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Abstract
The integration of global navigation satellite systems (GNSS) and inertial measurement unit (IMU) with the Kalman filter 
is widely used to enhance the availability of positioning in urban areas for many intelligent transport system (ITS) applica-
tions. In the traditional Kalman filter, the GNSS measurement noise is fixed based on factors determined a priori, instead of 
reflecting the impact of the surrounding environment on the received GNSS signal. This has the effect of degrading position 
accuracy and the a posteriori quality indicators. To address this issue, we propose a new measurement noise covariance 
update scheme, with the adaptive indicator generated from pseudorange error prediction results, for a tightly coupled GNSS/
IMU navigation system in urban areas. Specifically, the pseudorange errors are predicted by means of an ensemble bagged 
regression tree model accounting for signal strength, satellite elevation angle and coordinate information. The urban experi-
mental results show that the proposed algorithm provides a 3D accuracy of 9.21 m, with an improvement of 55% and 15%, 
respectively, over the traditional fixed covariance extended Kalman filter (EKF)-based fusion and EKF-based fusion with 
pseudorange error correction.
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Introduction

The level of stringency of positioning, navigation and timing 
(PNT) requirements is increasing with emerging mission-
critical intelligent transportation system (ITS) applications 
in urban areas. As one of the main PNT sources, GNSS is 
widely used for vehicle positioning (Feng and Law 2002). 
GNSS signals, however, are prone to reflection, diffraction 
and blockage by surrounding buildings, resulting in mul-
tipath interference and non-line-of-sight (NLOS) reception 
in urban areas. This can result in pseudorange errors tens of 
meters in magnitude, leading to unacceptable positioning 
errors for ITS applications (MacGougan et al. 2002). To 
date, these effects are largely mitigated through hardware 

design (i.e., antenna design), signal processing and meas-
urement-based modeling.

Among antenna design-based methods, choke-ring and 
dual-polarization antennas are commonly used to mitigate 
the effects of multipath and NLOS signals (Sun et al. 2021a; 
Li and Schwieger 2018). The cost and bulky size of the 
antennas limit the applications for ITS in urban environ-
ments, however. Signal processing methods can be used to 
reduce certain kinds of multipath error by improving the 
form of the receiver correlator structure design or correla-
tor function, but they are not able to address NLOS effects 
(Yang 2016; Chen et al. 2020; He et al. 2020; Kumar and 
Singh 2020; Qi et al. 2021).

Measurement-based modeling methods improve the 
positioning accuracy in urban areas by combining GNSS 
measurements, observables and other information sources in 
the measurement domain to ameliorate the effects of NLOS 
reception and multipath. For example, data from additional 
sources, such as spatial information (i.e., 3D city models), 
inertial measurement units (IMU) and vision sensors, are 
used together with GNSS measurements to improve posi-
tioning accuracy in urban canyons (Sun et al. 2021c; Bhatti 
et al. 2007). The famous shadow matching method uses 3D 
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city models to detect and exclude NLOS and therefore obtain 
improved urban positioning results (Groves 2011; Yozevitch 
and Ben Moshe 2015; Wang et al. 2015; Adjrad and Groves 
2018; Xu et al. 2020; Zhang et al. 2020). Accurate position-
ing can also be achieved in urban areas by the weighted 
average of the candidate positions, which are generated by 
comparing the similarity between the simulated and actual 
pseudorange measurements with the assistance of the sur-
rounding geospatial information (Miura et al. 2013, 2015; 
Hsu et al. 2016; Hsu 2017).

The extent to which the mentioned algorithms are able to 
improve positioning in urban areas by reducing the errors 
due to NLOS is constrained by some key issues, however. 
One of the main issues is the determination of the thresh-
old of the variable (i.e., C/N0, elevation angle, etc.) for the 
NLOS detection. One recent proposal to address this is to 
use machine learning algorithms, where a training process 
is conducted to extract the rules for the input variables from 
raw GNSS measurements, including signal strength, satel-
lite elevation angle, satellite azimuth angle, pseudorange 
residuals, pseudorange rate, number of visible satellites 
and dilution of precision (DOP) or their combinations and 
the corresponding output signal reception classifications 
(i.e., line-of-sight (LOS)/NLOS or LOS/multipath/NLOS). 
The rules extracted from the corresponding input and out-
put variables are applied to newly collected GNSS data to 
predict the signal reception classifications. The position is 
then calculated by excluding the predicted NLOS/multipath 
signals (Yozevitch et al. 2016; Guermah et al. 2018; Quan 
et al. 2018; Sun et al. 2019, 2020). The positioning accu-
racy achievable through this approach is constrained, how-
ever, since the classification accuracy is affected by errors 
introduced from the offline labeling process needed for the 
machine learning algorithms (e.g., a 3D city model or cam-
era-assisted labeling).

Unlike the above methods, which ultimately rely on the 
accuracy of signal reception classification, we have sought 
to address the problem through a machine learning-based 
algorithm to predict the pseudorange errors and thence cor-
rect the observed pseudoranges by considering the signal 
strength, satellite elevation angle and pseudorange residuals 
(Sun et al. 2021b). The proposed positioning method avoids 
the errors and costs arising from additional geospatial infor-
mation during the labeling phase. Positioning tests in vari-
ous urban canyons demonstrated that, when in static mode, 
the algorithm can deliver a 70% improvement in positioning 
accuracy compared to the conventional C/N0 and elevation 
angle-based multipath/NLOS exclusion and positioning 
algorithm.

In the dynamic mode, a Kalman filter is always used to 
integrate GNSS and IMU data to enhance the positioning 
accuracy, integrity, continuity and availability in urban envi-
ronments. In general, the values of the filter parameters are 

fixed, but this may cause the filter to diverge in changing 
environments (Wang et al. 2006). Thus, a series of adaptive 
Kalman filters (AKF) have been developed to overcome the 
limitation of using a priori statistics to model errors that 
have time-varying characterized (Mohamed and Schwarz 
1999; Hide et al. 2003; Xiao et al. 2010). The adaptive indi-
cators may take on a range of roles, including adjustment 
of the covariance matrix of the state estimation vector, the 
covariance matrix of the process vector and the covariance 
matrix of measurement vector (Xia et al. 1994; Bian et al. 
2006; Xian et al. 2013; Liu et al. 2018; Yan et al. 2020).

None of the adaptive indicators in the above fusion meth-
ods, however, have been adjusted specifically for the errors 
caused by multipath signals and NLOS that are common in 
urban areas. An effective method to update the measurement 
noise covariance in the filtering algorithm is therefore essen-
tial for integrated navigation performance in urban areas.

As demonstrated in our previous research, the pseudor-
ange error can be used as an important indicator to evaluate 
measurement quality. Here, therefore, we propose a pseu-
dorange error prediction-based adaptive Kalman filter (PEP-
AKF) algorithm for GNSS/IMU integration in urban areas. 
The pseudorange error is predicted by an ensemble bagged 
regression tree model accounting for signal strength, satel-
lite elevation angle and coordinate information. An adaptive 
indicator based on the predicted pseudorange errors is then 
proposed to update the measurement noise covariance in the 
tightly coupled integrated navigation system.

Algorithm framework

The framework of the proposed pseudorange error predic-
tion-based adaptive tightly coupled GNSS/IMU integration 
algorithm (PEP-AKF) is presented in Fig. 1.

The main parts of the offline phase are variable selection, 
the labeling process and the ensemble bagged regression 
tree-based training process. First, offline reference position-
ing data are collected from the intended route using a high-
grade GNSS/IMU integrated system with backward and for-
ward post-processing. Every set of variables, from the raw 
GNSS measurement, which is obtained from the output data 
of the integrated system, including signal strength ( C∕N0 ), 
satellite elevation angle ( � ) and coordinate information 
( Lat, Lon ), is labeled with the corresponding pseudorange 
errors. The ensemble bagged regression tree model is then 
used to fit the pseudorange errors through the offline training 
process, thereby obtaining the prediction rules, that is, the 
relationship between the input variables ( C∕N0 , � , Lat, Lon ) 
and the corresponding labeled pseudorange errors.

The part outside the dashed box in Fig. 1 is the online 
tightly coupled GNSS/IMU navigation structure. The newly 
collected online GNSS variables from raw measurements 
and INS, including C∕N0 , � , Lat and Lon , are used together 
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with the rules extracted from the offline phase to predict the 
pseudorange errors. The predicted pseudorange errors are 
then used to update the measurement noise covariance for 
the tightly coupled GNSS/IMU navigation.

Variable determination

The received GNSS signal contains various variables that 
can be used to predict the pseudorange error. Using too 
many variables, however, may increase the cost of computa-
tion. Following the trade-off between computational cost and 
training accuracy in Sun et al. (2019), we used four variables 
in this process: C∕N0 , � , Lat and Lon.

(1)	 Signal strength ( C∕N0)

The signal strength can be determined by the ratio 
of carrier power to noise power per unit of bandwidth in 
decibel-hertz (dB-Hz) of the received signal. The C∕N0 of 
NLOS/multipath signals is always lower than that of LOS 
signals, and since this can be used to measure the degree 
of multipath contamination of the signal, it represents for 
the pseudorange error prediction (Gu et al. 2016). In some 
cases, however, the receiver may output a high C∕N0 , such 
as when the signal is reflected by materials like glass curtain 
walls. This means that other input variables must be used in 
tandem with C∕N0 in order to predict the pseudorange error 
accurately.

(2)	 Satellite elevation angle ( �)

In general, the higher the elevation of a satellite, the less 
likely it is to be obstructed by objects, and the more likely 
it is to be received by a receiver in the form of LOS. This 
phenomenon, therefore, can also be used as a measure of 
the degree to which the signal has been contaminated by the 
multipath effect. Indeed, the technique of weighting meas-
urements based on elevation angle to alleviate the multipath 
effect is widely used in positioning. The satellite elevation 
angle, � , for the satellite (i) can be calculated by:

where zr and z(i)
s

 are the z-coordinates of the receiver and 
satellite (i) in an earth-centered earth-fixed (ECEF) coordi-
nate system and P(i)

r
 is the distance from the satellite (i) to 

the receiver position. The complexity of urban environments 
means, however, that reflected signals may also reach the 
receiver at a high elevation angle, so other features still need 
to be considered to assist the training rule extraction.

(3)	 Latitude and longitude of the GNSS antenna ( Lat and 
Lon)

We select latitude and longitude as two input variables. 
Since the NLOS/multipath repeats in similar conditions, tak-
ing longitude and latitude as two variables can contribute to 

(1)�(i) = − arcsin

(
zr − z(i)

s

P
(i)
r

)

Fig. 1   Framework of the pro-
posed algorithm
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predict pseudorange errors more accurately (Margaria and 
Falletti 2016).

Pseudorange error labeling

The labeling of the pseudorange error is an important pro-
cess in the offline phase. The pseudorange errors of the 
received signals can be calculated and labeled with their 
values from the offline reference data, obtained from the 
post-processing of a high-grade GNSS/IMU integrated sys-
tem. The pseudorange � between the receiver and a satellite 
can be calculated as in the first term of (2) and (3):

where P is the geometric range between the observed satel-
lite (i) and the receiver; 

(
xr, yr, zr

)
 and 

(
x(i)
s
, y(i)

s
, z(i)

s

)
 are the 

coordinates of the receiver and the satellite (i) in an ECEF 
coordinate system; the constant c is the speed of light in a 
vacuum; �t(i)

s
 and �tr are the clock offset of satellite (i) and the 

receiver, respectively; I and T  are, respectively, the delays 
caused by the ionosphere and troposphere; and � represents 
the other errors, mainly from NLOS/multipath errors.

As mentioned earlier, the reference position is determined 
during the offline phase. The calculation of the corrected 
pseudorange �c could then be expressed by considering 
the reference position and the error models applied on the 
related error sources, as in (4):

where the geometric range, P , is calculated with the refer-
ence position and the position of the observed satellite from 
the broadcast ephemeris; Δ�t(i)

s
 represents the residual of 

the satellite errors of satellite i after applying the satellite 
clock offset corrections from the broadcast ephemeris; Δ�tr 
is the receiver clock offset after applying the calculated cor-
responding satellite and receiver clock error from the pseu-
dorange positioning equations with the reference ground 
point position; and ΔI and ΔT  are those residuals in the 
ionospheric and tropospheric delays that are not fully cor-
rected by Klobuchar and Saastamoinen models, respectively. 
The pseudorange error Δ� can be further derived as in (5):

The calculated pseudorange error, Δ� , is then labeled as its 
value. Every set of variables from the raw GNSS measure-
ments, including C∕N0 , � , Lat and Lon , will then have the 
corresponding value of Δ� after the labeling process.

(2)� = P + c
(
�t(i)

s
− �tr

)
+ I + T + �

(3)P =

√(
x
(i)
s − xr

)2

+
(
y
(i)
s − yr

)2

+
(
z
(i)
s − zr

)2

(4)�c = P + c
(
Δ�t(i)

s
− Δ�tr

)
+ ΔI + ΔT + �

(5)Δ� = �c − P = c
(
Δ�t(i)

s
− Δ�tr

)
+ ΔI + ΔT + �.

Ensemble bagged regression tree‑based 
pseudorange error prediction

The ensemble decision tree is a popular machine learning 
method that is able to provide high accuracy prediction in 
many applications (Adler et al. 2011; Saeed et al. 2019). 
The ensemble bagged regression tree is composed of a com-
bination of multiple regression decision trees established 
based on a subsample that comprises a training set. Thus, 
the ensemble model of multiple regression trees can bring 
a group of weak learners together to form a strong learner 
with the merit of not being sensitive to small perturbations 
or uncertainties in the training dataset. This makes it suitable 
for pseudorange error prediction. The process of establish-
ing the ensemble bagged regression tree model is shown in 
Fig. 2.

The discussed problem can be defined as follows: 
Given the training set 

{
xi,Δ�i

}I

1
 of known (x,Δ�) values, 

the objective is to determine a function that maps x to Δ� , 
where xi =

(
C∕N0i, �i, Lati, Loni

)
, i = 1, 2, 3,⋯ , I . i is the 

sequence number of the sample, and I is the total number of 
the samples. Δ�i is the corresponding labeled pseudorange 
error of xi . The ensemble bagged regression tree model-
based pseudorange error prediction is described as follows:

(1)	 Single regression tree-based model generation
	   In the input space of the subsample training set, each 

region is recursively divided into two subregions, and 

Fig. 2   Flowchart of the ensemble bagged regression tree algorithm
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the output value of each subregion is determined so as 
to construct the regression tree.

(a)	  Select the optimal segmentation variable j and 
the segmentation point s to solve:

where ave is the average function. Traverse the 
variable j , scan the segmentation point s for the 
fixed segmentation variable j and determine the 
(j, s) that minimizes formula (6).

(b)	 Divide the region with the selected (j, s) and deter-
mine the corresponding output value:

where Reg1(j, s) and Reg2(j, s) mean the divided 
regions and ĉq is the corresponding output value. 
For each divide of the region, two new nodes will 
be created. A node is comprised of a sample of 
data and a decision rule.

(c)	 Continue with steps (a) and (b) for the two subre-
gions until the iteration stop conditions are met: 
i.e., where the sample size of the node is less than 
a user-specified value. Here, from the sensitivity 
analysis, the defined value is set as 8.

(d)	 Divide the input space into L regions and generate 
a regression tree:

where h(x) is the predicted value of the regres-
sion tree; l is the number of the region; and I is a 
characteristic function.

(2)	 Bagged regression tree-based training model generation
	   The final output result of the bagged regression tree 

model is the average value of the predicted values of all 
the individual regression trees. The bagged regression 
tree model is expressed as:

(6)

min
j,s

[
min
c1

∑
xi∈R1(j,s)

(Δ�i − c1)
2 +min

c2

∑
xi∈R2(j,s)

(Δ�i − c2)
2

]

(7)c1 = ave
(
yi
||xi ∈ Reg1(j, s)

)

(8)c2 = ave
(
yi
||xi ∈ Reg2(j, s)

)

(9)
Reg1(j, s) =

{
x|x(j) ≤ s

}
, Reg2(j, s) =

{
x|x(j) > s

}

(10)ĉq =
1

Nq

∑
xi∈Rq(j,s)

Δ𝜌i, x ∈ Rq, q = 1, 2

(11)
h(x) =

∑L

l=1
ĉlI

(
x ∈ Regl

)
, (l = 1, 2,… , L)

(12)hbag(x) =
1

N

∑N

n=1
hn(x), (1 ≤ n ≤ N)

where hn(x) is the predicted value of the regression tree 
n for input x and n is the number of the regression trees.

(3)	 Pseudorange error prediction
	   The experiment in this paper uses only global 

positioning system (GPS) L1 data to train a bagged 
regression tree model. Since NLOS/multipath errors 
repeat in similar conditions of the surrounding envi-
ronment and constellation, the rules from one con-
stellation in the area may have a limited effectiveness 
on predicting pseudorange errors in other constella-
tions in the same area. The pseudorange errors of the 
newly collected variables can be predicted based on 
the corresponding final predictor hbag(x) . The input 
x =

(
C∕N0, �, Lat, Lon

)
 can be used together with the 

output rules of the hbag(x) to obtain the pseudorange 
errors.

Adaptive tightly coupled fusion scheme

The adaptive tightly coupled fusion scheme is based on the 
EKF structure. The state vector, X , for the EKF is defined 
in (13).

where the first 21 dimensions of X are built on the IMU 
estimation errors, including the three-axis navigation param-
eters of position error �r3×1 , velocity error �v3×1 , attitude 
error Ψ3×1 , bias of gyroscope bg3×1 , bias of the accelerometer 
ba3×1 , scale factors of gyroscopes ∇g3×1 and scale factors of 
accelerometers ∇a3×1 . The last two dimensions of X include 
the GNSS receiver clock bias tb and GNSS receiver clock 
drift �tb.

The state transition equation for the state vector X is 
expressed in (14):

where Ẋ is the first derivative of the state vector X , A is the 
IMU dynamic transition model and w is the system noise. Q 
is defined as the covariance matrix of w.

The measurement model Z is expressed in (15)

where Z is the measurement vector, H is the measurement 
mapping matrix and n is the measurement noise. R is defined 
as the covariance matrix of n . If the number of visible satel-
lites is M , the measurement vector, Z , is formed as:

(13)
X =

[
�rT

3×1
�vT

3×1
ΨT

3×1
bT
g3×1

bT
a3×1 ∇T

g3×1
∇T

a3×1
tb �tb

]T

(14)Ẋ = AX + w

(15)Z = HX + n
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where �IMU is the pseudorange derived from the IMU and 
�GNSS is the pseudorange decoded from GNSS observations; 
1 ≤ m ≤ M.

An adaptive indicator is proposed based on the pseudor-
ange error prediction in order to estimate the GNSS meas-
urement noise covariance parameters in urban areas. The 
adaptive indicator f (⋅) can be expressed in (17):

where f (⋅) is the proposed adaptive indicator function; hbag(⋅) 
is the designed ensemble bagged regression tree model; and� 
is the perturbation coefficient. Here, � = 0.1 . The measure-
ment noise covariance matrix, R , at epoch k can then be 
constructed based on the adaptive indictor function at epoch 
k , as expressed in (18):

where f
(
xpm

)
 is the predicted results of the adaptive indica-

tor function for the satellite pm, x =
(
C∕N0, �, Lat, Lon

)
 , and 

pm (m = 1…M) is the mth satellite used for the positioning.
The final fusion results can then be obtained based on the 

following Kalman filter procedures.
Prediction stage:

Update stage:

where, X̂k : state vector estimates at time epoch k , Φk : state 
transition matrix at time epoch k , Pk : error covariance matrix 
at time epoch k , Qk : system noise covariance matrix at time 
epoch k , Rk : measurement noise covariance matrix at time 

(16)Z =

⎡
⎢⎢⎢⎢⎢⎣

�IMU,1 − �GNSS,1
⋮

�IMU,m − �GNSS,m
⋮

�IMU,M − �GNSS,M

⎤
⎥⎥⎥⎥⎥⎦M×1

(17)f (⋅) =
(|||hbag(⋅)

||| + �

)2

(18)Rk =

⎡
⎢⎢⎢⎢⎢⎣

f
�
xp1

�
⋱

f
�
xpm

�
⋱

f
�
xpM

�

⎤⎥⎥⎥⎥⎥⎦k

(19)X̂k,k−1 = Φk,k−1X̂k−1

(20)Pk,k−1 = Φk,k−1Pk−1P
T
k,k−1

+ Qk−1

(21)Kk = Pk,k−1H
T
k

(
HkPk,k−1H

T
k
+ Rk

)−1

(22)Pk =
(
I − KkHk

)
Pk,k−1

(
I − KkHk

)T
+ KkRkK

T
k

(23)X̂k = X̂k.k−1 + Kk

(
Zk − HkX̂k.k−1

)

epoch k , Hk : measurement matrix at time epoch k , Kk : 
Kalman gain matrix at time epoch k , ∎ k,k−1 : matrix/vector ∎ 
propagation from time epoch k − 1 to k.

Experiment and results

In order to validate the proposed method, a vehicle-based 
field test was carried out in the urban areas in Taipei city 
of Taiwan, China. The training dataset was collected from 
about 10:00 in the morning in the Beijing time with the time 
duration of 2–3 h for consecutive 3 days. The total training 
dataset was collected for about seven hours at the experi-
mental site. The data, including the raw GNSS measurement 
and fused positioning results, were collected using a high-
grade GNSS/IMU integrated system (i.e., NovAtel SPAN-
LCI). The variables extracted from the GPS L1 measure-
ments were then used as the inputs for the training, and the 
post-processed GNSS/IMU positioning results were used for 
the pseudorange error labeling.

The testing data were collected around 11:00 in the morn-
ing in the Beijing time after one week, at the same exper-
imental site, where the training data were collected. The 
testing trajectory is shown in Fig. 3, and the onboard naviga-
tion sensors used included: (1) a micro-electro-mechanical 
system (MEMS) IMU, STIM-300, with a sampling rate of 
250 Hz. The corresponding IMU parameters are given in 
Table 1; (2) a GNSS receiver, NovAtel ProPak6, with a 
sampling rate of 1 Hz; and (3) a high-end GNSS/IMU inte-
grated system, i.e., NovAtel SPAN-LCI, for high accuracy 
navigation solutions in the experiment. The corresponding 
IMU parameters are given in Table 2. The reference posi-
tions in the test were generated by the SPAN-LCI outputs 
with post-processing kinematic mode of the tightly coupled 
GNSS/IMU using NovAtel Inertial Explore software. A 

Fig. 3   Vehicle trajectory
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summary of the training dataset and testing dataset is shown 
in Table 3. The number of visible GPS satellites is depicted 
in Fig. 4, and the corresponding position dilution of preci-
sion (PDOP) and horizontal dilution of precision (HDOP) 
values are depicted in Fig. 5.

Since the predicted pseudorange error affects the perfor-
mance of the final positioning solutions, the evaluation of 
the fitting performance of the proposed ensemble bagged 
regression tree-based pseudorange error prediction com-
pared with the other popular used fitting algorithms becomes 
essential. Here, the three other candidate fitting algorithms 
are the ensemble boosted trees model, the fine Gaussian sup-
port vector machine (SVM) model and the squared expo-
nential Gaussian process regression model. The parameters 

used to evaluate the fitting performance are root mean square 
error (RMSE) of the residuals, R-squared and training time. 
The RMSE of the residuals is used to evaluate the accuracy 
of fitting results. The smaller the RMSE of the residuals, 
the closer the fitting result is to the reference pseudorange 
errors. The R-squared is another informative parameter for 
evaluating the fitting results. It can be any value between 
0 and 1, with a higher value indicating a better fit for the 
regression model (Chicco et al. 2021). To prevent overfitting 
for some candidate machine learning algorithms, fivefold 
cross-validation was used for all models. The comparison 
results for the fitting algorithms are shown in Table 4.

It is clear that the ensemble bagged regression tree model 
outperforms the other fitting methods based on the evalua-
tion of the overall fitting performances. In particular, the 
RMSE of the ensemble bagged regression tree-based fitting 
results was 2.14 m, which is much smaller than the other fit-
ting models, whose overall performance ranged from 2.36 to 
3.01 m. In addition, the two highest R-squared values were 
the ensemble bagged regression tree model and the squared 
exponential Gaussian process regression model, with values 
of 0.70 and 0.64, respectively. The training time consump-
tion for the squared exponential Gaussian process regression 
model was 1031.40 s, however, which was 22 times higher 
than that for the ensemble bagged regression tree model.

In order to evaluate the final algorithm positioning per-
formance, the proposed PEP-AKF-based fusion algorithm 
was compared with two other candidate fusion algorithms: 
(1) traditional EKF-based fusion and (2) EKF-based fusion 
with pseudorange error correction. Also, the GPS L1 meas-
urements are used for the candidate fusion algorithms. 
The detail steps of the candidate algorithms are shown in 
Table 5, and the fusion results are shown in Fig. 6.

In Figs. 6 and 7, it is obvious that the positioning results 
of the proposed algorithm are closer to the reference than the 

Table 1   Sensor parameters of STIM-300

Accelerometer Bias instability 0.05 mg
Random walk noise 0.06 m/s/sqrt(hr)

Gyroscope Bias instability 0.5 deg/hr
Random walk noise 0.15 deg/sqrt(hr)

Table 2   Sensor parameters of NovAtel SPAN-LCI

Accelerometer Bias instability 0.1 mg
Random walk noise 0.1 mg/sqrt(hr)

Gyroscope Bias instability 0.05 deg/hr
Random walk noise 0.012 deg/sqrt(hr)

Table 3   Summary of the datasets

Training dataset Testing dataset

Collected location Urban canyon Urban canyon
Sample size 25,953 6109

Fig. 4   Number of visible GPS satellites

Fig. 5   PDOP and HDOP values
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other fusion algorithms, especially in densely built environ-
ment areas. The positioning accuracy for the candidate algo-
rithms and the corresponding improvements compared to 
the traditional EKF-based fusion are shown in Table 6. The 
comparisons of the positioning error of the fusion results for 
the algorithms are depicted in Figs. 8 and 9.

Table 6 indicates that the proposed fusion algorithm can 
provide a 3D position accuracy RMSE of 9.21 m, while 
it is 10.85 m for the EKF-based fusion with pseudorange 
error correction and 20.76 m for the traditional EKF-based 
fusion, corresponding to improvements of 15% and 55%. 
Meanwhile, the improvement in the horizontal positioning 
accuracy for the proposed algorithm compared to the EKF-
based fusion with pseudorange error correction is also sig-
nificant, with an improvement value of about 32%.

In the period between 1000 and 1100 s in Fig. 8, the sur-
rounding urban environment is characterized by moderately 
dense development, with the received GPS signals expe-
riencing medium multipath and NLOS. The surrounding 
urban environment is shown in Fig. 7, Part 1. In this condi-
tion, the measurement noise covariance matrix was adjusted 
by the generated adaptive indicator, alleviating the fused 
positioning error caused by the contaminated measurement 
arising from the multipath and NLOS. The use of the adap-
tive indicator, therefore, led to substantial improvements 
in the horizontal positioning results compared to the EKF-
based fusion with pseudorange error correction model and 

the traditional EKF-based fusion model by 34% and 64%, 
respectively.

In the period between 1500 and 1600 s in Fig. 8, the envi-
ronment was a dense urban area with taller and more closely 
packed buildings than in the moderately dense urban areas. 
This led to more significant NLOS and multipath effects, as 
shown in Fig. 7, Part 2. Strikingly, the improvement in per-
formance offered by the proposed algorithm in this environ-
ment was even greater than in the moderately dense urban 
areas. Specifically, there was a 40% improvement in 3D posi-
tioning compared to the EKF-based fusion with pseudorange 
error correction model and a 76% improvement compared to 
the traditional EKF-based fusion model. Correspondingly, 
the maximum positioning error is also reduced to 16.30 m 
from 71.42 and 34.44 m.

In order to investigate the effectiveness of the proposed 
adaptive indicator further, the relationship for the adaptive 
indicator and the corresponding pseudorange errors was 
analyzed. An example of the typical adaptive indicator, and 
the corresponding pseudorange error for the satellite SV30, 
is shown in Table 7. This shows that, at 647 s, the satellite 
SV30 had a pseudorange error of 0.92 m, and the corre-
sponding adaptive indicator was 0.799. At 1015 s, mean-
while, SV30 had a predicted pseudorange error of 18.95 m, 
and the corresponding adaptive indicator became 298.856. 
This means that the weighting of the pseudorange measure-
ment for SV30 was significantly reduced by the severity of 

Table 4   Comparison of 
ensemble bagged regression 
trees and other candidate 
models

Model RMSE of the residu-
als (m)

R-Squared Training time (s)

Ensemble bagged regression tree 2.14 0.70 46.01
Ensemble boosted tree 2.75 0.51 39.50
Fine Gaussian SVM 3.01 0.41 284.84
Squared exponential Gaussian process 

regression
2.36 0.64 1031.40

Table 5   Summary of the 
algorithms

Algorithm Algorithm description Color

Traditional EKF-based fusion GNSS and IMU fusion in the tightly coupled mode with EKF Red
EKF-based fusion with pseudor-

ange error correction
Step 1: Using the trained ensemble bagged regression trees 

model to predict the pseudorange error and then applying 
this for the pseudorange error correction

Step 2: Using the corrected pseudorange to form the measure-
ment vector Z in the EKF of the tightly coupled fusion 
model

Green

PEP-AKF-based fusion (proposed) Step 1: Using the trained ensemble bagged regression trees 
model to predict the pseudorange error

Step 2: Construction of an adaptive indicator based on the 
predicted pseudorange error so as to adjust the measure-
ment covariance matrix R in the Kalman filter of the tightly 
coupled fusion model

Blue
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the pseudorange error, resulting in that the NLOS and mul-
tipath will have less effect on the fusion results.

The improvement in the 3D positioning results arising 
from the use of the proposed algorithm is also depicted in 
Fig. 10. This shows that the positioning results from the 
conventional EKF-based fusion and EKF-based fusion with 
pseudorange error correction comprise only about 0.7% 
and 3% of the epochs within 2 m. With the proposed PEP-
AKF-based fusion model, however, this proportion increases 
significantly to 13%. In addition, with the proposed fusion 
model, the proportion of epochs with a positioning accu-
racy in the range of 2–4 m is much higher than that of the 
conventional EKF-based fusion and EKF-based fusion with 
pseudorange error correction. The EKF-based fusion with 
pseudorange error correction can improve the positioning 
accuracy to a certain extent, however. Due to the error pre-
sent in the pseudorange error prediction for some epochs, 
using the incorrectly corrected pseudorange in the fusion 

will introduce errors in the positioning results. For the pro-
posed algorithm, meanwhile, even when an incorrect pseu-
dorange error is predicted for some epochs, the fusion algo-
rithm is less sensitive to those errors because of the use of 
the corresponding adaptive indicator in the filter. This is why 
the proposed algorithm will return a smaller fusion error 
than the EKF-based fusion with pseudorange error correc-
tion model, even with the same predicted pseudorange error.

Table 8 shows a comparison of the positioning accuracy 
analysis according to each epoch. This reveals that the pro-
posed PEP-AKF-based fusion improved the horizontal and 
3D positioning results in, respectively, 83.7% and 88.5% of 
the epochs, compared to the traditional EKF-based fusion. 
Although a deterioration in positioning accuracy was seen 
in about 13% of the epochs, this may have been due to the 
incorrect pseudorange error prediction results, and the 
algorithm is clearly still effective for most of the epochs. 
Compared to traditional EKF-based fusion, meanwhile, the 
EKF-based fusion with pseudorange error correction algo-
rithm improved the horizontal and 3D positioning results in, 
respectively, 78.1% and 84.2% of the epochs. For both algo-
rithms, the worse epochs for 3D positioning were fewer than 
the epochs for the horizontal positioning, since height errors 
tended to be more substantially corrected as the pseudorange 
errors were corrected. This is because NLOS and multipath 
signals affect height positioning results more severely than 
horizontal ones in urban areas.

Conclusion

We have developed a pseudorange error prediction-based 
adaptive Kalman filter algorithm for tightly coupled GNSS/
IMU integration in urban areas. An adaptive indicator gen-
erated using a pseudorange error predicted by means of an 

Fig. 6   Fusion results of the algorithms

Fig. 7   Partial experimental results and experimental scenes
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ensemble bagged regression tree algorithm is used to opti-
mize the measurement noise covariance parameters in the 
Kalman filter with the characteristics of GNSS measurement 
noise properties in urban areas. The experimental results 

show that the proposed PEP-AKF-based fusion algorithm 
delivers a better positioning performance in urban areas than 
other candidate fusion algorithms, providing a horizontal 

Table 6   RMSE results 
comparison

GNSS/IMU tightly coupled fusion algorithms RMSE (m)

North East Down Horizontal 3D

EKF-based fusion 6.83 8.20 17.80 10.67 20.76
EKF-based fusion with pseudorange error correction 5.27 5.38 7.81 7.53 10.85
Improvement 22.75% 34.46% 56.12% 29.43% 47.72%
PEP-AKF-based fusion (proposed method) 3.60 3.63 7.66 5.11 9.21
Improvement 47.26% 55.78% 56.98% 52.11% 55.64%

Fig. 8   Positioning error in terms of the local-level coordinate system

Fig. 9   Horizontal and 3D positioning error in terms of the local-level 
coordinate system

Table 7   Examples of the typical adaptive indicator and the corre-
sponding pseudorange error for satellite SV30

Time (s) Pseudorange error (m) Adaptive indicator

633 0.5538 0.296
647 0.9201 0.799
1015 18.9460 298.856
1071 10.2257 102.421
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RMSE accuracy of 5.11 m, which represents a 52% improve-
ment on traditional EKF-based fusion (RMSE of 10.67 m) 
and a 32% improvement on EKF-based fusion with pseudor-
ange correction (RMSE of 7.53 m). The proposed algorithm 
can be used for the local urban positioning enhancement in 
the future, especially to provide the positioning accuracy 
improvement for incoming vehicles with low-cost onboard 
GNSS and IMU sensors. Further research is also needed to 
explore the added value of various aspects of multiple GNSS 
constellations.
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