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Abstract
To obtain the tightest possible horizontal protection level (HPL) for the Chi-squared residual-based advanced receiver 
autonomous integrity monitoring (ARAIM), it is prerequisite to determine the worst horizontal position error (HPE) dis-
tribution center and the worst noncentrality parameter for each fault event hypothesis. By transforming the HPE into a new 
space, an upper bound for the HPE distribution center is derived which can account for multiple faults, constellation faults 
and nominal biases. The bound for the noncentrality parameter is given, and an error function-based method is also devel-
oped to compute conservative integrity risk which can improve HPL calculation efficiency by avoiding involved integral. 
A conducted experiment based on GPS (Global Position System), Galileo (European Global Navigation Satellite System) 
and BDS (BeiDou Navigation Satellite System) ephemeris data show that the proposed algorithm can significantly improve 
the HPL tightness compared to solution separation-based ARAIM (SS-ARAIM).As per journal instruction, Please provide 
author's photographies.The author's photos are attached.
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Abbreviations
AL  Alert limits
ARAIM  Advanced receiver autonomous integrity 

monitoring
BDS  BeiDou navigation satellite system
ENU  East, north, up
GNSS  Global navigation satellite system
GPS  Global position system
HMI  Hazardously misleading information
HPE  Horizontal position error
HPL  Horizontal protection level
ICAO  International Civil Aviation Organization
KF  Kalman filter
MI  Misleading information
PE  Position error
PL  Protection level
RAIM  Receiver autonomous integrity monitoring

SS-ARAIM  Solution separation-based ARAIM
VPE  Vertical position error
VPL  Vertical protection level
WLS  Weighted least squares

Introduction

Integrity is one of the utmost priorities for safety critical 
GNSS (Global Navigation Satellite System) applications as 
misleading information (MI) can result in life-threatening 
problems. With the growing prosperity of autonomous 
vehicles such as unmanned aerial vehicles and driver-less 
cars, GNSS integrity attracts increasing attention in aviation 
applications and beyond. As defined in the GNSS Standards 
and Recommended Practices by International Civil Avia-
tion Organization (ICAO), integrity is a measure of the trust 
which can be placed in the correctness of the information 
supplied by the total system (ICAO 2006). The receiver 
autonomous integrity monitoring (RAIM) algorithm is one 
effective approach to address GNSS integrity, which is self-
contained and operates on the basis of consistency check on 
redundant measurements. So far, different kinds of receiver 
integrity monitoring algorithms have been developed, of 
which the Chi-squared residual-based RAIM (Parkinson and 
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Axelrad 1988; Sturza 1988) for single-fault scenarios and 
the solution separation-based RAIM (Brenner 1996; Blanch 
et al. 2015) for multiple-fault cases are the two most typical 
ones (Joerger and Pervan 2016).

Integrity monitoring includes the ability to provide timely 
and valid warnings to users when the navigation solution 
error exceeds tolerable constraints. The absolute position 
error (PE) is bounded by protection level (PL) in an integrity 
monitoring algorithm, and the PL can be divided into verti-
cal protection level (VPL) and horizontal protection level 
(HPL). Hence, PL calculation is a key part of the design of 
an integrity monitoring algorithm, and the accuracy of PL 
calculation is extremely important for effectively monitor-
ing system integrity. The PL is calculated on the basis of the 
distributions of PE and fault detection statistics and the rela-
tionship between them. Although the receiver integrity mon-
itoring performance can be enhanced by various measures 
such as Kalman filter (KF) (Diesel and Luu 1995; Joerger 
and Pervan 2013; Bhattacharyya and Gebre-Egziabher 2014, 
2015) and the aiding of an inertial navigation system (Tanıl 
et al. 2018; Wang et al. 2020), the Chi-squared residual-
based RAIM and the solution separation-based RAIM are 
particularly attractive because they have a straightforward 
set of the theory of such distribution and relationship, as well 
as the fact that the weighted least squares (WLS) position-
ing is the GNSS positioning method most extensively used 
in practice.

Compared to VPL, the HPL is more difficult to calcu-
late because the horizontal position error (HPE) is featured 
by a two-dimensional normal distribution characterized by 
covariance and mean (distribution center). Currently, the 
HPL calculation is generally divided into two components, 
respectively, accounting for fault bias and measurement 
noise (Bhattacharyya and Gebre-Egziabher 2014; Brown and 
Chin 1998; Walter and Enge 1995), or for two orthogonal 
directions (Blanch et al. 2015). Although such approaches 
have a great deal of convenience in computation, the rel-
evance between the two components often has not been fully 
taken into account or made use of, which may lead to an 
overly conservative HPL (Blanch and Walter 2020a; Jiang 
and Wang 2016; Milner and Ochieng 2010).

Accurate HPL should be calculated by double integral 
(Ober 1998). The double integral within the HPL calculation 
is affected by the HPE distribution center, which indicates 
the HPE directly caused by GNSS faults and nominal biases, 
and the HPE distribution center will change when any fault 
magnitude varies. In the Chi-squared residual-based RAIM, 
the magnitude of an undetected GNSS fault is represented by 
the square root of the noncentrality parameter of the noncen-
tral Chi-square distribution of fault detection statistic. Deter-
mining the worst noncentrality parameter in each fault event 
hypothesis that can maximize the probability of MI hence 
has a significant influence on the accuracy and reliability of 

HPL (Feng et al. 2006; Jiang and Wang 2014; Milner and 
Ochieng 2011). A calculated reliable HPL should bound the 
HPE even in the worst situation which comes with the worst 
HPE distribution center and the worst noncentrality param-
eter. The worst noncentrality parameter can be obtained by 
search method (Blanch and Walter 2020b). Comparatively, 
finding the worst HPE distribution center is more difficult. 
Even the worst noncentrality parameter is achieved, deter-
mining the worst HPE distribution center in the multi-fault 
event hypothesis is still challenging as the corresponding 
trajectory of the HPE distribution center is two dimensional.

We propose an algorithm to calculate the HPL of Chi-
squared residual-based ARAIM. In order to bound the HPE 
distribution center, the HPE is transformed into a new space 
in which the HPE has a two-dimensional standard normal 
distribution. The bound of the HPE distribution center 
caused by multiple faults, constellation faults and nominal 
biases is derived in the new space. Through constructing 
an inscribed rectangle of the double integral region in the 
HPL calculation, an error function-based method for getting 
conservative integrity risk and corresponding worst noncen-
trality parameter is also developed. An experiment based 
on GPS, Galileo and BDS ephemeris data is performed to 
validate the proposed algorithm, which shows the proposed 
algorithm can significantly improve the HPL tightness com-
pared to SS-ARAIM.

Chi‑squared residual‑based RAIM

Integrity requirements can be quantified with three terms: 
alert limits (AL), time-to-alert and integrity risk. Based on 
the three terms, an integrity monitoring algorithm can be 
designed to continuously check system integrity. The GNSS 
fault is detected according to the continuity risk require-
ment. If no abnormality is detected, the integrity monitoring 
system should provide a PL for bounding the absolute posi-
tion error according to specified integrity risk. The integrity 
monitoring result is declared available only when the PL is 
less than the AL.

The Chi-squared residual-based RAIM is based on WLS 
positioning. In the GNSS WLS positioning, the linearized 
pseudorange equation with n measurements and m states can 
be expressed in the local ENU (East, North, Up) coordinate 
system as follows:

where z is the n × 1 measurement vector, H is the n × m 
geometry matrix, p is the m × 1 state vector, v is the n × 1 
Gaussian measurement noise vector with zero mean and 
diagonal covariance matrix R , fs is the nf × 1 fault vector 
with nf  indicating the number of occurred measurement 
faults, F is a n × nf  matrix projecting the measurement faults 

(1)z = Hp + v + Ffs + bs
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onto the measurement vector, each column and each row of 
F have at most one nonzero element with a value of 1, bs is a 
n × 1 vector indicating nominal biases and the nominal bias 
for satellite i is bounded by bnorm,i.

As the fs is a random vector, we rewrite (1) as follows:

where f = fs + FTbs , b is a 
(
n − nf

)
× 1 vector constructed 

by the nominal biases excluding the elements of FTbs , and 
B is a n ×

(
n − nf

)
 matrix projecting b onto the measurement 

vector.
The WLS estimate of p is given as

where W = R−1 is the weighting matrix. Denoting 
S =

(
HTWH

)−1
HTW , the WLS positioning error is equal to

and the covariance ℵ of Δp is obtained by ℵ=
(
HTWH

)−1 . 
The residual vector of WLS is given by the following

 Both Δp and r have normal distributions, respectively, 
expressed as

 The weighted sum of squares of r is defined by

 If r = 0 , �2 follows a Chi-square distribution with d = n − m 
degrees of freedom (Joerger and Pervan 2016); otherwise, 
�2 will follow a noncentral Chi-square distribution with d 
degrees of freedom and the noncentrality parameter is equal 
to

 In the Chi-squared residual-based RAIM, the test statistic 
for fault detection can be defined as � = �2 . The threshold 
T
th

 of the test statistic then is computed by solving the fol-
lowing equation:

where PFA is the given probability of false alarm indicating 
the continuity requirement of the application and gc(∗) is the 
cumulative distribution function of Chi-square distribution.

The PL calculation is related to specific fault detection 
method and the integrity risk requirement, which is deter-
mined by the following (Joerger and Pervan 2016)

(2)z = Hp + v + Ff + Bb

(3)p̂ =
(
HTWH

)−1
HTWz

(4)Δp = p̂ − p = S(v + Ff + Bb)

(5)r = z − Hp̂ = (I − HS)(v + Ff + Bb)

(6)Δp ∼ N
(
Δp = S(Ff + Bb),ℵ

)

(7)r ∼ N
(
r = (I − HS)(Ff + Bb), (I − HS)R

)

(8)�2 = rTWr = zTW(I − HS)z

(9)� = (Ff + Bb)TW(I − HS)(Ff + Bb)

(10)1 − PFA = gc
(
T
th

)

where PE can be either HPE or vertical position error (VPE), 
and corresponding PL is HPL or VPL, ℏj with 0 ≤ j ≤ nh 
represents an event hypothesis, ℏ0 is the fault-free hypothe-
sis, nh is the number of events that should be monitored, Pℏj

 
is the a priori probability of ℏj occurrence, PHMI is the prob-
ability of hazardously misleading information (HMI) indi-
cating the integrity risk requirement and PNM is the threshold 
for the integrity risk coming from very rarely occurring 
faults that need not be monitored. Since the Δp and � are 
statistically independent in GNSS WLS positioning (Sturza 
1988; Joerger and Pervan 2013; Pervan 1996), equation (11) 
can be rewritten into

 The faults contained in fault event hypothesis ℏj are indi-
cated by matrix F as

where Fi,∶ is the i th row of F and ‖∗‖ means the matrix 
norm. Labeling the a priori probability of fault occurrence 
in GNSS satellite i as Psat,i and considering that the GNSS 
faults (not include constellation faults) are independent of 
each other, the a priori probability of event hypothesis ℏj (not 
include constellation faults) is equal to

 The a priori probability of a GNSS constellation fault is 
specified in the integrity monitoring rather than calculated 
by (14) (Blanch et al. 2015).

Proposed HPL calculation for Chi‑squared 
residual‑based ARAIM

On the left side of (12), the probability P
{
𝛼 < Tth|�j

}
 in 

each fault event hypothesis is affected by the noncentrality 
parameter, and the term P

�‖PE‖ > PL��j

�
 is influenced by 

the PE distribution center. Both the PE distribution center 
and the noncentrality parameter are related to the fault vector 
as shown in (6) and (9). Since the fault vector is unknown in 
practice, the integrity monitoring algorithm should provide 

(11)
nh�
j=0

�
P
�‖PE‖ > PL,𝛼 < Tth��j

�
P�j

� ≤ PHMI − PNM

(12)

nh�
j=0

�
P
�‖PE‖ > PL��j

�
P
�
𝛼 < Tth��j

�
P�j

� ≤ PHMI − PNM

(13)‖‖Fi,∶
‖‖ =

{
1, fault in satellite i

0, nofault in satellite i
;1 ≤ i ≤ n

(14)

Pℏj
=

⎧⎪⎨⎪⎩

n∏
i=1

�
1 − P

sat,i

�
; j = 0

n∏
i=1

��
1 − P

sat,i

�1−‖Fi,∶‖�
P
sat,i

�‖Fi,∶‖�
; j ≥ 1
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a PL that can bound the PE occurred in the worst situation, 
wh ich  means  t he  sum o f  t he  p robab i l i t y 
P
�‖PE‖ > PL��j

�
P
�
𝛼 < Tth��j

�
P�j

 maximized by the worst PE dis-
tribution center and the worst noncentrality parameter in 
each event hypothesis should be less the integrity budget. In 
order to achieve a tight and reliable PL, it is required to 
determine the worst PE distribution center and the worst 
noncentrality parameter for each fault hypothesis. In the fol-
lowing part of this paper, we take the calculation of HPL as 
an example.

Bounding the HPE distribution center

Denoting the linearized pseudorange equation (2) 
in the fault event hypothesis ℏj with 1 ≤ j ≤ nh as 
z = Hp + v + Fjfj + Bjbj , then the PE distribution center 
and the noncentrality parameter can be expressed as follows:

 We define two variables as

 The �f ,j represents the noncentrality parameter caused by 
the GNSS faults and nominal biases in faulty measurements, 
while the �b,j stands for the noncentrality parameter only 
resulted by the nominal biases in fault-free measurements.

Defining ΔpEN as the horizontal GNSS WLS positioning 
error with subscripts E and N , respectively, indicating the 
east and north directions, we have

 where x and y represent the coordinates along east and north 
directions in the horizontal plane, respectively, and C is the 
matrix to extract the horizontal elements from Δp . Then, 
the mean and covariance of ΔpEN can be, respectively, for-
mulated as

 The UDUT given in (21) is a singular value decomposition, 
and U is an orthogonal matrix and D = diag

(
�e, �n

)
 com-

posed of singular values is a diagonal matrix with �e ≥ �n.

(15)Δp = S
(
Fjfj + Bjbj

)

(16)�j =
(
Fjfj + Bjbj

)T
W(I − HS)

(
Fjfj + Bjbj

)

(17)�f ,j =
(
Fjfj

)T
W(I − HS)

(
Fjfj

)

(18)�b,j =
(
Bjbj

)T
W(I − HS)Bjbj

(19)ΔpEN =
[
x, y

]T
= CΔp

(20)ΔpEN = CS
(
Fjfj + Bjbj

)

(21)ℵEN = CℵCT = UDUT

Every HPL derived from (12) protects the HPE under 
event hypothesis ℏj within a circular region at the probabil-
ity of P

�‖HPE‖ ≤ HPL�ℏj

�
 , and the contour of the circu-

lar double integral region of P
�‖HPE‖ ≤ HPL�ℏj

�
 can be 

expressed in the horizontal plane as

 The HPE along the east and north directions may be cor-
related with each other. In order to get an uncorrelated HPE, 
we take a coordinate transformation shown as follows:

 Then, the HPE in the new space is represented by Δp�
EN

 
which has a unit covariance. The contour of the double inte-
gral region of P

�‖HPE‖ ≤ HPL�ℏj

�
 turns into an ellipse in 

the new space as follows:

 The HPE distribution center changes to

where Δp�
EN,f

= D
−

1

2UTCSFjfj and Δp�
EN,b

= D
−

1

2UTCSBjbj , 
respectively, represent the HPE caused by fj and bj.

Bound for the HPE caused by faults

We assume that

where U1D1U
T
1
 is a singular value decomposition, and U1 is 

an orthogonal matrix and D1 = diag
(
�1, �2,… , �nD , 01×(nf−nD)

)
 

composed of singular values is a diagonal matrix with 
nD=rank

(
D1

)
 and �1 ≥ �2 ≥ ⋯ ≥ �nD . Then, we perform a 

coordinate transformation as

where Df = diag
�√

�1,
√
�2,… ,

√
�nD , 11×(nf−nD)

�
 . As a result, 

�f ,j =
(
Fjfj

)T
W(I − HS)

(
Fjfj

)
 and Δp�

EN,f
= D

−
1

2UTCSFjfj 
become �f ,j =

(
f �
j

)T

diag
(
11×nD

, 01×(nf −nD)

)
f �
j
 and Δp�

EN,f
= D

−
1

2

UTCSFjU1
D−1

f
f �
j
 , respectively.

Assume that we have the following singular value 
decomposition

(22)ΔpT
EN
ΔpEN = HPL2

(23)Δp�
EN

=
[
x�, y�

]T
= D

−
1

2UTΔpEN

(24)
(
UD

1

2Δp�
EN

)T

UD
1

2Δp�
EN

= Δp�T
EN
DΔp�

EN
= HPL2

(25)Δp�EN = D
−

1

2UTCS
(
Fjfj + Bjbj

)
= Δp�

EN,f
+ Δp�

EN,b

(26)FT
j
W(I − HS)Fj = U1D1U

T
1

(27)f �
j
= DfU

T
1
fj

(28)

(
D

−
1

2UTCSFjU1
D−1

f

)T

D
−

1

2UTCSFjU1
D−1

f

= U
2
diag

(
�1, �2, 01×(nf−2)

)
UT

2
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where U2 is an orthogonal matrix and �1 ≥ �2 . Based on the 
covariance ellipsoid concept and the consistency relation-
ship between two covariance ellipsoids (Benaskeur 2002; 
Liu et al. 2017), the HPE induced by GNSS faults under a 
given �f ,j in the new space is bounded by

 Similarly, we denote Dr = [1, 0] and assume the following 
singular value decomposition

where U3 is an orthogonal matrix. The magnitude of the HPE 
induced by GNSS faults along xf-axis under a given �f ,j in 
the new space is bounded by

 Getting the bounds of ‖‖‖Δp�EN,f
‖‖‖ and |||x′f

||| can be considered 
to solve optimization problems that have linear or quadratic 
objectives and quadratic equality constraints, which can also 
be settled by optimization methods. The upper bound of the 
HPE caused by a constellation fault can be similarly 
calculated.

Bound for the HPE caused by nominal biases

Again, we assume the following singular value 
decomposition

where U4 is an orthogonal matrix and �1 ≥ �2 ≥ ⋯ ≥ �n−nf  . 
Then, the HPE induced by bj in the new space is bounded by

 The magnitude of the HPE induced by bj along  xf-axis in 
the new space is bounded by

where ei is the i th element of DrD
−

1

2UTCS.

(29)‖‖‖Δp�EN,f
‖‖‖ ≤ √

�f ,j�1

(30)

(
DrD

−
1

2UTCSFjU1
D−1

f

)T

DrD
−

1

2UTCSFjU1
D−1

f

= U
3
diag

(
�1, 01×(nf−1)

)
UT

3

(31)|||xf
||| ≤

√
�f ,j�1

(32)

(
D

−
1

2UTCSBj

)T

D
−

1

2UTCSBj

= U
4
diag

(
�1, �2,… , �n−nf

)
UT

4

(33)‖‖‖Δp�EN,b
‖‖‖ ≤

√√√√�1

n∑
i=1

(‖‖‖Bj,i,∶
‖‖‖b2norm,i

)

(34)||x�b|| ≤
n∑
i=1

(||ei||‖‖‖Bj,i,∶
‖‖‖bnorm,i

)

The double integral of P
�‖HPE‖ ≤ HPL�ℏj

�
 in the new 

space is graphically shown in Fig. 1, and we have two lem-
mas as follows:

Lemma 1 For any two points PA,PB in a horizontal 
line (or two points PA,PC in a vertical line), the dou-
ble integral of P

�‖HPE‖ ≤ HPL�ℏj

�
 with the HPE dis-

tribution center at the point PB which is closer to the y′
-axis (or at the point PC which is closer to the x′-axis) 
has a greater value (proof is given in Appendix A): 
P
�‖HPE‖ ≤ HPL��j,PB

�
> P

�‖HPE‖ ≤ HPL��j,PA

�
 ( or 

P
�‖HPE‖ ≤ HPL��j,PC

�
> P

�‖HPE‖ ≤ HPL��j,PA

�
).

Lemma 2 For any two points PD,PE  in a circu-
lar arc whose center is at the origin, the double inte-
gral of P

�‖HPE‖ ≤ HPL�ℏj

�
 with the HPE distribu-

tion center at the point PE which is closer to the y′
-axis has a greater value (proof is given in Appendix B): 
P
�‖HPE‖ ≤ HPL��j,PE

�
> P

�‖HPE‖ ≤ HPL��j,PD

�
.

Since the double integral of P
�‖HPE‖ ≤ HPL�ℏj

�
 in the 

new space is symmetric about the x′-axis and the y′-axis, 
without loss of generality we assume the worst HPE distri-
bution center in the new space is in the first quadrant. Define 
the following line and circle in the new space

 The HPE distribution center in the first quadrant can be at 
any point in the grid area in Fig. 1. According to the two lem-
mas, the upper bound of the worst HPE distribution center 
caused by both faults and nominal biases in the new space 

(35)x� = max
(
x�
f

)
+max

(
x�
b

)

(36)x�2 + y�2 =
(
max

(‖‖‖Δp�EN,f
‖‖‖
)
+max

(‖‖‖Δp�EN,b
‖‖‖
))2

HPL

e

HPL

n

x

y
Contour of the double 
integral region 

°
°° °

°

°

The circle of equation (36) 

The line of equation (35) 

Fig. 1  Double integral of P
�‖HPE‖ ≤ HPL�ℏj

�
 in the new space
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can be represented by the intersection 
PW =

[
�x�,w,�y�,w

]T  

of the orange line and the green circle in Fig. 1.
Based on the obtained upper bound of the worst HPE 

distribution center in the new space, we have

where P
�‖HPE‖ ≤ HPL�ℏj, �f ,j,�x′,w,�y′,w

�
 means the 

probability P
�‖HPE‖ ≤ HPL�ℏj

�
 under the given �f ,j with 

the upper bound of the worst HPE distribution center at [
�x′,w,�y′,w

]T , and

 As for VPL calculation, the upper bound of the worst VPE 
distribution center caused by both GNSS faults and nominal 
biases is represented by the max(y) in the original space, 
which can be obtained by a way similar to (29) (31), (33), 
(34) and (35) used to achieve the max

(
x′
)
.

Bounding the noncentrality parameter

Here, the worst HPE distribution center in the new space is 
still assumed in the first quadrant. For the fault event hypoth-
esis ℏj with 1 ≤ j ≤ nh , we assume the following singular 
value decomposition:

where U5 is an orthogonal matrix and �1 ≥ �2 ≥ ⋯ ≥ �n−nf  . 
Then, we have

 According to the definitions of �j , �f ,j and �b,j , we have the 
following

 We define the following function:

(37)
P
�‖HPE‖ > HPL��j, 𝜆f ,j

�

≤ �
1 − P

�‖HPE‖ ≤ HPL��j, 𝜆f ,j,𝜇x�,w,𝜇y�,w

��

(38)

P
�‖HPE‖ ≤ HPL�ℏj, �f ,j,�x�,w,�y�,w

�

=

HPL√
�e

�
−

HPL√
�e

dx�

�
HPL2

�n
−

�e

�n
x�2

�
−

�
HPL2

�n
−

�e

�n
x�2

1

2�
e
−

1

2

�
(x�−�x� ,w)

2
+(y�−�y� ,w)

2
�
dy�

(39)BT
j
W(I − HS)Bj = U

5
diag

(
�1, �2,… , �n−nf

)
UT

5

(40)
�b,j =

(
Bjbj

)T
W(I − HS)Bjbj

≤ �max
b,j

= �1

n∑
i=1

(‖‖‖Bj,i,∶
‖‖‖b

2
norm,i

)

(41)�j ≥
(√

�f ,j −
√

�b,j

)2

where P
{
𝛼 < Tth|�j, 𝜆

}
 means the probability P

{
𝛼 < Tth|�j

}
 

when the noncentrality parameter of the noncentral Chi-
square distribution of test statistic is equal to � . As shown in 
( 4 1 ) ,  �j ≥ �√

�f ,j −
√
�b,j

�2 ≥ 0  .  H e n c e , 
P
�
𝛼 < Tth��j, 𝜆j

� ≤ P
�
𝛼 < Tth��j,

�√
𝜆f ,j −

√
𝜆b,j

�2� ≤ q
(
ℏj, �f ,j

)
 . 

Then, according to (37), for any �f ,j with corresponding 
obtained upper bound of the worst HPE distribution center 
at 
[
�x′,w,�y′,w

]T , each term on the left side of (12) for the 
fault event hypothesis ℏj with 1 ≤ j ≤ nh can expressed as

 Inequality (43) indicates Pmax
HMI,j

= max
(
P
HMI,j

) ≤
P̂max
HMI,j

= max
(
P̂
HMI,j

)
 . Hence, P

HMI,j
 is bounded by P̂max

HMI,j
 

for the given �f ,j.

Bounding the integrity risk

Given a HPL candidate, P̂
HMI,j

 is a function of �f ,j . In order to 
achieve the P̂max

HMI,j
 , we should find the worst �f ,j . The �f ,j is 

related to the magnitudes of the faults contained in the fault 
event hypothesis ℏj , and each fault magnitude in the fault event 
can vary from 0 to a large unknown value. It can be very com-
putationally costly to search the worst �f ,j in the range 
�f ,j ∈ (0,+) along with the double integral given in (38) in the 
ellipse region defined by (24) for each fault event hypothesis.

As shown in Fig. 2, we use ○ to denote the double integral 
region of P

�‖HPE‖ ≤ HPL�ℏj

�
 , and employ  to indicate 

the inscribed rectangle (can be constructed by different ways) 
of ○.

Also, we define the following functions:

(42)

q
�
�j, 𝜆f ,j

�
=

⎧
⎪⎨⎪⎩

P
�
𝛼 < Tth��j, 0

�
;𝜆f ,j < 𝜆max

b,j

P

�
𝛼 < Tth��j,

�√
𝜆f ,j −

�
𝜆max
b,j

�2
�

;𝜆f ,j ≥ 𝜆max
b,j

(43)

PHMI,j = P
�‖HPE‖ > HPL��j

�
P
�
𝛼 < Tth��j, 𝜆j

�
P�j

≤ �
1 − P

�‖HPE‖ ≤ HPL��j, 𝜆f ,j,𝜇x�,w,𝜇y�,w

��

× P
�
𝛼 < Tth��j, 𝜆j

�
P�j

≤ P̂HMI,j =
�
1 − P

�‖HPE‖ ≤ HPL��j, 𝜆f ,j,𝜇x�,w,𝜇y�,w

��

× q
�
�j, 𝜆f ,j

�
P�j

(44)

p
(
ℏj,♢, �f ,j

)
= P

{
HPE ∈ ♢|ℏj, �f ,j,�x�,w,�y�,w

}

= ∬
♢

1

2�
e
−

1

2

(
(x�−�x� ,w)

2
+(y�−�y� ,w)

2
)
dx�dy�
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where  (which means ♢ can be ○ or ). Com-
pared to g

(
ℏj,○, �f ,j

)
 whose integral region is an ellipse, the 

 has a rectangular integral region. The dou-
ble integral with a rectangle region xL ≤ x ≤ xU , yL ≤ y ≤ yU 
o f  the  two-dimens iona l  nor mal  d is t r ibu t ion [
x, y

]T
∼ N

([
�x,�y

]T
, diag

(
�x, �y

))
 can be efficiently calcu-

lated using the error function as follows:

where erf(∗) is the error function expressed as follows:

 We assume that  and g
(
ℏj,○, �f ,j

)
 are max-

imized at  and �f ,j = �
○

max,j
 , respectively. Based 

on the definition in (45), we have P̂HMI,j = g
(
�j,○, 𝜆f ,j

)
 and 

P̂max
HMI,j

= g

(
�j,○, 𝜆

○

max,j

)
 . Because  is contained within ○ , we 

h a v e 
. 

Hence, . The upper 
bound Pup

HMI,j
 for P

HMI,j
 can be obtained as

(45)g
(
ℏj,♢, �f ,j

)
=
(
1 − p

(
ℏj,♢, �f ,j

))
q
(
ℏj, �f ,j

)
Pℏj

(46)

xU

∫
xL

dx

yU

∫
yL

1

2��x�y
e
−

1

2

��
x−�x

�x

�2

+

�
y−�y

�y

�2
�

dy

=
1

4

�
erf

�
�x − xL√

2�x

�
− erf

�
�x − xU√

2�x

��

×

⎛⎜⎜⎝
erf

⎛⎜⎜⎝
�y − yL√

2�y

⎞⎟⎟⎠
− erf

⎛⎜⎜⎝
�y − yU√

2�y

⎞⎟⎟⎠

⎞⎟⎟⎠

(47)erf(t) =
2√
�

t

∫
0

e−s
2

ds

 To reduce the difference between  and 
g
(
ℏj,○, �○

max,j

)
 , the inscribed rectangle  can be further 

replaced by multiple smaller rectangles as shown in Fig. 3.
In order to get , the  is required to 

be determined. The  can be obtained by search method. In 
the searching of , the lower bound �low

f ,j
 and upper bound 

�
up

f ,j
 of �f ,j should be first determined and the searching can start 

at the upper bound �up
f ,j

 . The lower bound is set as �low
f ,j

= �max
b,j

 , 
and a conservative upper bound ( �up

f ,j
≥ �max

b,j
 ) can be obtained 

by solving the following:

 Then, we have

 The above inequality implies that we do not need to search 
the range 𝜆f ,j > 𝜆

up

f ,j
 . In practice,  is usually much 

smaller than the �up
f ,j

.
Since the error function can be pre-implemented, the 

 can be more efficiently computed than 
p
(
ℏj,○, �f ,j

)
 . Compared to searching �○

max,j
 in the range 

(48)

(49)

(50)

Fig. 2  Inscribed rectangle of the double integral region

in

x

y
Double integral region:

Inscribed rectangle:

Fig. 3  Double integral with multiple rectangles
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�f ,j ∈ (0,+) along with double integral, the proposed 
method using (48) to compute integrity risk not only has 
a narrow search range 

[
�max
b,j

, �
up

f ,j

]
 for  but also can 

eliminate the double integral.

HPL calculation process

The proposed algorithm calculates the HPL following the 
main steps below, and the calculation flowchart is shown 
in Fig. 4:

1. Given a HPL, construct the inscribed rectangle(s)  in 
the new space.

2. Based on (45), compute the probability P
HMI,0

 either 
using g

(
ℏ0,○, 0

)
 or .

3. For each event hypothesis ℏj with 1 ≤ j ≤ nh , search 
 and then use (48) to obtain Pup

HMI,j
.

4. Check whether 
�
P
HMI,0

+
∑nh

j=1
P
up

HMI,j

� ≤ �
PHMI − PNM

�
 

is satisfied and their difference is smaller than stop cri-
terion. If the check does not pass, return to step 1 and 
continue the calculation with a new HPL candidate.

Note that in the continuous integrity monitoring, the 
search of  at the current epoch can be conducted with 
the worst parameter obtained at the previous epoch as the 
initial value, such that the cost time of the HPL calculation 
will be further suppressed. When setting the initial HPL for 
the first iteration, we should be aware that the HPL has a 
lower bound. Rewrite the left side of (12) for HPL into

When �○
max,j

→ ∞, 1 ≤ j ≤ h , for any feasible HPL we have

 Hence, equation (12) has a lower HPL bound as HPLmin 
which satisfies

 In the VPL calculation, a similar lower bound for VPL also 
exists.

Experiment

In this section, an experiment based on GPS, Galileo and BDS 
ephemeris data is conducted to demonstrate the proposed 
algorithm. The broadcast GPS, Galileo and BDS ephemeris 
data on 2020–01-01 are downloaded from ftp:// cddis. nasa. 
gov/ gnss/ data/ campa ign/ mgex/ daily/ rinex3/ 2020/ 001/ 20p/ 
and used to construct the geometry matrix of GNSS WLS 
positioning at 2020-01-01, 22: 00 in ENU coordinate system. 
HPL calculation is performed with a fixed height of 1000 m 
and a horizontal interval of 10◦ in both latitude ( −80◦

to80
◦ ) 

and longitude ( −170◦

to180
◦ ). All-in-view satellites of those 

(51)

nh�
j=0

�
P
�‖HPE‖ > HPL��j

�
P
�
𝛼 < Tth��j

�
P�j

�

= P
�‖HPE‖ > HPL��0

�
P
�
𝛼 < Tth��0

�
P�0

+

nh�
j=1

�
P
�‖HPE‖ > HPL��j

�
P
�
𝛼 < Tth��j

�
P�j

�

≤ PHMI − PNM

(52)
P
�‖HPE‖ > HPL��0

�
P
�
𝛼 < Tth��0

�
P�0

≤ PHMI − PNM.

(53)
P
�‖HPE‖ > HPLmin��0

�
P
�
𝛼 < Tth��0

�
P�0

= PHMI − PNM

Fig. 4  HPL calculation flowchart

ftp://cddis.nasa.gov/gnss/data/campaign/mgex/daily/rinex3/2020/001/20p/
ftp://cddis.nasa.gov/gnss/data/campaign/mgex/daily/rinex3/2020/001/20p/
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three GNSS constellations with an elevation (degree) � ≥ 10◦ 
are applied.

We assume that the pseudorange of each satellite is meas-
ured by a dual-frequency receiver and its error variance repre-
sented by R(i, i) is computed as follows:

 where �URA,i is the standard deviation caused by satel-
lite clock and ephemeris error and �tropo,i and �user,i are the 
standard deviations introduced by tropospheric delay and 
receiver, respectively. Both �tropo,i and �user,i are considered to 
be related to the satellite elevation and the models presented 
in (Blanch et al. 2015) are applied here.

where fa and fd are two frequencies used to measure 
pseudorange.

The main integrity monitoring parameters for horizontal 
mode are allocated as

and for each constellation or satellite,

(54)R(i, i) = �2
URA,i

+ �2
tropo,i

+ �2
user,i

(55)

�user,i =

√√√√ f 4
a
+ f 4

b(
f 2
a
+ f 2

b

)2

×

√(
0.13 + 0.53e

−
�

10

)2

+
(
0.15 + 0.43e

−
�

6.9

)2

(56)
�tropo,i =

0.12012√
0.002001 + sin2 (��∕180)

(57)PHMI − PNM = 1 × 10−8,PFA = 9 × 10−8

Pconst is the a prior probability of constellation fault. In the 
experiment, the  is constructed by 2000 small rectangles 
within semi-x-axis. Constellation fault, nominal biases and the 
fault event hypotheses with at most two simultaneous satellite 
faults are considered. The HPL achieved by the proposed algo-
rithm is compared with that of SS-ARAIM whose HPL is 
computed by HPL =

√
HPL2

e
+ HPL2

n
 with the subscripts e, n 

indicating the east, north PL components, respectively.
The number of used GPS, Galileo and BDS satellites 

is shown in Fig. 5, and the HPL obtained by the proposed 
algorithm is shown in Fig. 6. Compared to other faults, the 
constellation faults have a greater impact on the integrity and 
basically determine the retrievable level of HPL. Figure 7 
shows the percentage of HPL improvement compared to 
SS-ARAIM. Although the HPL calculation of the proposed 

(58)
Pconst = 1 × 10−5,Psat,i = 1 × 10−4

�URA,i = 1.0 m, bnorm,i = 0.5 m

Fig. 5  Number of used satellites

Fig. 6  HPL (meter) obtained by the proposed algorithm

Fig. 7  Percentage (%) of HPL improvement compared to SS-ARAIM
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algorithm is more complicated than that of SS-ARAIM, it 
can significantly improve the HPL tightness.

The construction of  affects the difference between 
 and g

(
ℏj,○, �○

max,j

)
 and hence has an influ-

ence on the level of the conservativeness of the HPL computed 
using (48). For the location with latitude = 0◦ and longitude = 0◦ , 
the computed HPL with respect to the number of the small rec-
tangles (within semi-x-axis) used to construct  is shown in 
Fig. 8. It can be seen from Fig. 8 that the HPL computed using 
(48) (the red curve) is more conservative than that the one 
achieved through searching �○

max,j
 (the green curve). However, 

the computed HPL becomes tight quickly as the number of the 
small rectangles increases. The difference between the HPL 
obtained by (48) and searching �○

max,j
 is less than 0.15 m when 

the  is constructed by 20 or more rectangles within 
semi-x-axis.

With the final obtained HPL, the changes of  
and g(ℏj,○, �f ,j

) with respect to �f ,j in GPS constellation fault event 
hypothesis at the location with latitude=0◦ and longitude=0◦ are 
shown in Fig. 9. By constructing  with multiple small rectan-
gles, the  and �○

max,j
 as well as the curves of 

 and g
(
ℏj,○, �f ,j

)
 are both very close to each 

other.  In  Fig .   9 ,  ,  �
○

max,j
= 142.19 and 

, 
g

(
ℏj,○, �

○

max,j

)
= 2.07499 × 10−10 . The difference between 

 and g
(
ℏj,○, �○

max,j

)
 is far smaller than the 

integrity risk requirement. Figures 8 and 9 demonstrate that 
 instead of g

(
ℏj,○, �○

max,j

)
 can be used to 

conservatively compute integrity risk in the HPL calculation as it 
will not cause an over conservativeness when the  is constructed 
by multiple rectangles.

Conclusions

This work proposes an algorithm to calculate the HPL of 
Chi-squared residual-based ARAIM. Since the HPE has a 
two-dimensional normal distribution, the HPL tightness can 
be improved by computing the integrity risk of each event 
hypothesis with double integral. The most difficulty in the 
implementation is to determine the worst HPE distribution 
center and the worst noncentrality parameter for each fault 
event hypothesis. By transforming the HPE into a new space 
in which the HPE has a unit covariance, the double integral 
has special characteristics and an upper bound for the worst 
HPE distribution center caused by both faults and nominal 
biases can be accordingly derived. Directly searching the 
worst noncentrality parameter along with the double inte-
gral for each fault event hypothesis is very computationally 
intensive. By replacing the elliptical double integral region 
with multiple small rectangles in the new space, the double 
integral can be conservatively computed using error func-
tion and the corresponding worst noncentrality parameter 
can hence be efficiently searched. The experiment shows 
that the proposed algorithm can significantly improve the 
HPL tightness compared to SS-ARAIM.

Appendix

Appendix A: Integral of two‑dimensional normal 
distribution with distribution center changing 
along a line

The integral of the two-dimensional normal distribution [
x, y

]T
∼ N

([
�x,�y

]T
, diag

(
�x, �y

))
 with an ellipse integral 
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Fig. 8  HPL with respect to the number of the small rectangles used to 
construct  at the location with latitude = 0◦ and longitude = 0◦
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�f ,j in GPS constellation fault event hypothesis at the location with 
latitude = 0◦ and longitude = 0◦
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region x2

l2
x

+
y2

l2
y

= 1 ( 0 < l
x
, 0 < l

y
 ) can be expressed as 

follows:

P
(
�x,�y

)
 is symmetric about the x-axis and the y-axis. Here, 

we only study the case in which the distribution center is in 
the first quadrant. The obtained results can be easily general-
ized to the entire xy plane. For any certain y , we have

Hence, for any �a
x
≥ �b

x
≥ 0 , we have

(59)

P
(
�x,�y

)

=

ly

∫
−l

y

dy

lx

√
1−

y2

l2y

∫
−l

x

√
1−

y2

l2y

1

2��x�y
e
−

1

2

[(
x−�x

�x

)2

+

(
y−�y

�y

)2
]

dx

(60)

d

d𝜇x

⎛
⎜⎜⎜⎜⎜⎝

lx

�
1−

y2

l2y

∫
−l

x

�
1−

y2

l2y

1√
2𝜋𝜎x

e
−

1

2

�
x−𝜇x

𝜎x

�2

dx

⎞
⎟⎟⎟⎟⎟⎠

=
1√
2𝜋𝜎x

e
−

1

2𝜎2x

�
l
x

�
1−

y2

l2y

+𝜇x

�2

−
1√
2𝜋𝜎x

e
−

1

2𝜎2x

�
l
x

�
1−

y2

l2y

−𝜇x

�2

=

⎧
⎪⎨⎪⎩

> 0 ;𝜇x < 0

= 0 ;𝜇x = 0

< 0 ;𝜇x > 0

(61)

P
�
�a
x
,�y

�
− P

�
�b
x
,�y

�

=

ly

�
−ly

dy

lx

�
1−

y2

l2y

�
−lx

�
1−

y2

l2y

1

2��x�y
e
−

1

2

��
x−�ax
�x

�2

+

�
y−�y

�y

�2
�

dx

−

ly

�
−ly

dy

lx

�
1−

y2

l2y

�
−lx

�
1−

y2

l2y

1

2��x�y
e
−

1

2

��
x−�bx
�x

�2

+

�
y−�y

�y

�2
�

dx

=

ly

�
−ly

1√
2��y

e
−

1

2

�
y−�y

�y

�2

dy

×

lx

�
1−

y2

l2y

�
−lx

�
1−

y2

l2y

⎛
⎜⎜⎝

1√
2��x

e
−

1

2

�
x−�ax
�x

�2

−
1√
2��x

e
−

1

2

�
x−�bx
�x

�2⎞
⎟⎟⎠
dx

≤ 0

Equation (61) indicates that P
(
�x,�y

)
 has a greater 

value when the HPE distribution center is closer to the y
-axis. Similarly, for any �a

y
≥ �b

y
≥ 0 , we have

When the integral region is a rectangle −l
x
≤ x ≤ l

x
,−l

y
≤ y < l

y
 , 

we have

Hence, the integral of the two-dimensional normal dis-
tribution 

[
x, y

]T with the rectangle integral region has the 
similar properties as the integral with the ellipse integral 
region.

Appendix B: Integral of two‑dimensional normal 
distribution with distribution center changing 
along a circular arc

The integral of the two-dimensional normal distribution 
[
x, y

]T
∼ N

([
�x,�y

]T
, diag

(
�x, �y

)) , �2
x
+ �2

y
= �2, �x = �y = � with 

an integral region x
2

l2
x

+
y2

l2
y

= 1 ( 0 < l
x
≤ l

y
 ) can be expressed 

as follows:

(62)

P
(
�x,�

a
y

)
− P

(
�x,�

b
y

)

=

ly

�
−l

y

dy

lx

√
1−

y2

l2y

�
−l

x

√
1−

y2

l2y

1

2��x�y
e
−

1

2

[(
x−�x

�x

)2

+

(
y−�ay

�y

)2
]

dx

−

ly

�
−l

y

dy

lx

√
1−

y2

l2y

�
−l

x

√
1−

y2

l2y

1

2��x�y
e
−

1

2

[(
x−�x

�x

)2

+

(
y−�by

�y

)2
]

dx

≤ 0

(63)

d

d𝜇x

⎛
⎜⎜⎜⎝

lx

∫
−l

x

1√
2𝜋𝜎x

e
−

1

2

�
x−𝜇x

𝜎x

�2

dx

⎞
⎟⎟⎟⎠

=
1√
2𝜋𝜎x

e
−

1

2𝜎2x
(lx+𝜇x)

2

−
1√
2𝜋𝜎x

e
−

1

2𝜎2x
(lx−𝜇x)

2

=

⎧
⎪⎨⎪⎩

> 0; 𝜇x < 0

= 0 𝜇x = 0

< 0 𝜇x > 0
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where �x = � cos (�) , �y = � sin (�) . Consider that P
(
�x,�y

)
 

is symmetric about the x-axis and the y-axis. Here, we also 
only discuss the situation in which the distribution center is 
in the first quadrant with �x ≥ 0,�y ≥ 0 and 0 ≤ � ≤ �∕2 . 
Then, we have

The integral region is split by a line defined as follows:

As shown in Fig. 10, the integral region is symmetric 
about the origin and can be divided into four smaller regions, 

(64)

P
(
�x,�y

)

=

ly

∫
−l

y

dy

lx

√
1−

y2

l2y

∫
−l

x

√
1−

y2

l2y

1

2��2
e
−

1

2

[(
x−�x

�

)2

+
(

y−�y

�

)2
]

dx

= P(�,�)

=

ly

∫
−l

y

dy

lx

√
1−

y2

l2y

∫
−l

x

√
1−

y2

l2y

1

2��2
e
−
1
2

[(
x−� cos (�)

�

)2
+
(
y−� sin (�)

�

)2]

dx

(65)

d

d�
P(�,�) =

ly

∫
−l

y

dy

lx

�
1−

y2

l2y

∫
−l

x
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1−
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l2y

⎛⎜⎜⎜⎝

1

�2
(y� cos (�) − x� sin (�))

×
1

2��2
e
−
1
2

��
x−� cos (�)

�

�2
+
�
y−� sin (�)

�

�2�

⎞⎟⎟⎟⎠
dx

=

ly

∫
−l

y

dy

lx

�
1−

y2
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(66)y�x − x�y = 0 ⇒ y =
�y

�x

x

respectively, labeled as A1, A2, A3 and A4. For P
(
�x,�y

)
 

and P(r,�) , regions A2 and A3 are symmetric about the line 
defined by (66), and region A4 is farther from the distribu-
tion center 

(
�x,�y

)T than region A1. Hence,

Equation (67) indicates that P
(
�x,�y

)
 is monotonically 

increasing along the circular arc � ∶ 0 → �∕2.
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