Fig. 16  Positioning error in east, north, and up direction of two 
integrated navigation systems when the GNSS signal is completely 
blocked
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Conclusions

We introduce an innovation-based Kalman filter fault detec-
tion and exclusion method tailored for addressing all-source 
faults within tightly coupled GNSS/INS/Vision integration. 
Theoretical analyses are conducted to evaluate the impact of 
sensor faults on the system’s state estimation. We employ a 
two-step fault separation approach to accurately detect and 
distinguish between GNSS faults and IMU faults. Addi-
tionally, we propose an enhanced AIME method named 
PS-AIME, which effectively identifies faulty satellites and 
promptly removes them from the system. Furthermore, we 
design straightforward yet validated fault exclusion strate-
gies to mitigate the influence of various sensor faults on the 
system’s positioning performance. Field tests are conducted 
in a vehicle mobility navigation application to validate the 
efficacy of our approach. The experimental outcomes dem-
onstrate that (a) the two-step fault separation method effec-
tively distinguishes GNSS and IMU faults, (b) the proposed 
PS-AIME method rapidly detects faulty satellites, (c) our 
proposed FDE method effectively safeguards GNSS/INS/
Vision integration against all-source faults, and (d) visual 
feature point measurement faults in real-world environments 
have limited impact on the system’s positioning accuracy. 
Future work will concentrate on implementing the visual-
assisted fault detection technique in scenarios where satellite 
signals are heavily obstructed.
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