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Abstract
Due to an increasing requirement for high accuracy orbital information for low Earth orbit (LEO) satellites, precise orbit 
determination (POD) of LEO satellites is a topic of growing interest. To assure the safety and reliability of the applications 
requiring high accuracy LEO orbits in near-real-time, integrity monitoring (IM) is an essential operation of the POD process. 
In this contribution, the IM strategy for LEO POD in both the kinematic and reduced-dynamic modes is investigated. The 
overbounding parameters of the signal-in-space range error are investigated for the GPS products provided by the Inter-
national GNSS Service’s Real-Time Service and the Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis 
service. Benefiting from the dynamic models used and the improved model strength, the test results based on the data of 
the LEO satellite GRACE FO-1 show that the average-case mean protection levels (PLs) can be reduced from about 3–4 m 
in the kinematic mode to about 1 m in the reduced-dynamic mode in the radial, along-track and cross-track directions. The 
overbounding mean values of the SISRE play the dominant role in the final PLs. In the reduced-dynamic mode and average-
case projection, the IM availabilities reach above 99% in the radial, along-track and cross-track directions with the alert limit 
(AL) set to 2 m. The values are still above 98% with the AL set to 4 m, when the duty cycle of tracking is reduced to 40%, 
e.g., in the case of power limits for miniature satellites such as CubeSats.
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Introduction

Precise orbit determination (POD) of low Earth orbit (LEO) 
satellites has been intensively investigated in the past dec-
ades (Montenbruck et al. 2005; Gu et al. 2017). By applying 
the reduced-dynamic model integrated with GNSS observa-
tions tracked onboard and the use of comprehensive dynamic 
models, the accuracy of LEO POD can reach a few centim-
eters in “near-real-time,” as a result of the availability of 
precise GNSS orbital and clock products provided by real-
time services (Montenbruck et al. 2013; Allahvirdi-Zadeh 
et al. 2021). Such (near)-real-time LEO POD is required 

for applications such as Interferometric Synthetic Aperture 
Radar (InSAR) (Montenbruck 2017) and radio occultation 
analyses (Montenbruck et al. 2005). In recent years, LEO 
mega-constellations have been proposed as an augmentation 
to GNSS-based positioning, navigation and timing (PNT) 
services (Reid et al. 2018; Han et al. 2020). Compared to 
traditional GNSS-based positioning, LEO-aided GNSS 
positioning can benefit from significantly increased satel-
lite numbers, improved satellite geometry, stronger signal 
strengths (Reid et al. 2018) and greater satellite velocities, 
which reduce the precise point positioning (PPP) conver-
gence time (Ge et al. 2018). As one of the conditions for 
LEO-aided positioning, the precise orbits of the LEO satel-
lites are essential information.

Integrity monitoring (IM) in the near-real-time of the 
LEO satellite POD is important to ensure reliable position-
ing, thus ensuring safety and reliability for diverse user 
applications. With a pre-defined probability of mislead-
ing information (PMI), the protection level (PL) is a safety 
parameter that is computed to bound the orbital positioning 
errors (PEs). When the PL exceeds a pre-defined alert limit 
(AL), a warning message can be sent to the LEO system so 
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that the affected satellite can be, e.g., marked as “unhealthy” 
and excluded from further processing. While LEO POD has 
been intensively studied, the IM of LEO POD is a new topic 
worthy of study.

IM has been investigated for different positioning methods 
for airborne and ground-based users in the last few decades. 
In aviation, the Advanced Receiver Autonomous Integrity 
Monitoring (ARAIM) algorithm (Blanch et al. 2012) was 
developed for dual-frequency multi-constellation (DFMC) 
signals to facilitate the vertical and horizontal guidance of 
aircraft. The algorithm was extended to ground-based appli-
cations using other positioning methods (El-Mowafy and 
Kubo 2018; Hassan et al. 2020). At the same time, the tra-
ditional single-frequency single-constellation satellite-based 
augmentation system (SBAS) is transitioning to a new gen-
eration that supports DFMC users (Wu et al. 2020). Its IM 
method is defined for aeronautical users (EUROCAE 2019), 
and extended for ground-based positioning of users for the 
more complex measurement environments encountered on 
the ground (Wang et al. 2021).

As a user of the GNSS signals in space, the IM of the 
dual-frequency LEO POD shares similar principles with the 
aeronautical users using dual-frequency GNSS signals. For 
instance, LEO satellites are flying under “open-sky” condi-
tions and experience a relatively simple multipath environ-
ment. Furthermore, the first-order ionospheric delays are 
eliminated through the ionosphere-free (IF) combination. 
However, situations are also different compared to, e.g., 
those in aviation using the ARAIM or SBAS methods. The 
tropospheric residuals (after modeling) do not need to be 
considered in the IM anymore due to the altitude of the LEO 
satellites. Instead of the carrier-smoothed code observations 
used in the ARAIM and SBAS, the phase observations are 
directly used in LEO POD and hence influence the final 
POD precision and accuracy.

Near-real-time LEO POD relies on high accuracy real-
time GNSS orbital and clock products generated by dif-
ferent providers. Service such as the International GNSS 
Service (IGS)’s Real-Time Service (RTS) (https://​www.​igs.​
org/​rts/​produ​cts/; El-Mowafy et al. 2017) is one example 
of ground-based processing that provides real-time POD. 
Services with corrections broadcast through GNSS or GEO 
satellites, e.g., the Multi-GNSS Advanced Demonstration 
of Orbit and Clock Analysis (MADOCA) service (Zhang 
et al. 2019) based on the Japanese Quasi-Zenith Satellite 
System (QZSS), and commercial services provided by, e.g., 
Fugro (Hauschild et al. 2016), also demonstrate possibili-
ties for future onboard high accuracy POD. As the signal-
in-space range errors (SISRE) of these real-time products 
do not strictly follow a zero-mean normal distribution (Rife 
et al. 2006) as assumed in the POD least-squares processing, 
the overbounding parameters of the SISRE need to be deter-
mined using appropriate methods. The impact of different 

overbounding parameters on the LEO orbital PLs also 
requires investigation. Finally, LEO POD in the reduced-
dynamic mode involves the estimation of orbital dynamic 
parameters and the numerical integration of the orbits. As a 
result, numerically integrated partial derivatives of the Car-
tesian orbits with respect to the estimable orbital parameters 
are needed in the IM procedure for reduced-dynamic POD.

In this study, an IM procedure is proposed for LEO POD. 
The overbounding parameters are then investigated for the 
SISRE of real-time GNSS products under the average-case 
and worst-case for the orbital and clock error projection in 
the signal direction. Subsequently, the POD results and the 
PLs are assessed using real data from the GRACE Follow-
On mission. The impacts of the overbounding parameters of 
the SISRE on the PLs are studied, and the PLs are investi-
gated for miniature satellites for scenarios of non-continuous 
satellite tracking. The conclusions are then drawn and pre-
sented at the end.

Processing strategy

LEO POD and IM are performed for the reduced-dynamic 
mode, combining dynamic models with the GPS L1 and 
L2 phase observations. The code observations are used to 
pre-process the a priori clock synchronization (Dach et al. 
2015). The IF combination is formed to remove the first-
order ionospheric delays so that only the orbital parameters, 
the LEO satellite clocks Δt̃L , and the IF float-valued phase 
ambiguities nIF remain as estimable parameters in the lin-
earized observation equations:

With

where E(∙) is the expectation operator, and Δ�IF denotes 
the observed-minus-computed (O-C) terms of the IF phase 
observations. c denotes the speed of light, and fj , nj , �j 
( j = 1, 2 ) denotes the frequency, ambiguity and wavelength 
on frequency j , respectively. As the absolute values of LEO 
satellite clocks and the IF float ambiguities are not of con-
cern in this study, a reference ambiguity n0

IF
 (with the value 

of zero) was set to avoid the rank deficiency between the 

(1)E
(
Δ𝜑IF

)
= AKΔK + ADΔD + A𝛿𝛿 + c × Δt̃L + 𝜆IFnIF

(2)�IF =
c

f1 + f2

(3)nIF =
f 2
1
�1n1 − f 2

2
�2n2

c
(
f1 − f2

) −
�G
IF
− dG

IF

�IF
− n0

IF

(4)Δt̃L = ΔtL +
𝜉L,IF + 𝜆IFn

0
IF

c

https://www.igs.org/rts/products/
https://www.igs.org/rts/products/


GPS Solutions (2022) 26:32	

1 3

Page 3 of 13  32

LEO satellite clocks and the ambiguities. The terms �G
IF

 and 
dG
IF

 denote the GPS IF satellite phase and code bias vector, 
respectively, and �L,IF refers to the LEO IF satellite phase 
bias. ΔK and ΔD are the increment vectors of the six Kep-
lerian elements at the initial state and the time-constant 
orbital dynamic parameters with respect to the a priori 
values, respectively. � denotes the vector of the stochastic 
piece-wise constant accelerations. ΔD and � are given in 
the radial (R), along-track (S) and cross-track (W) direc-
tions with the stochastic accelerations � estimated, in this 
study, within 6 min time intervals and constrained to zeros 
with a standard deviation ( �� ) of 5 × 10−6 [s−2] × �0 . The a 
priori standard deviation of unit weight ( �0 ) refers to the 
zenith direction on L1. AK , AD and A� contain the partial 
derivatives of the observations with respect to the Keplerian 
elements, the dynamic parameters and the stochastic accel-
erations, respectively, which can be further expressed as:

where ��IF∕�rI denotes the partial derivatives of the obser-
vation with respect to the LEO position vector in the inertial 
system, i.e., the GPS-to-LEO unit direction vectors. �rI∕�K 
and �rI/�D are the partial derivatives of the LEO posi-
tion vector with respect to the Keplerian elements and the 
dynamic parameters, respectively. These partial derivatives 
are numerically integrated based on the variational equations 
(Montenbruck and Gill 2000). �rI/�� , the partial derivatives 
of the position vector with respect to the stochastic accel-
erations, can be computed as linear combinations of �rI∕�K 
(Dach et al. 2015).

The unknowns, contained in the increment vector Δx 
containing all the orbital dynamic parameters, the LEO 
satellite clock parameters of all epochs and the ambiguity 
parameters of all epochs and all satellites, are estimated in 
a least-squares adjustment. The variance–covariance Ql of 
all the observations can be formulated as a block diagonal 
matrix constructed from the variance–covariance matrices 
of the phase O-C terms at each time point ti , denoted as 
QΔ�

(
ti
)
 , and the variance matrix of the constraints for sto-

chastic accelerations:

where the operator blkdiag (∙) forms the block diagonal 
matrix. For epoch ti , the variance–covariance matrix of the 

(5)AK =
��IF

�rI

�rI

�K

(6)AD =
��IF

�rI

�rI

�D

(7)A� =
��IF

�rI

�rI
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(8)Ql = blkdiag
(
QΔ�

(
t1
)
,⋯ ,QΔ�

(
tn
)
, �2

�
× Ip

)

phase IF O-C terms is expressed as a diagonal matrix of the 
corresponding variances for each satellite s (1,⋯,m ), with m 
denoting the number of satellites:

In this study, as was done for Sentinel satellite POD 
products and in the Bernese LEO campaign, equal 
weighting is applied for all the phase IF O-C terms with 
�2
s
= (f 4

1
+ f 4

2
)∕
(
f 2
1
− f 2

2

)2
× �2

0
 , as the GNSS receiver 

onboard LEO satellite experiences less elevation-depend-
ency for the noise and multipath effects than on the ground, 
so that traditional elevation-dependent weighting models 
might not lead to better results.

For LEO POD, the least-squares adjustment is performed 
using 24 h of GPS observations with a sampling interval of 
30 s, which is sufficient for LEO POD (Wang et al. 2020). The 
dynamic models used for numerical integration are summa-
rized in Table 1. The LEO orbits are numerically integrated in 
the inertial system with all the orbital parameters solved in a 
least-squares adjustment.

In addition to the reduced-dynamic mode, for comparison 
purposes, the POD is also performed in the kinematic mode 
(i.e., without using any dynamic model). In such a case, the 
orbits are directly estimated in the form of the Cartesian coor-
dinates of the satellite in the Earth-fixed system.

Integrity monitoring

For the IM, the variance–covariance matrix of the obser-
vations is constructed assuming Gaussian noise that over-
bounds all existing errors remaining in the O-C terms. The 
variance–covariance Q̃l of the observations for the purpose of 
integrity can be formulated as:

With
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(
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)
= diag

(
�2
1

(
ti
)
,⋯ , �2
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(
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)
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(
𝜎̃2
1

(
ti
)
,⋯ , 𝜎̃2

m

(
ti
))

Table 1   Dynamic models used for the LEO POD (JPL refers to 
NASA’s Jet Propulsion Laboratory. IERS is the abbreviation for inter-
national Earth Rotation and Reference Systems Service)

Item Model

Earth’s gravity field EGM2008 (degree: 120) (Pavlis et al. 
2008)

Gravity of other planets Ephemeris from JPL DE405 (Standish 
1998)

Solid earth and pole tides IERS Conventions 2010 (Petit and Luzum 
2010)

Ocean tides FES2004 (Lyard et al. 2006)
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Taking into account the factors considered for IM in avia-
tion using the DFMC SBAS (EUROCAE 2019) that also 
operates in an open-sky measurement environment and 
uses undifferenced IF observations, the variance element 𝜎̃2

s
 

( s = 1,⋯ ,m ) can be defined considering the variance of the 
noise and multipath ( ̃𝜎2

air
 ), the variance of the GNSS orbital 

and clock errors projected into the signal direction ( ̃𝜎2

GNSS
 ) 

and the variance of the ionospheric residuals after forming 
the IF cothe overbounding standardmbination ( ̃𝜎2

iono
 ), which 

is assumed to account for miss-modeled ionospheric residuals 
that will be discussed later:

Note that LEO satellites are above the troposphere, and thus, 
there are no tropospheric delays to consider. The variance 
�2
air

 is modeled with the overbounding standard deviations of 
the single-frequency noise ( �N ) of geodetic-grade antennas 
and the multipath ( �M ) under open-sky conditions as:

where 𝜎̃N,DFMC and 𝜎̃M,DFMC are the overbounding standard 
deviations of the IF carrier-smoothed observation noise 
and multipath after 100 epochs using L1 and L5, applied 
for aeronautical users with the DFMC SBAS as defined in 
EUROCAE (2019). The factor � (13) is set to 10, assuming 
the standard deviation of the raw code noise and multipath 
is 100 times that of the phase noise and multipath, and the 
code-smoothing over 100 epochs reduces this amplifica-
tion factor to 10. The calculation of 𝜎̃iono follows that for 
the case of DFMC SBAS, i.e., an elevation-angle dependent 
function accounting for the high-order ionospheric delays, 
ray bending and excess Total Electron Content (TEC). The 
ionosphere differently influences the LEO satellites at dif-
ferent altitudes. Some of them could even be above the 
ionosphere; therefore, we made a conservative assumption 
using the same formula as for the aircraft. The overbounding 
standard deviation for the orbital and clock errors projected 
into the signal direction ( ̃𝜎GNSS ) is dependent on the service 
provider of the real-time GNSS products.

Recall that stochastic accelerations are constrained to zero 
with the standard deviation �� = 5 × 10−6 [s−2] × �0 . To keep 
the same weight of constraint for the stochastic accelerations 
as that in the POD, the standard deviation for the constraint 
( ̃𝜎2

𝛿
 in m∕s2 ) for integrity purposes is expressed as:

where 𝜎̃0 denotes the overbounding standard deviation of 
unit weight on L1 (in the unit of meters), calculated with the 
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(14)𝜎̃𝛿 = 5 × 10−6 [s−2] × 𝜎̃0

𝜎̃s in the zenith direction divided by the IF amplification 
factor 

√
f 4
1
+ f 4

2
∕(f 2

1
− f 2

2
).

After computing Q̃l from (10), the variance–covariance 
matrix Q̃Δx of the unknown vector is:

where A is the total design matrix (including the part of the 
absolute constraint) for the reduced-dynamic POD. Next, 
the variance–covariance matrix of the orbital parameters 
denoted as Q̃O , is derived from Q̃Δx as the first 729 × 729 
elements in the reduced-dynamic mode, accounting for 
six Keplerian elements at the initial condition, one set of 
3D time-constant dynamic parameters, and 240 sets of 3D 
piece-wise constant stochastic accelerations (within 6 min 
intervals). The variance–covariance matrix of the orbital 
parameters Q̃O obtained through the least-squares adjustment 
is transformed to that of the Cartesian coordinates in the 

(15)Q̃Δx =
(
ATQ̃−1

l
A
)−1

radial, along-track and cross-track directions at each epoch 
using the error propagation law, such that:

with the transformation matrix F
(
ti
)
 containing the par-

tial derivatives of the RSW coordinates with respect to the 
orbital parameters expressed as:

where �rI
(
ti
)
∕�O represents the partial derivatives of the 

position vector in the inertial system at ti with respect to 
all the orbital parameters O , which need to be computed 
by numerical integration based on the variational equations 
and their linear combinations (as mentioned earlier). RI2T

(
ti
)
 

denotes the rotation matrix from the inertial system to the 
RSW-system at ti . In this study, RI2T at ti is approximated by:

where rI and vI represents the LEO position and velocity vec-
tors, respectively, and ‖ ∙ ‖ is the norm of the vector.

For IM, the PL is computed covering the positional errors 
with a pre-defined PMI (Shively 2014) as mentioned in the 
Introduction. Assuming that the PMI is equally distributed 
in the three directions, the PLs of the orbital element q can 
then be formulated as:

(16)Q̃RSW

(
ti
)
= F

(
ti
)
Q̃OF

T
(
ti
)

(17)F
(
ti
)
= RI2T

(
ti
)�rI

(
ti
)
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(18)RI2T =
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rI

‖‖rI‖‖
,

vI
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,
rI × vI

‖‖rI × vI
‖‖

]T



GPS Solutions (2022) 26:32	

1 3

Page 5 of 13  32

 with

where C−1(.) is the inverse CDF of the standard normal dis-
tribution, 𝜎̃RSW,q

(
ti
)
 is the overbounding standard deviation 

of the q-th orbital element at epoch ti , with q=1, 2, 3 repre-
senting the orbital component in the radial, along-track and 
cross-track directions, respectively, which can be derived 
from Q̃RSW in Eq. 16. m̃GNSS denotes here the scalar over-
bounding mean value of the GNSS orbital and clock error 
projections that are computed along with the 𝜎̃GNSS (Eq. 12) 
(which will be explained in the next section). JlΔ� is a vector 
of ones with length lΔ� , which denotes the number of used 
phase IF observations. SRSW,q projects the bias vector b̃ from 
the observation to the position domain at the corresponding 
epoch. The matrix FO selects the orbital parameters from the 
entire unknown vector containing the orbital parameters, the 
LEO satellite clock parameters and the float ambiguity 
parameters (see Eq. 1), and eq is a 3 × 1 vector with the q-th 
element set to the value of one and the other elements set to 
zeros.

In the proposed algorithm, large cycle slips or biases will 
be detected by the fault detection and exclusion (FDE) step. 
Concerning the remaining smaller biases that could vary 
over time, compared to the ambiguity-fixed solutions, the 
float ambiguities could absorb satellite-specific errors that 
vary little with time. The values of the float ambiguities 
themselves are not of concern. Other small miss-detected 
biases errors could remain in the observation residuals con-
sidered in b̃ (Eq. 19), which represents possible nominal 
biases under the system normal operation, and their random 
variabilities could be considered in the stochastic term 𝜎̃2

s
 

(Eq. 12). These parameters can be properly set based on a 
future comprehensive study.

Compared to the reduced-dynamic mode, the proce-
dure for the IM in the kinematic mode is simpler, as the 
variance–covariance matrix of the Cartesian orbits can be 
directly obtained within the least-squares adjustment as:

where the design matrix Ak can be expressed with the help 
of the combined GNSS-to-LEO unit direction vectors for 

(19)
PLq

(
ti
)
= Kq × 𝜎̃RSW,q

(
ti
)
+
|||SRSW,q

(
ti
)||| × b̃, q = 1, 2, 3

(20)Kq = C−1
(
1 −

PMI

3 × 2

)

(21)SRSW,q

(
ti
)
= eT

q
F
(
ti
)
FOQ̃ΔxA

TQ̃−1
l

(22)b̃ =
[
m̃GNSS × JlΔ𝜑 , 0

]T

(23)Q̃Δxk
=
(
AT
k
Q̃−1

Δ𝜑
Ak

)−1

all observations ( AI,n ), the design matrix for the LEO clock 
parameters AT ,n , as well as that for the ambiguity vector 
( ΛIF ) as:

 The variance–covariance matrix of the orbits Q̃rI

(
ti
)
 

( i = 1,⋯ , n ) are contained in the first 3n × 3n elements 
of Q̃Δxk

 . To obtain the variance–covariance matrix of the 
orbits in the radial, along-track and cross-track directions, 
i.e., Q̃RSW,k

(
ti
)
 , similar to the reduced-dynamic mode, 

transformation is required from the inertial system to the 
RSW-system:

 with the overbounding standard deviation of the orbits 
obtained in the radial, along-track and cross-track direc-
tions ( ̃𝜎RSW,k,q ), the corresponding protection levels in the 
kinematic mode ( PLk,q ) can be computed:

 with

where Fk selects the kinematic orbital positions of the corre-
sponding epoch from the entire vector of unknowns. In sum-
mary, compared to the existing IM algorithm for the DFMC 
SBAS, the LEO IM are subject to the following changes:

–	 The reduced-dynamic LEO POD requires a more com-
plicated scheme for the projection from the observation 
domain to the position domain as, instead of directly 
computing the Cartesian coordinates, the dynamic orbital 
parameters are estimated. In this regard, the objective 
of the least-squares adjustment in the reduced-dynamic 
POD is different from that of DFMC SBAS positioning. 
In the reduced-dynamic POD, the GNSS observations 
are used to improve the dynamic parameters in a least-
squares adjustment so that the final orbits are obtained 
through numerical integration using an improved 
dynamic model.

–	 Concerning the real-time GNSS satellite orbits and 
clocks, the LEO POD has more options, which may 
exhibit higher accuracy than using SBAS corrections.

–	 The model for LEO POD is stronger than that used by 
ground-based or airborne users, as LEO satellites are 
above the troposphere (i.e., it uses less term when com-

(24)Ak =
[
AI,n AT ,n ΛIF

]
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(
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)
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(
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)
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(
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(
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(28)b̃k = m̃GNSS × JlΔ𝜑



	 GPS Solutions (2022) 26:32

1 3

32  Page 6 of 13

puting the overbounding standard deviations for the 
observations).

–	 LEO POD uses directly the phase observations instead 
of the carrier-smoothed code observations as in DFMC 
SBAS. This ensures higher precision reduced-dynamic 
POD.

–	 In LEO POD, an overbounding bias term in the computa-
tion of the PLs is considered, which is not the case in the 
DFMC SBAS.

SISRE analysis of real‑time GNSS services

As mentioned in the previous section, the overbounding 
standard deviation ( ̃𝜎GNSS ) and mean values ( m̃GNSS ) of the 
GNSS orbital and clock errors, projected into the signal 
direction, are important components in the computation of 
PLs. In this study, two different cases are considered: the 
average-case and the worst-case.

Average‑case projection

In the average-case, the SISRE assumes a uniform distribu-
tion of the points over the sphere of the approximate LEO 
orbital radius, with a projection factor �R defined for the 
radial direction, and a factor �SW for the along-track and 
cross-track directions, respectively (Heng et al. 2011). The 
overbounding standard deviation can thus be expressed as:

where 𝜎̃RΔtG is the overbounding standard deviation of the 
term 

(
�R × ΔrR − c × ΔtG

)
 considering the correlation 

between the radial orbital error ΔrR and the satellite clock 
error ΔtG of the GNSS satellites. 𝜎̃S and 𝜎̃W represent the 
overbounding standard deviations of the along-track and 
cross-track orbital errors of the GNSS satellites, respectively.

The overbounding mean value of the projected GNSS 
orbital and clock errors can be expressed as:

(29)𝜎̃GNSS =
√

𝜎̃2
RΔtG

+ 𝛼2
SW

×
(
𝜎̃2
S
+ 𝜎̃2

W

)

where m̃RΔtG
 is the overbounding mean value of the 

term
(
�R × ΔrR − c × ΔtG

)
 , and m̃S and m̃W refer to those of 

the along-track and cross-track orbital errors of the GNSS 
satellites, respectively. The factors �R and �SW are related to 
both the orbital heights of the LEO satellite and the GNSS 
satellites and do not vary much for LEO orbital altitudes 
from 500 to 1000 km . The radial orbital error and the clock 
error play the dominant role in the overbounding standard 
deviation and mean values.

In this study, the overbounding standard deviation 𝜎̃GNSS 
and mean values m̃GNSS are computed for two types of real-
time GPS products, i.e., those from the IGS RTS and the 
MADOCA Service. The IGS final orbits and clocks are 
used as the reference for the assessment of the errors. Note 
that the real-time GPS satellite clocks are re-referenced to 
those of the IGS final clocks. The satellite-specific time-
constant mean values are removed from ΔtG , as they can 
be absorbed by the float ambiguities (Zhang et al. 2019). 
The errors (all the single components and the radial-clock 
combined component) exceeding 0.5  m are excluded 
from the analysis, and the remaining errors exceeding 
merr ± 10 × �err are further screened as outliers, where merr 
and �err denote the mean value and standard deviation of 
the corresponding error type, respectively. These outliers 
are also screened in the phase-preprocessing during the 
POD process.

A two-step overbounding strategy is used for the com-
putation of the overbounding standard deviations and 
mean values (Blanch et al. 2018). Compared to the paired 
overbounding method (Rife et al. 2006), the two-step strat-
egy has the advantage of generating a smaller overbound-
ing mean value, which is essential for reducing the LEO 
PLs, and thus may improve solution availability, as will be 
explained in Section “Test results.” In this study, no excess 
mass is set for the overbounding to avoid the high inflation 
of the actual probability of the overbounding distribution 
due to a large number of observations in the batch least-
squares POD process.

(30)m̃GNSS = m̃RΔtG
+ 𝛼SW ×

(
m̃S + m̃W

)

Table 2   Contributions of different errors to the overbounding standard deviations and mean values of the projected GPS orbital and clock errors 
during the test period September 2018 with an average-case assumption

Service 𝛼R × 𝜎̃R [m] c × 𝜎̃ΔtG [m] 𝜎̃RΔtG [m] 𝛼SW × 𝜎̃S [m] 𝛼SW × 𝜎̃W [m] 𝜎̃GNSS [m]

IGS RTS 0.034 0.095 0.092 0.011 0.005 0.093
MADOCA 0.056 0.065 0.066 0.009 0.007 0.067

𝛼R × m̃R [m] c × m̃ΔtG
 [m] m̃RΔtG

 [m] 𝛼SW × m̃S [m] 𝛼SW × m̃W [m] m̃GNSS 
[m]

IGS RTS 0.016 0.047 0.034 0.008 0.002 0.043
MADOCA 0.041 0.054 0.030 0.007 0.009 0.046
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Table 2 lists the contributions of different errors to the 
overbounding standard deviation 𝜎̃GNSS and mean value 
m̃GNSS for the orbital and clock projection errors assum-
ing the average-case over the period September 2018. 
The LEO GRACE FO-1 satellite, with approximately 
503 km orbital height (Wen et al. 2019), for the period 
from August 14 to 20, 2018 was used as an example. To 
show the correlation between the terms (�R × ΔrR) and 
(c × ΔtG) , the contributions are also given for the corre-
sponding single terms with 𝜎̃R and m̃R denoting the over-
bounding standard deviation and mean value of the radial 
orbital error, and 𝜎̃ΔtG and m̃ΔtG

 denoting those of the clock 
error. For the purpose of comparison, all epochs having 
valid components are used for the analysis.

From Table 2 it can be seen that 𝜎̃RΔtG is smaller than the 
case when treating the radial orbital errors and the clocks as 
independent terms, which confirms the correlation between 
the two parameters. The situation is similar for the over-
bounding mean values m̃RΔtG

 . The m̃GNSS of both products are 
within 5 cm, and their 𝜎̃GNSS are at the sub-dm to dm-level.

Worst‑case projection

The worst-case projection assumes the largest projection of 
the orbital and clock errors. Based on Montenbruck et al. 
(2015), the worst-case for the orbital contribution in SISRE is 
expanded from the case for ground-based users to the case for 
LEO satellites as shown in Fig. 1.

As the LEO orbits are near-circular, they are assumed to 
be circles with a radius RL . When the orbital error vector Δr 
intersects with the sphere of radius RL (see Δrin in the right 
panel of Fig. 1), the worst-case orbital error Δr̃ is assumed to 
have the absolute value of ‖Δr‖:

With

where < ∙ > is the dot product of two vectors, and RL and RG 
are approximated by the mean LEO orbital height and the 
mean GPS orbital height of 20,200 km (with the addition 
of the Earth radius of 6371 km as used in the previous sub-
section). eG denotes the unit direction vector from the Earth 
to the GPS satellite, and ΔrR refers to the radial component 
of Δr . In the case when the orbital error vector does not 
intersect the sphere of radius RL (see Δrout in the right panel 
of Fig. 1), the orbital error vector Δr is projected into the 
nearest tangent line from the GNSS satellite to the sphere 
for LEO orbits using the relations:

As the worst-case orbital contributions to SISRE might not 
be normally distributed, similar to the case in the previous 
section, an overbounding standard deviation ( ̃𝜎Δr̃ ) and mean 
value ( m̃Δr̃ ) need to be determined for Δr̃ . As a pessimistic 

(31)Δr̃ = ‖Δr‖, for the yellow area with 𝛽 ≤ 𝜃

(32)Δr̃ = ‖Δr‖, for the blue area with 𝛽 ≤ 𝜋 − 𝜃

(33)� = arccos

�⟨Δr, eG⟩
‖Δr‖

�
= arccos

�
ΔrR

‖Δr‖

�

(34)� = arcsin

(
RL

RG

)

(35)
Δr̃ = ‖Δr‖ × cos (𝛽 − 𝜃), for the grey area with, 𝜃 < 𝛽 ≤

𝜋

2

(36)
Δr̃ = ‖Δr‖ × cos (𝛽 + 𝜃), for the orange area with,

𝜋

2
< 𝛽 ≤ 𝜋 − 𝜃

Fig. 1   Average-case (left) and 
the worst-case (right) of the 
orbital contribution in SISRE 
for LEO satellites
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assumption, without considering the correlation between 
the radial orbits and the satellite clock errors (Montenbruck 
et al. 2015), the overbounding standard deviation and mean 
value of the projected GNSS orbital and clock errors can be 
expressed as:

Using the same data set as before, the overbounding stand-
ard deviations and mean values in the single and combined 
terms are given in Table 3. For the purpose of comparison, 
𝜎̃Δr̃ΔtG and m̃Δr̃ΔtG

 are given for the case when the correla-
tions between Δr̃ and ΔtG are considered, i.e., for the term 
( Δr̃ − c × ΔtG ). Outlier rejection was performed as in the 
previous section for the single and combined items of Δr̃ 
and ΔtG . Epochs having valid values for all terms, i.e., the 
clocks, the radial orbits, and the combined clock and radial 
orbits, are used for the analysis.

From Table 3, it can be seen that 𝜎̃Δr̃ and m̃Δr̃ in the worst-
case are higher than the corresponding orbital contributions 
under the average-case (as listed in Table 2), i.e., the terms √
𝛼2

R
× 𝜎̃2

R
+ 𝛼2

SW
×
(
𝜎̃2

S
+ 𝜎̃2

W

)
 a n d  

(
𝛼R × m̃R + 𝛼SW×(

m̃S + m̃W

))
 . Likewise, the overbounding standard deviations 

and mean values of the combined orbital and clock errors 
𝜎̃Δr̃ΔtG

 and m̃Δr̃ΔtG
 are lower than those computed based on the 

single terms, i.e., the final 𝜎̃GNSS and m̃GNSS . Note that the 
slight differences in 𝜎̃ΔtG and m̃ΔtG

 compared to those in the 
average-case are caused by the different epochs used in the 
analysis due to the outlier rejection of different parameters. 
Overall, the 𝜎̃GNSS and m̃GNSS are higher than those in the 
average-case, i.e., around 0.1 m for 𝜎̃GNSS and sub-dm to dm-
level for m̃GNSS . The results are largely consistent with the User 
Range Accuracy (URA) analysis performed by Cheng et al. 
(2018) for the CNES (National Center for Space Studies) real-
time products, stating that a URA of 0.15 m is a reasonable 
value for the GPS satellites. Note that the use of an overbound-
ing mean value helps in reducing the overbounding standard 
deviation.

(37)𝜎̃GNSS =
√

𝜎̃2
Δr̃

+ c2 × 𝜎̃2
ΔtG

(38)m̃GNSS = m̃Δr̃ + c × m̃ΔtG

Test results

In this section, the orbital PEs and the PLs are processed for 
the LEO satellite GRACE FO-1 during the period August 
14 to 19, 2018 assuming a PMI of 10−5 . The PMI of 10−5 is 
assumed to be uniformly distributed in the RSW directions, 
i.e., 1

3
× 10−5 in each direction, resulting in a Kq value of 

4.65. The orbits produced by JPL were used as the reference 
for the computation of the PEs. In Fig. 2, as an example, the 
absolute PEs and PLs are shown for the average-case projec-
tion using the MADOCA GPS products on August 14, 2018 
with about 15–16 orbital cycles. The overbounding standard 
deviations ( ̃𝜎GNSS ) and mean values ( m̃GNSS ) for the pro-
jected orbits and clocks were taken from Table 2. For the 
purpose of comparison, the cases considering and not con-
sidering the bias contribution ( 

(|||SRSW,q

(
ti
)||| × b̃

)
 and (|||SRSW,k,q

(
ti
)||| × b̃

)
 in Section “Integrity monitoring”) are 

both illustrated for the PLs in Fig. 2 as red and blue dots, 
respectively. Note that the bias contribution needs to be con-
sidered in IM, as without the mean value m̃GNSS , a much 
larger overbounding standard deviation 𝜎̃GNSS could be 
needed to satisfy the overbounding characteristic of a Gauss-
ian distribution. The blue dots in Fig. 2 are shown to illus-
trate the contribution of the bias term.

From Fig. 2, it can be seen that the PLs overbound the 
PEs in all three directions, and in both modes, for the test 
day. Due to the increased model strength, although having 
the same overbounding parameters, the PLs are much lower 
in the reduced-dynamic mode than in the kinematic mode. 
In addition, the highest PLs in the radial direction in the 
kinematic mode, caused by the high correlation between the 
radial component and the satellite clocks, do not appear to 
be higher than those in the other directions in the reduced-
dynamic mode due to de-correlation between the radial 
orbital component and the satellite clock parameter after 
applying the orbital dynamic models. Comparing Eq. (19) 
and Eq.  (26), both the formal standard deviation 𝜎̃RSW,q 
and projection matrix SRSW,q are increased in the kinematic 
mode due to the weaker model strength without using the 
dynamic model. More concretely, compared to the kine-
matic POD that solely relies on the GNSS observations, the 

Table 3   Overbounding standard deviations and mean values of the GPS orbital and clock errors during the test period September 2018 under the 
worst-case assumption

Service 𝜎̃Δr̃ [m] c × 𝜎̃ΔtG [m] 𝜎̃Δr̃ΔtG [m] 𝜎̃GNSS [m]

IGS RTS 0.045 0.096 0.095 0.106
MADOCA 0.073 0.072 0.071 0.102

m̃Δr̃ [m] c × m̃ΔtG
 [m] m̃Δr̃ΔtG

 [m] m̃GNSS [m]

IGS RTS 0.026 0.043 0.027 0.070
MADOCA 0.064 0.036 0.075 0.100
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reduced-dynamic model gains more information from both 
the GNSS observations and the dynamic models.

Comparing the red and the blue dots in Fig. 2 i.e., with 
and without considering biases in the PLs, it can be seen that 
the bias contribution plays a significant role in the final PLs. 
This is partially caused by the fact that the absolute values 
of the projection matrices SRSW,q

(
ti
)
 and SRSW,k,q

(
ti
)
 (see 

Section “Integrity Monitoring”) were used in the IM, which 
pessimistically (as a conservative measure) assumes that the 
bias term always has the same sign as the corresponding 
values in the projection matrix.

Figure 3 shows the absolute PEs and the PLs for the aver-
age-condition applying the MADOCA overbounding param-
eters for all three directions. The LEO data of GRACE FO-1 
from August 14 to 19, 2018, were processed with the 𝜎̃GNSS 
and the m̃GNSS taken from Tables 2 and 3 for the average-
case and the MADOCA products. It can be observed that the 
reduced-dynamic mode has significantly reduced both of the 

PEs and the PLs compared to the kinematic mode. The fig-
ure shows that the PLs bound all PEs in the three directions 
and during the entire test period (see the 0.2 m cap in the 
right panel). Table 4 lists the mean value of the absolute PEs 
and the PLs, and the corresponding IM availabilities with 
an assumed AL of 4 m. This is an example presented for 
demonstration purposes, showing the availability differences 
for different estimation modes and under the average-case 
and the worst-case projections. The availability is defined 
as the ratio when PL is smaller than AL in the correspond-
ing direction. The values in Table 4 distinguish between the 
average-case and the worst-case.

While the PLs in the average-case projection can indeed 
bound all the PEs in the three directions and during the 
entire test period, the worst-case projection provides safer 
but overall pessimistic PLs. Benefiting from the increased 
model strength, as shown in Table 4, applying the dynamic 
model can effectively reduce the mean PLs from about 

Fig. 2   Absolute orbital PEs 
and PLs of the LEO satellite 
GRACE FO-1 (assumed to 
be the GNSS user) using the 
MADOCA GPS products in the 
kinematic mode (left) and the 
reduced-dynamic mode (right) 
on August 14, 2018

Fig. 3   Absolute PEs (left) 
and PLs assuming the aver-
age-condition applying the 
overbounding parameters of 
the MADOCA products (right). 
Note that the y-scales of the two 
sub-figures are different
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3–4 m in the kinematic mode to around 1 m in the reduced-
dynamic mode for all three directions for the average-case 
assumption. Under such conditions, the availabilities reach 
100% for an AL of 4 m as shown in Table 4, and are above 
99% even with the AL decreased to 2 m.

PLs with different overbounding parameters

To test the impact of different overbounding parameters, 
the PLs were computed using the satellite geometry pro-
vided by the GRACE FO-1 and the MADOCA products on 
August 14, 2018, with the value of 𝜎̃GNSS varying from 0.05 
to 0.15 m and the value of m̃GNSS varying from 0 to 0.15 m. 
Figure 4 shows the change of the mean PLs with respect 
to the m̃GNSS in the kinematic (top) and reduced-dynamic 
modes (bottom).

As shown in Fig. 4, compared to the 𝜎̃GNSS , the mean PLs 
are more influenced by the m̃GNSS of the projected GNSS 
orbital and clock errors. The results for LEO POD motivate 
investigations into further reducing the overbounding mean 
values. With m̃GNSS within 5 cm, the mean values of PLs in 
the reduced-dynamic mode are within 2 m for the average-
case even with a large 𝜎̃GNSS up to 0.15 m. With m̃GNSS within 
2 cm, the mean values of PLs are limited to 1 m under the 
same conditions.

PLs with different duty cycles

For mini-satellites such as CubeSats, the limited onboard 
power might not allow for GNSS observations to be con-
tinuously collected over an entire period, as power might 
need to be used for tasks other than positioning. As such, 
duty cycles smaller than 100% are often applied for the 
GNSS tracking (Lantto and Gross 2018). The reduced data 
decreases the model strength and the precision of the esti-
mated orbital parameters. However, in the reduced-dynamic 
mode the orbital positions and PLs can still be computed 
over the entire period, benefiting from the dynamic model 
and numerical integration (Wang et al. 2020).

The mean PLs are computed and shown in Fig. 5 for duty 
cycles varying from 40 to 100% in the reduced-dynamic 
mode. The geometry of GRACE FO-1 on August 14, 2018, 

was used for the tests, and the overbounding parameters of 
the MADOCA products in the average-case (Table 2) were 
applied for the analysis.

From Fig. 5 it can be seen that the mean value of PLs 
increase, i.e., tending to reduced availability, in all three 
directions with decreasing duty cycles. This is due to the 
reduced model strength when decreasing the amount of data 
used for POD. However, the mean PLs after the increase are 
limited to about 2 m even when reducing the duty cycle to 
40%. With an AL set to 4 m, the availabilities are still above 
98% when the duty cycle is reduced to 40%.

Concluding remarks

Integrity monitoring (IM) is an essential task in guarantee-
ing the safety and reliability of a positioning service. This 
study proposed new IM strategies for GNSS-based near-real-
time LEO POD, investigating how different error sources 
and model strength could influence their final PLs.

As a condition for high accuracy near-real-time LEO 
POD, the overbounding standard deviation and mean value 
were studied for the SISRE of real-time GPS orbits and 
clocks using the IGS RTS and MADOCA products. The 
investigation distinguished between the average-case and 
worst-case projections. Using the geometry of the LEO sat-
ellite GRACE FO-1, the results showed that for the average-
case assumption, the overbounding standard deviations are at 
the sub-dm to dm-level, and the overbounding mean values 
are within 5 cm, while in the worst-case the overbounding 
standard deviations are about 0.1 m and the corresponding 
mean values are at the sub-dm to dm-level.

The PLs were computed using both the real-time GNSS 
products and real data for the LEO satellite GRACE FO-1. 
Assuming a PMI of 10−5 , the strong dynamic models and 
the improved model strength bring the mean PLs from 
about 3–4 m in the kinematic mode down to about 1 m in 
the reduced-dynamic mode for the average-case assump-
tion in the radial, along-track and cross-track directions, 
where the PL safely bound all the orbital PEs. The worst-
case projection leads to safer, but overall more conservative 
(pessimistic) PLs, having mean values of about 1–3 m in 

Table 4   Statistics of the orbital 
positioning errors (PEs) and 
protection levels (PLs) of 
GRACE FO-1 for the period 
August 14 to 19, 2018. The 
values separated by “/” are 
given in the radial, along-track 
and cross-track directions, 
respectively

Estimation mode Mean abs. PE [m] Mean PL [m] Availability [%]

Average-case Worst-case Average-case Worst-case

MADOCA
 Kinematic 0.028/0.026/0.019 3.83/3.25/3.20 7.24/6.39/6.36 68.0/85.4/97.9 0.0/3.2/0.0
 Reduced-dynamic 0.009/0.014/0.007 0.70/1.23/1.56 1.38/2.42/3.20 100/100/100 99.95/99.97/100

IGS RTS
 Kinematic 0.049/0.045/0.036 4.50/3.74/3.55 6.45/5.52/5.30 42.6/66.8/82.4 2.3/16.6/0.6
 Reduced-dynamic 0.011/0.022/0.014 0.72/1.27/1.55 1.06/1.87/2.39 100/100/100 100/100/100
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the reduced-dynamic mode and over 5 m in the kinematic 
mode. The IM availabilities in the reduced-dynamic mode 
and for the average-case projection are above 99% in all 
three directions when the AL is set to 2 m. The analysis fur-
ther showed that the overbounding mean value of the SISRE 
plays a determining role in the final PLs. For small satellites, 
with duty cycles down to 40%, the mean values of PLs (in 
the reduced-dynamic mode and the average-case projection) 
increase compared to those with a 100% duty cycle, but are 
limited to about 2 m using the overbounding parameters of 
the MADOCA products. The corresponding IM availabili-
ties are shown to be above 98% when the AL is set to 4 m, 
even with the duty cycle reduced to 40%.
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