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Abstract
We report the GPS satellite clock estimation using 20 globally distributed receivers with an external hydrogen maser 
atomic clock. By applying corrections for the Sagnac effect, the relativistic effect due to orbit eccentricity, tropospheric and 
ionospheric delays, satellite and receiver antenna phase center offsets and variations, solid earth tides, ocean tide loading, 
phase wind-up effect, and P1-C1 bias, our satellite clock results matches the IGS final clock product within  ± 1.4 ns with 
comparable frequency stability for an averaging time of less than 1000 sec and a 10–30% worse frequency stability for an 
averaging time of greater than 1000 sec, on MJD 58244. This small atomic clock network results in a fast computation that 
becomes increasingly appealing when the real-time satellite orbit and clock estimation is needed and as the GNSS constel-
lations and the GNSS signals expand.
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Introduction

The meter-level accuracy of orbit and clock broadcast by 
GNSS satellites fundamentally sets the positioning limit to 
ground users. To break this limit, precise GNSS satellite 
orbit and clock products need to be generated. Ten analysis 
centers in the world compute precise GNSS satellite orbit 
and clock independently. By giving each analysis center’s 
results a proper weight, the International GNSS Service 
(IGS) (Johnston et al. 2017) provides a combined precise 
GNSS satellite orbit and clock product reaching an accu-
racy of 1–2 centimeters (Griffiths and Ray 2009). Using the 
precise GNSS satellite orbit and clock product together with 
sophisticated modeling of physical effects, modern GNSS 
software can achieve centimeter-level ground positioning 
(Kouba 2009).

The basic principle of computing precise GNSS satellite 
orbit and clock is to form a global network composed of all 
GNSS satellites and about 200 ground receivers, with code 
and phase measurements from receivers and accurate physi-
cal models/observations. In this network, the main unknown 
variables are satellite orbits and clock biases, as well as 
receiver’s positions and clock biases. Many analysis centers, 

including the National Geodetic Survey (NGS) (Yoon et al. 
2017), use the double-differencing technique to compute 
satellite orbits and receiver positions. Let us label the trans-
mission time from Satellite A to Receiver j as tA

j
 . The dou-

ble-differencing technique is a mathematical operation of (
tA
j
− tA

k

)
−

(
tB
j
− tB

k

)
 , which pre-eliminates satellite clock 

biases and receiver clock biases. Therefore, after double-
differencing, only satellite orbits and receiver positions are 
the main unknown variables, which can be solved by using 
the least squares method. However, double-differencing can-
not compute the other indispensable part of GNSS satel-
lites—the satellite clock biases. A satellite clock usually has 
white frequency noise at a very short time (e.g., 30 sec). This 
noise is at the level of a few centimeters for non-IIF Rb 
clocks and a few millimeters for IIF Rb clocks. Therefore, 
the epoch-to-epoch satellite clock estimation is critical to the 
general GNSS users who want to reach centimeter-level 
point positioning without resorting to double-differencing.

Although NGS has been computing the precise satel-
lite orbits since 1989, it has not yet computed the satellite 
clocks. This paper proposes a novel method of computing 
the satellite clocks—forming a global atomic clock network 
to estimate the GPS satellite clocks. The next section pro-
vides details of this method. The Results section presents the 
satellite clock results using this method on MJD 58244 (i.e., 
May 06, 2018; Day 0 of GPS Week 2000). The Discussions 
section provides a comprehensive evaluation of this method 
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from the aspects of accuracy, frequency stability, and com-
putation burden. The last section concludes this paper and 
suggests future work.

Method of computing satellite clocks

After estimating the satellite/receiver positions using dou-
ble-differencing, the remaining unknown variables in the 
global network are primarily satellite/receiver clock biases. 
The conventional least squares GNSS method, which solves 
these unknowns in a large matrix based on all ground obser-
vations over a whole day (Hugentobler et al. 2002), is only 
applicable in the post-processing mode and thus results in 
a latency that becomes increasingly problematic when real-
time satellite orbits and clocks are needed. The correlation 
issue between satellite clocks and receiver clocks may also 
lead to a biased estimation of each clock in the conventional 
least squares method. With these concerns, we propose a 
new method—forming a network composed of 20 ground 
receivers referenced to hydrogen maser atomic clocks. To 
guarantee the full-time coverage of all GPS satellites, these 
receivers are selected to be distributed around the world as 
uniformly as possible (Fig. 1). Because hydrogen masers are 
orders of magnitude more stable than satellite clocks, the 
receiver clocks are available a priori with small uncertain-
ties, and thus, this method could reduce the correlation issue 
between satellite clocks and receiver clocks, as well as the 
correlation issue between clocks and other noise sources. 
In addition, this small network significantly reduces the 
computation burden, which could be useful for real-time 
applications.

To implement this idea of using the hydrogen maser 
network to estimate GPS satellite clock biases, we have 

developed an algorithm with two steps. The first step is to 
compute the time difference between each satellite clock and 
each receiver clock, using code and phase measurements, 
respectively. The GPS observation equations for code and 
phase are (Yao 2014),

where Δtj is the clock bias of satellite j, Δti is the clock bias 
of station i, and Δion and Δtropo are the ionospheric and tropo-
spheric delay, respectively. Δother includes all other physi-
cal effects on code or phase measurements that are at the 
level of a few centimeters or larger, such as satellite/receiver 
antenna phase center offsets (PCO) and variations (PCV), 
solid earth tide, ocean tide loading, relativistic eccentric-
ity effect, Sagnac effect, phase wind-up effects, and P1-C1 
bias. � is the noise term, and Nj

i
 is the phase ambiguity. 

Without loss of generality, we use the precise GPS satellite 
orbits and receiver positions provided by the IGS final sp3 
file for �⃗xj and �⃗xi , respectively. For the tropospheric delay, 
it can be divided into two parts—dry tropospheric delay 
(=zpdd×Md, where zpdd is the dry zenith path delay and Md 
is the dry mapping function), and wet tropospheric delay 
(=zpdw×Mw). Following suggestions by Kouba (Kouba 
2009), we get zpdd, Md, and Mw from models, while zpdw is 
treated as an unknown variable that needs to be estimated 
in this algorithm.

A simple mathematical operation of (1) and (2) gives (3) 
and (4),
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Fig. 1   Globally distributed 
atomic clock-referenced GNSS 
receiver network. Red labels are 
National Metrology Institutes 
(NMI). The UTC(k) generated 
by steering hydrogen maser 
atomic clocks gently at NMIs 
is a realization of Coordinated 
Universal Time and thus 
provides accurate and precise 
reference times to their GNSS 
receivers. Blue labels are non-
NMIs that have free-running 
hydrogen maser atomic clocks. 
These clocks provide precise, 
though not accurate, reference 
times to the receivers
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The left side of (3) and (4) includes the unknown var-
iables to be estimated in Step 2 -- Δtj , Δti , zpdw , and nj

i
 . 

Here, nj
i
 is the ionosphere-free version of the phase ambi-

guity and is a constant for a specific satellite-receiver pair 
after correcting for all cycle slips. Since the satellite orbits 
and receiver coordinates are already given, all terms on the 
right side of (3) and (4) are known. Plugging numbers on the 
right side of (3) and (4) gives a raw estimation of the time 
difference between satellite and receiver. Clearly, this raw 
estimation still includes the unknown wet tropospheric delay 
and the unknown phase ambiguity.

A single ground receiver can only observe a satellite for 
a few hours each day. Therefore, the result of Step 1 would 
not provide a continuous clock estimation for each satel-
lite. In addition to know the actual time difference between 
satellite and receiver, we need to resolve the unknown wet 
tropospheric delay and the unknown phase ambiguity. Step 
2 of the algorithm addresses these issues. A forward-only 
Kalman filter is designed to merge all results obtained in 
Step 1, to enable the clock observation of all GPS satel-
lites every 30 sec, 24 hours a day. One receiver (e.g., the 
NIST receiver for our case) is selected to serve as the time 
reference for all GPS satellite clocks and other receiver 
clocks. The state vector of the Kalman filter includes the 
unknown variables – the time/frequency/frequency-drift 
offsets of all satellite clocks and all receiver clocks, the wet 
zenith path delays zpdw , and the phase ambiguities of each 
satellite-to-receiver pair nj

i
 . The noise level of the satellite/

receiver clocks is determined by the corresponding Allan 
deviations (Senior et al. 2008; Strandjord and Axelrad 2018; 
Montenbruck et al. 2012; McGrew et al. 2019; Yao et al. 
2019). The calculated noise of receiver clocks is negligible 
compared to that of satellite clocks. The initial uncertain-
ties of the phase ambiguities are set to be at the level of 
3 meters, which reflects the noise level of code measure-
ment. The inherent variation in phase ambiguity is set to be 
tiny to reflect the fact that phase ambiguities are constant. 
The observations are weighted based on elevation angles 
(Dach et al. 2007), i.e., weight = sin2(elevation). With these 
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settings, the Kalman filter runs epoch-by-epoch in a forward 
sense (note: the time interval is 30 sec in this paper unless 
specified). When the phase measurement is 4 standard devia-
tions away from the prediction (this may come from the rise 
of a satellite, or cycle slips, or phase measurement outliers), 
we re-estimate the phase ambiguity, using (5) which can be 
derived from (4),

The uncertainty of this re-estimation of the phase ambi-
guity is determined by the uncertainties of Δtj , Δti , zpdw , 
and the phase measurement noise in Φj

i
(ion free) . Depending 

on satellite blocks, the uncertainties of Δtj are at the level 
of 100 ps or smaller (i.e.,  <  =  3 cm), and the uncertainties 
of Δti are negligible thanks to hydrogen masers. zpdw has 
little variation epoch-by-epoch; phase measurement noise 
is typically below 3 cm. Therefore, we can reach an accu-
rate re-estimation of phase ambiguity at the level of a few 
centimeters, much smaller than its initial uncertainty of ~ 
3 meters. This Kalman filter not only allows for real-time 
applications but also avoids the large matrix of combin-
ing all-epoch observations as in conventional least squares 
GNSS processing. In addition, the forward-only stream pro-
cessing in the Kalman filter does not result in the day bound-
ary that exists in conventional processing.
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Fig. 2   Time difference between PRN05 and ground receivers at NMIs 
on MJD 58244, based on phase measurements. The black dashed line 
illustrates the slope of these curves. Note, phase ambiguities are not 
estimated, and curves are aligned with constant shifts
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Results

According to the previous section, we can get a raw esti-
mate of the time difference between each satellite and each 
receiver after Step 1. Here, as an example, we show the raw 
time difference between a GPS satellite clock (i.e., PRN05) 
and seven receivers located at National Metrology Institutes, 
calculated by (4). From Fig. 2, all receivers at NMIs observe 
the same slope of PRN05 indicated by the black dashed line. 
The curves deviate from the black dashed line at low eleva-
tion angles because the wet tropospheric delay has not yet 
been taken into account in Step 1. Indeed, as a sanity check, 
we applied the wet tropospheric delay correction and found 
that the deviations from the black dashed line disappeared. 
Figure 2 indicates that the seven receivers are not enough 
to provide coverage for 24 hours per day, nor do they offer 
sufficient redundancy in case data from one or more of these 
receivers are unavailable.

To achieve the 24-hour coverage for each day, we intro-
duce thirteen ground receivers that refer to free-running 
hydrogen masers (i.e., the blue labels in Fig. 1). We even-
tually form a network of 20 stations providing full cover-
age. Figure 3 shows the time difference between PRN05 
and these additional ground receivers. Although a hydro-
gen maser is comparable to UTC(k) in terms of precision, 
it is not as accurate as UTC(k) and usually has a nonzero 
frequency offset, which leads to the various slopes seen in 
Fig. 3. Like Fig. 2, the curves in Fig. 3 can also deviate from 

the black dashed lines at low elevation angles because the 
wet tropospheric delay was not taken into account in Step 1.

Although the time difference based on code measure-
ments is much noisier than that based on phase measure-
ments, it helps the estimation of phase ambiguities inside 
the Kalman filter, and therefore, those code measurement 
data are included with appropriate weighting. For our case, 
the ratio of code weight to phase weight is 1:400. With the 
raw time differences between each GPS satellite and each 
ground station based on both phase and code as the inputs of 
the Kalman filter, we can get 24-hour clock estimation for all 
GPS satellites and all 20 ground stations. Here, we show our 
result of PRN05 as an example (blue curve in Fig. 4(top)). It 
is noted that to make a fair comparison, the reference time 
for both blue curve and red curve in Fig. 4(top) is the IGS 
final timescale. Remember that the Kalman filter gives our 

Fig. 3   Time difference between PRN05 and ground receivers at 
non-NMIs on MJD 58244, based on phase measurements. The black 
dashed lines illustrate the slopes of each curve. Note, phase ambigui-
ties are not estimated, and curves are aligned with constant shifts; a 
large constant frequency offset is applied to YELL for a better presen-
tation of this figure

Fig. 4   Our result of PRN05 satellite clock on MJD 58244 (blue 
curve). The IGS final result of PRN05 (red curve) is shown for com-
parison. The IGS final result is a combination of all analysis cent-
ers’ results. The inserted plot of the bottom panel enlarges the curves 
around 25,000 sec. Note, the reference time for both blue curves and 
red curves is the IGS final timescale
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estimate of (PRN05 clock – NIST time), and the IGS final 
product gives the time difference of (NIST time – IGS final 
timescale). Therefore, we can get our estimate of (PRN05 
clock – IGS final timescale) using the simple equation of 
(PRN05 clock – NIST time) + (NIST time – IGS final time-
scale) and thus generate the blue curve in Fig. 4 (top). The 
red curve is generated from the IGS final product directly. 
From Fig. 4 (top), our result experiences a convergence pro-
cess for the first few hours, because the phase ambiguities 
are estimated by averaging down multi-epoch code meas-
urements. We want to emphasize that since the filter runs 
forward and can process data across day boundaries, this 
initialization process only occurs once as long as the process 
runs continuously. After the initialization, our result of the 
PRN05 clock is mainly linear, which is what we expect for a 
GPS satellite up to a day. More importantly, our result has an 
excellent match with that computed by the IGS, indicating 
that we have observed the PRN05 clock behavior correctly.

To do a detailed comparison between our result and 
the IGS final result, we remove the slope of our result and 
get the residuals (blue curve in Fig. 4(bottom)). Similarly, 
we remove the same slope for the IGS result and plot the 
residuals (red curve in Fig 4(bottom)). Both curves have 
similar behaviors, such as a rise during 20,000–35,000 sec, 
a decline during 45,000–55,000 sec, a dent around 56,000 
sec, and a small bump around 65,000 sec. The inserted plot 
of Fig. 4(bottom) shows the epoch-level comparison of our 
result and the IGS result. The same pattern of the two curves 
in the inserted plot demonstrates that we are able to observe 
the instantaneous satellite clock behavior. This result dem-
onstrates that the atomic clock network enables us to monitor 
the PRN05 satellite clock behavior comparable to the IGS.

We extend the above analysis to other GPS satellites and 
confirm that the conclusion applies to all GPS satellites. As 
an example, Fig. 5 shows what we get for PRN08. Again, 
after the initial convergence, our result well matches the 
IGS result, and the curve pattern of our result is nearly the 
same as that of the IGS result, but a small divergence around 
80,000 sec. Remember that the IGS result is based on more 
than 200 stations and is a combination of the contributions 
from over 10 analysis centers; in contrast, our result is based 
on only 20 stations and only involves a single analysis center. 
Considering this fact, the comparable performance of our 
result and IGS result demonstrates an advantage for our sat-
ellite clock estimation method.

Discussions

We further evaluated our method from three aspects—
accuracy, frequency stability, and computation burden. The 
evaluation of the accuracy of our result is done by compar-
ing it to the IGS result. Admittedly, the IGS result is still 

improving and can be affected by data processing and imper-
fect physical models (Coleman and Beard 2020); neverthe-
less, it provides the best available estimate of GPS satellite 
clocks and shall be considered as the best representation of 
the truth. Therefore, comparing our result to the IGS result 
could provide a good evaluation of the accuracy obtained. 
Indeed, we have started such a comparison in Figs 4 and 5. 
Differencing our result and the IGS result for all GPS satel-
lites gives Fig. 6. Neglecting the first few hours, our result 
is within ±1.4 ns with respect to the IGS result, for all GPS 
satellites and for all epochs. We also observe that there is no 
systematic bias between our result and the IGS result. Most 
curves wander around 0 ns with a deviation of less than ±1 
ns. Thus, our result exhibits an accuracy at the level of 1 
ns. We want to mention that the clock results of other IGS 
analysis centers also deviate from the IGS result. For exam-
ple, the CODE (Center for Orbit Determination in Europe) 

Fig. 5   Our result of PRN08 satellite clock on MJD 58244 (blue 
curve). The IGS result of PRN08 (red curve) is shown for compari-
son. Note, the reference time for both blue curves and red curves is 
the IGS final timescale
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result has a deviation of ±0.6 ns on the same date, the EMR 
(Natural Resources Canada) result has a deviation of ±0.9 
ns, and the MIT (Massachusetts Institute of Technology) 
result has a deviation of ±0.9 ns. Admittedly, our current 
result is worse than the result of other IGS analysis centers 
because we believe it is limited by the code measurements 
rather than the phase measurements. If we would expand 
our small network of 20 stations to hundreds of stations like 
other analysis centers, we could have many stations moni-
toring one satellite at the same time and therefore could 
average down the code measurements noise and de-weight 
those contaminated code measurements, which can push our 
result closer to the IGS result and thus improve the accuracy 
of our result. In addition, the modeling of physical effects, 
such as the tropospheric model, as well as the forward-only 
Kalman filter processing, could introduce systematic biases/
uncertainties contributing to the deviation of our result from 
the IGS result.

Next, we study the frequency stability of our GPS satellite 
clock results. Because a clock often exhibits random-walk 
noise or even higher-order noise, its standard deviation is 
divergent as time goes. The Allan deviation was introduced 
to solve the incompetence of the classical standard deviation 
in clocks. It is defined as σ(τ) =

�
1

2(M−1)

∑M−1

i=1

�
yi+1 − yi

�2 , 
where τ is the averaging time, yi is the ith of M fractional 
frequency values averaged over τ . Neglecting the initial con-
vergence time period, we calculate a series of Allan devia-
tions by changing τ from 30 sec to ~ 1 day, which provides 
a full picture of the clock noise at a variety of time intervals. 
Instead of choosing the IGS time scale as the common refer-
ence that may have its own behavior, we directly compare 
two IIR block Rubidium clocks (e.g., PRN11 and PRN16) 

Fig. 6   Difference between our result and IGS final result, for all GPS 
satellites, on MJD 58244. Note, the red dotted lines illustrate ±1.4 ns 
and the black dotted line illustrates 0 ns, for a better presentation

Fig. 7   Frequency stability of IIR Rubidium clocks (a), IIR-M Rubid-
ium clocks (b), IIF Rubidium clocks (c), and IIF Cesium clocks (d)
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in our result. The corresponding frequency stability is shown 
by the blue curve in Fig. 7(a). Similarly, we can calculate the 
frequency stability of these two clocks in the IGS result and 
get the red curve. We repeat the same process for IIR-M 
block Rubidium clocks, IIF block Rubidium clocks, and IIF 
block Cesium clocks (Fig. 7(b-d)). For all four clock types, 
the frequency stability of our result is comparable to that of 
the IGS result, up to 1000 sec. This matches the observation 
in Section Results that our result has the same instantaneous 
and short-term behavior as the IGS result. For an averaging 
time larger than 1000 sec, the frequency stability of our 
result is still comparable to that of the IGS result for the IIF 
block Cesium clocks. However, for the other three clock 
types, our result is roughly 1.3 times as noisy as the IGS 
result after 1000 sec. A few facts could lead to this worsened 
long-term performance. We only use 20 stations and involve 
a single analysis center, while IGS uses at least 200 stations 
and averages results from all analysis centers. Another fact 
is that although we have taken nearly all physical effects that 
are larger than a few centimeters into account, there are two 
remaining effects, i.e., pole tides and earth rotation param-
eters (ERP) variations (Kouba 2009), that need to be 
included in the future. Even more, the imperfect models for 
physical effects can deteriorate the performance of our result 
as well. Although our algorithm is designed with care, it can 
be further improved with additional features such as outlier 
detection/removal and parameter optimization in the Kalman 
filter. With these considerations, it is reasonable that our 
result is noisier than the IGS result after 1000 sec.

Furthermore, we explore the computation burden of our 
atomic clock network method. Step 1 computes all terms 
on the right side of (3) and (4). It takes a computer with 
a 3.10 GHz processor 106 sec to process one station for 
one day, and the processing of multiple stations can eas-
ily be parallelized. Remember that the double-differencing 
processing has calculated most terms on the right side of 
(3) and (4). With these terms readily available after the 
double-differencing processing, the computation burden of 
Step 1 becomes negligible. Thus, the computation burden of 
Step 2 is of more concern. Step 2 involves the estimation of 
unknown variables (i.e., Δtj , Δti,n

j

i
 , and zpdw ) using meas-

urements. Assuming that we have R stations, the number of 
unknown variables n equals 32 × 3 + R × 3 + 32 × R + R = 36
R + 96, where 32 × 3 and R × 3 are the number of parameters 
for satellite clocks and receiver clocks, respectively, since 
each clock has three parameters—time, frequency, and fre-
quency drift, 32×R is the total number of phase ambiguities, 
and the last term R corresponds to the total number of wet 
zenith path delays for all receivers (each receiver has one wet 
zenith path delay to be estimated). The number of measure-
ments m is proportional to R. According to (Zumberge et al. 
1997; Malys and Jensen 1990), the computation burden of 
Step 2 is proportional to n2m = (36R + 96)2R. When R is 

significantly larger than 96/36 = 2.7 (for our case, R equals 
20 and thus much larger than 2.7), the computation burden 
becomes proportional to R3. Therefore, the computation of 
Step 2 is roughly one thousand times faster than if 200 sta-
tions were used. Indeed, it takes a computer with a 3.10 GHz 
processor only 590 sec to finish Step 2 and generate the 
30-sec clock product for one day. If we were generating 
5-min clock product, the computation time would further 
drop to 59 sec. This fast computation is particularly appeal-
ing when real-time satellite orbits and clocks become of 
great interest and as the GNSS constellations and the GNSS 
signals expand rapidly.

In addition to the above evaluation of our atomic clock 
network method from the aspects of accuracy, frequency 
stability, and computation burden, Appendix A addresses 
the performance of our method at day boundaries. Although 
the day boundary discontinuity (typically at the level 
of 100–200 ps) can be obscured by the noise of satellite 
clocks, this discontinuity becomes obvious when comparing 
ultra-low-noise ground atomic clocks. By comparing clocks 
at two NMIs, Appendix A demonstrates that our method 
does not have the day boundary discontinuity while the 
IGS result does. Appendix B evaluates the satellite clock 
estimation performance when using 20 receivers without 
external atomic clocks. A GPS receiver without an external 
atomic clock usually has its internal quartz clock aligned to 
the GPS system time with an accuracy of a few nanosec-
onds. If we use such 20 receivers to estimate satellite clocks 
with the same algorithm as described in Section “Method 
of Computing Satellite Clocks,” the frequency stability of 
IIR Rb clocks, IIR-M Rb clocks, and IIF Rb clocks becomes 
approximately 1.6 times as noisy as if the atomic clock net-
work was used, for an averaging time of 1000 sec–12 hours 
(Appendix B). This indicates that the satellite clock estima-
tion is improved by capitalizing on the ground atomic clock 
timing infrastructure.

Conclusions and future work

We have demonstrated an atomic clock network architec-
ture for monitoring GPS satellite clocks. This network is 
composed of twenty globally distributed high-precision 
hydrogen maser atomic clocks. Thanks to these excellent 
ground clocks, we are able to monitor the instantaneous 
satellite clock behaviors. Our result for all GPS satellites is 
within   ±1.4 ns with respect to the IGS result. Considering 
the fact that we use 20 stations while IGS uses hundreds of 
stations, it is satisfying that our result is just slightly noisier 
than the IGS result overall. An advantage of this architec-
ture is that it is expected to be orders of magnitude faster 
than if hundreds of stations were used. In the era of a rapid 
expansion of GNSS constellations and a great emphasis 



	 GPS Solutions (2021) 25:106

1 3

106  Page 8 of 10

on real-time satellite orbits and clocks, this feature is par-
ticularly favorable. In the future, we want to include more 
geophysical effects (e.g., pole tides) to further improve our 
result. Also, we plan to extend this work to multi-GNSS. In 
addition, it is worth exploring the feasibility of using this 
atomic clock network architecture to observe both clocks 
and orbits of GNSS satellites, which could potentially offer 
two benefits for the real-time high-precision satellite orbit 
and clock determination, i.e., significantly reducing the 
number of maintained stations and achieving much faster 
computation.

Appendix

Appendix A: performance of our method 
at day boundaries

When comparing ground high-precision atomic clocks using 
GPS carrier phase, such as hydrogen masers, the day bound-
ary discontinuity at the level of 100 – 200 ps often occurs 
because the GPS data are processed on a daily basis which 
results in different estimations of phase ambiguities between 
two consecutive days (Yao and Levine 2012). This discon-
tinuity problem becomes less serious for the satellite clock 
estimation since the noise of GPS satellite clocks obscures it.

Thanks to the forward-only processing in our method, 
we can avoid the discontinuity at day boundaries, as shown 
by Fig. 8. Remember that PTBB and OPMT (see the map 
in Fig. 1) are receivers referencing to external UTC(k). The 

bias of ~ 215.5 ns between the two receivers is caused by 
the time delays from cables connecting to receivers. We can 
see that there are six obvious day boundary discontinuities 
(i.e., at time tags of 1.0, 2.0, 3.0, 5.0, 6.0, and 9.0) in the 
IGS result. In contrast, our result exhibits no day boundary 
discontinuities. We also want to mention that the blue curve 
and the red curve have pattern similarities (e.g., both curves 
have a dent at 2.5 d and a spike at 4.1 d), which indicates 
that our method is able to observe the behavior of UTC(k). 
Admittedly, our result is noisier than the IGS result, consist-
ent with what we have found in Fig. 7.

Appendix B: satellite clock estimation using 
20 receivers without external atomic clocks

In this appendix, we investigate the satellite clock estima-
tion performance using 20 receivers without external atomic 
clocks (for the sake of simplicity, we call these receivers 
“plain receivers”), instead of using 20 receivers with exter-
nal hydrogen masers discussed in the body text. A plain 
receiver typically has its internal quartz clock disciplined 
to the GPS system time with an accuracy of a few nano-
seconds (Misra 1996). To make a fair comparison between 
the disciplined quartz clock network and the atomic clock 
network, the distribution of the 20 plain receivers is nearly 
the same as the distribution shown in Fig. 1. To be spe-
cific, these plain receivers are VALD, BLYT, WILL, BAKE, 
SCH2, HNLC, BRAZ, FALK, ZAMB, RABT, VIS0, QAQ1, 
GRAZ, MOBN, POL2, YSSK, SHAO, PIMO, MRO1, and 
MOBS. We use the same algorithm described in Section 
“Method of Computing Satellite Clocks” to process the GPS 
data. The noise parameters for receiver clocks in the Kalman 
filter are adjusted accordingly.

An intuitive impression of the disciplined quartz clock 
network is that this network cannot accurately estimate sat-
ellite clocks since these quartz clocks are orders of mag-
nitude noisier than satellite clocks. The quartz clocks are 
disciplined to the GPS system time formed by satellite 
clocks, and thus, lack of independence. As a commonsense, 
it is impossible to evaluate a standard using a device cali-
brated by this standard. However, for our case, the function 
of the disciplined quartz clock network is not to evaluate 
the satellite clocks directly but to establish links between 
satellite clocks. One satellite can be linked to other satellites 
via receivers. In other words, satellite clocks are monitor-
ing each other with the help of this disciplined quartz clock 
network. Therefore, this network, though receiver clocks are 
noisy, still enables the estimation of satellite clocks. Nev-
ertheless, the performance of this disciplined quart clock 
network is expected to be inferior to that of the atomic clock 
network because of the following reasons. First, considering 
the disciplined quartz clocks have little weights, the number 

Fig. 8   Performance of our method at day boundaries. The time period 
ranges from MJD 58244.0 to MJD 58254.0. PTBB and OPMT (see 
Fig. 1) are receivers at NMIs
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of effective clocks becomes 32 (i.e., the number of satellite 
clocks). In contrast, the number of effective clocks in the 
atomic clock network method is 32 + 20 = 52 (note: 20 is 
the number of receivers). Therefore, the disciplined quartz 
clock network method is not as robust as the atomic clock 
network method. More importantly, whenever we need to 
re-estimate the phase ambiguity, such as at the occurrence 
of cycle slips, the rise of a satellite, or measurement outli-
ers, the uncertainty of the phase-ambiguity estimation in the 
atomic clock network method is only a few centimeters, as 
mentioned in the section on Method of Computing Satellite 
Clocks. However, this small uncertainty does not apply to 
the disciplined quartz clock network method, because the Δti 
uncertainty in (5) becomes as large as a few nanoseconds. 
Therefore, the uncertainty of the phase-ambiguity estimation 
shall be at the level of 1 meter, much larger than that in the 
atomic clock network method. Since phase ambiguity cor-
relates with clocks, this large phase-ambiguity uncertainty 
makes satellite clock estimation susceptible. In addition, the 
atomic clock network method can easily identify the meas-
urement anomalies and then remove/de-weight the measure-
ments, while the disciplined quartz clock network method 
can hardly identify those anomalies that are below the noise 
of the disciplined quartz clock.

The black curves in Fig. 9 show our result using the 
disciplined quartz clock network. We can see that the fre-
quency stability of IIR Rb clocks, IIR-M Rb clocks, and IIF 
Rb clocks is approximately 60% noisier than if the atomic 
clock network was used, for an averaging time of 1000 
sec – 12 hours. This is consistent with the above analysis 
that we are able to observe the satellite clocks using disci-
plined quartz clocks, but not as good as using high-precision 
atomic clocks. As for the frequency stability of IIF Cs clocks 
(Fig. 9(d)), the black and blue curves are nearly the same. 
This can be understood by the fact that the IIF Cs clocks 
are among the noisiest clocks in the GPS constellation. The 
advantages brought by the atomic clock network, as dis-
cussed in the previous paragraph, are obscured by the noise 
of IIF Cs clocks.

Data availability  The datasets generated during this study are available 
from the corresponding author upon request.

References

Coleman M, Beard R (2020) Autonomous clock ensemble algorithm 
for GNSS applications. Navigation 67:333–346

Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS 
software version 5.0. Astronomical Institute, University of Bern, 
Bern, page 144.

Griffiths J, Ray J (2009) On the precision and accuracy of IGS orbits. 
J Geodesy 83:277–287

Fig. 9   Comparison between our result using disciplined quartz clocks 
(black curves) and our result using hydrogen masers (blue curves). The 
blue and red curves are the same as those in Fig. 7



	 GPS Solutions (2021) 25:106

1 3

106  Page 10 of 10

Hugentobler U, et al (2002) CODE IGS analysis center technical report 
2002. IGS Technical Reports, 43-52.

Johnston G, Riddell A, Hausler G (2017) The International GNSS ser-
vice Springer handbook of global navigation satellite systems. 
springer handbooks. Springer

Kouba J (2009) A guide to using international GNSS service (IGS) 
products. Geodetic Survey Division, Natural Resources Canada. 
http://​igscb.​jpl.​nasa.​gov/​igscb/​resou​rce/​pubs/​Using​IGSPr​oduct​
sVer21.​pdf

Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier 
beat phase data from the CASA UNO experiment. Geophys Res 
Lett 17(5):651–654

McGrew W et al (2019) Towards the optical second: verifying optical 
clocks at the SI limit. Optica 6:448–454

Misra PN (1996) The role of the clock in a GPSreceiver. GPS World, 
7(4):60–66

Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild 
A (2012) Apparent clock variations of the Block IIF-1 (SVN62) 
GPS satellite. GPS Solut 16:303–313

Senior K, Rayk J, Beard R (2008) Characterization of periodic varia-
tions in the GPS satellite clocks. GPS Solut 12:211–225

Strandjord K, Axelrad P (2018) Improved prediction of GPS satellite 
clock sub-daily variations based on daily repeat. GPS Solut 22:58

Yao J (2014) Continuous GPS carrier-phase time transfer. University 
of Colorado at Boulder, Dissertation.

Yao J, Levine J (2012) GPS carrier-phase time transfer boundary dis-
continuity investigation. Proc. 44th Annual Precise Time and 
Time Interval Systems and Applications (PTTI) Meeting, Reston, 
Virginia, 317–326.

Yao J et al (2019) Optical-clock-based time scale. Phys Rev Appl 
12:044069

Yoon S, Saleh J, Heck J, Choi K, Hilla S, Schenewerk M (2017) NGS 
analysis center technical report 2017. IGS Technical Reports, 
90-92.

Zumberge J, Hefflin MB, Jefferson DC, Watkins MM, Webb FH (1997) 
Precise point positioning for the efficient and robust analysis of 
GPS data from large networks. J. Geophys. Res. 102:5005–5017

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Jian Yao  received his Ph.D. degree in physics from the University of 
Colorado at Boulder in 2014. He later joined U.S. National Institute 
of Standards and Technology (NIST) where he worked on GP time 
transfer and timescale architecture. During 2018–2020, He conducted 
research on the GPS/GNSS positioning, navigation and timing at the 
U.S. National Geodetic Survey (NGS). He is currently with the NIST 
Time Realization and Distribution group.

Sungpil Yoon  received a Ph.D. degree in Aerospace Engineering from 
Auburn University in 1999. He worked on orbit determination of LEO 
satellites and deep space spacecraft before he joined NOAA′s National 
Geodetic Survey (NGS) in 2015. At NGS, he processed GPS data from 
the national and global network of continuously operating reference 
stations contributing to the International Terrestrial Reference System 
(ITRF) and National Spatial Reference System (NSRS. Since 2020, he 
is with the Amazon Project Kuiper.

Bryan Stressler  earned a Master′s degree in Geophysics from the Uni-
versity of Iowa in 2017. He later joined NOAA′s National Geodetic 
Survey (NGS) where he has been working on research and development 
for the next-generation multi-GNSS processing software suite.

Steve Hilla   joined NOAA′s National Geodetic Survey (NGS) in 1986 
and has been involved with GPS processing and GPS/GNSS software 
development for over 30 years. He is the editor of The GPS Toolbox 
column in the journal GPS Solutions, which highlights algorithms and 
shareware developed for GNSS applications.

Mark Schenewerk  joined the National Geodetic Survey in 1987 where 
he began developing GPS high-accuracy processing software. Current 
activities include development of the next generation GNSS processing 
software and supporting the OPUS suite.

http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf
http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

	GPS satellite clock estimation using global atomic clock network
	Abstract
	Introduction
	Method of computing satellite clocks
	Results
	Discussions
	Conclusions and future work
	References




