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Abstract
In order to improve the interoperability within the Global Navigation Satellite System (GNSS), the International Committee 
on Global Navigation Satellite Systems published a joint statement in December 2019 that stated that all GNSS providers 
agree to monitor and broadcast the time offsets between each system timescale and the Universal Time Coordinated (UTC) 
or the rapid realization of UTC (UTCr). This commitment requires the study of precise prediction models for system time 
offsets. The prediction model of system time offsets is different from that of the atomic clock because of the control of the 
system timescale. The offsets between the system time of the Beidou Satellite Navigation System-3 (BDS-3) and the National 
Time Service Center (NTSC), called [UTC(NTSC)-BDT], have two main periods of 12 h and 24 h, according to the Fast 
Fourier Transform analysis. The rescaled range (R/S) analysis demonstrates that it has long memory, making it a fractal time 
series with a memory period of about 10.4 h. While using the fractal interpolation method to predict the [UTC(NTSC)-BDT] 
series, we found that the prediction error reaches its minimum value if adding disturbance on the estimated endpoint of the 
forecasted interval. After verifying the correlation between the estimated endpoints with the minimal interpolation error and 
minimal prediction error and proving the existence and uniqueness of the estimated endpoint with the minimal interpolation 
error, we established the endpoint-based optimal fractal interpolation prediction method. The experimental results indicate 
that the average prediction accuracy of the proposed prediction model is improved by 57.90% and 39.26% compared to 
that of a quadratic model and standard fractal prediction model, respectively. The accuracy analysis results of numerical 
tests indicate that the proposed prediction model can restrain the divergence of prediction error. Finally, we transform the 
[UTC(NTSC)-BDT] into [UTCr -BDT] using the [UTCr-UTC(NTSC)] published by the Bureau International des Poids et 
Mesures (BIPM) to meet the requirement of GNSS interoperability. The prediction accuracies of daily [UTCr-BDT] using 
the proposed prediction model are no more than 1.5 ns with uncertainty about 6 ns.
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Introduction

Compatibility and interoperability are main principles in the 
BeiDou Navigation Satellite System (BDS) construction and 
development. The BDS will enhance the compatibility and 
interoperability with other navigation satellite systems to 
provide global positioning, navigation and timing services 

(Yang et al. 2011). The time offsets among multi-systems 
is a key component of the Global Navigation Satellite Sys-
tem (GNSS) compatibility and interoperability (Yang et al. 
2016). It is also the most important content of GNSS inter-
operability parameters (Han et al. 2013). Monitoring and 
forecasting the system time offsets will be important for real-
izing the GNSS interoperability. For this reason, the Bureau 
International des Poids et Mesures (BIPM), i.e., the Inter-
national Bureau of Weights and Measures, is broadcasting 
monitored results of daily time offsets for GPS and GLO-
NASS every month; and it will broadcast the time offsets of 
Galileo positioning system and BDS in the near future (ICG 
Secretariat 2019).

Monitoring the system time offsets alone does not 
meet the user requirement; prediction of time offsets is 
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necessary for multi-system user applications (Han et al. 
2017). Research on the prediction model of system time 
offsets is a prerequisite for realizing GNSS interoperability. 
Presently, the common time offsets prediction methods are 
mainly based on a polynomial model, and the prediction 
accuracy is improved through various modification models. 
Examples include the Grey Model (GM) combined polyno-
mial model (Zhang et al. 2014a), autoregressive combined 
polynomial model with periodic terms (Fu et al. 2015), and 
Kalman filter to estimate the polynomial coefficients (Zhu 
et al. 2016). Recently, fractal theory was applied to GNSS 
time offsets prediction. After the fractal behavior of GNSS 
time offsets was proven, Han et al. (2018) used the fractal 
interpolation model to predict GNSS time offsets. A frac-
tal series is defined as having self-similarity on different 
scales; this long-term memory is the basis of our mathemati-
cal approach. This is the first time the fractal theory was 
used to discuss the prediction method of GNSS time offsets. 
However, further ways to improve prediction accuracy using 
this method are yet to be discovered.

The main purpose of this research is to discuss the princi-
ples and methods to improve the forecast precision of GNSS 
time offsets using a fractal prediction model. The study 
object of this study is the time offsets between the BDS time 
(BDT) and the Universal Time Coordinated (UTC), which 
is provided by the National Time Service Center (NTSC) of 
China. A spectral analysis was conducted that showed the 
[UTC(NTSC)-BDT] time series has two significant cycle 
terms. The main period is 12 h, and the second period is 
24 h. The rescaled range (R/S) analysis result showed that 
the [UTC(NTSC)-BDT] time series has obvious fractal char-
acteristics and long-term memory, with a memory span of 
about 10.4 h. When repeating the prediction algorithm pro-
posed in Han et al. (2018), we found the endpoint estimation 
effects on the prediction accuracy. The prediction error met 
its minimum value when a small disturbance was added to 
the estimated endpoint. This phenomenon sparked our inter-
est. In order to find the estimated endpoint for this minimal 
prediction error, the following two steps were considered in 
this work. The first step was to verify the correlation between 
the estimated endpoint corresponding to the minimum inter-
polation error and that corresponding to the minimum pre-
diction error. The second step was to prove the existence and 
uniqueness of the estimated endpoint corresponding to the 
minimum interpolation error. Based on these two steps, we 
first calculated the endpoint corresponding to the minimum 
interpolation error, and then estimated the endpoint corre-
sponding to the minimum prediction error according to the 
correlation between the two estimated endpoints. Then, the 
endpoint based optimal fractal interpolation model for BDS 
system time offsets prediction can be found.

BDS time offsets analysis

BDT is not directly aligned with UTC. It aligns with 
UTC(NTSC), which aligns with UTC (Yang et al. 2019). 
The NTSC monitors the time offsets between BDT and 
UTC(NTSC) (denote as [UTC(NTSC)-BDT]) (Zhang et al. 
2014b; Guang et al. 2018). The [UTC(NTSC)-BDT] time 
series observed at the NTSC is shown in Fig. 1.

The blue curve shown in Fig. 1 is the [UTC(NTSC)-BDT] 
time series. The data sampling period is 16 min, and there 
are 90 observations per day. The uncertainties of the BDT 
offsets range from 0.075 to 0.48 ns, calculated by day; and 
the uncertainty of this series is about 4.59 ns.

Periodic term detection

The relationship between the reference timescale and GNSS 
tine (GNSST) can always be described as a quadratic poly-
nomial (Wu 2011). The BDS time offsets monitored by the 
NTSC are calculated by day. Thus, the [UTC(NTSC)-BDT] 
within each day is described as the quadratic polynomial 
(Gao et al. 2011):

The parameters (ai, i = 0, 1, 2) are the time offset, fre-
quency offset, and frequency. t0 is the reference epoch of the 
time offsets model, ti is the observation epoch, and x(t) is the 
time offsets observation. Δi denotes the model residual. The 
quadratic residual of [UTC(NTSC)-BDT] is shown as Fig. 2 
(top), which is calculated by day. The main purpose in this 
section is to detect the periodic term rather than quadratic 
coefficient estimation; therefore the post-processed method 
is employed. The quadratic parameters of future data should 
be estimated via the known data in real-time applications.

(1)x(t) = a0 + a1(ti − t0) + a2(ti − t0)
2 + Δi

Fig. 1   BDS system time offsets data from MJD 58,545 to 58,559 
(half month). The error bar reflect the daily average of [UTC(NTSC)-
BDT] 1-sigma bars. The [UTC(NTSC)-BDT] comes from NTSC 
monitoring results
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In Fig. 2 (bottom), the periodic phenomena of the fitting 
residual are obvious. In order to detect the periodic terms of 
[UTC(NTSC)-BDT] based on the given data, the Fast Fou-
rier Transform algorithm was used, and the analysis result 
is shown in Fig. 3. Meanwhile, it is noticeable that two of 
the days in the analysis have different phases and amplitudes 
compared to all of the others. They are the last two days. 
After review, the main reason for the two days of different 
phases and amplitudes is that one satellite for the time com-
paring was lost lock from March 16, 2019, i.e., MJD 58,558. 
Thus, there is more noise in the last two days of data since 
lack of data from one satellite, but the periodic term did not 
change in frequency.

From the top panel of Fig.  3, it can be seen that 
there are two significant and special periodic terms in 

[UTC(NTSC)-BDT], the main period is about 12 h and the 
second period is around 24 h. In the lower panel of Fig. 3, it 
can be seen that the periodic terms in the first 13 days are the 
same to what in the last two days. Furthermore, the increased 
amplitude in the last two days indicates that the lack of 
observations makes the observation noise increased. Since 
these periodic terms are similar to not only the orbital period 
of BDS satellites, but also the period of multipath effects of 
signals from the BDS GEO/IGSO satellites. This indicates 
that the [UTC(NTSC)-BDT] time series discussed here con-
tains periodic noise caused by BDS satellites orbit and the 
multipath effects. The purpose of this paper is to discuss the 
possibility of using fractal method to predict GNSS time off-
sets and the mathematical techniques to improve the predic-
tion accuracy, we are concerned only with the mathematical 
aspects of the analysis, and the physical significances of the 
results are outside of the scope of the discussion. In order to 
obtain the pure time offsets, the [UTC(NTSC)-BDT] time 
offsets model can be presented as (Huang et al. 2014):

where Aj , fj and �j are the amplitude, frequency, and phase 
of the time offsets period in the j th of n periods, respec-
tively. The fitting residual of [UTC(NTSC)-BDT] with two 
significant periodic terms is shown in Fig. 4; and the val-
ues of the fitted parameters with their uncertainties and the 
residuals are shown in Table 1 and Fig. 5.

Comparing Figs. 2 and 4, it can be seen that the fitting 
residual after adding two periodic terms is more stable than 
using the quadratic model alone. The accuracy of the fit is 
significantly improved as evidenced from a reduced RMS of 
0.1509 ns to 0.0633 ns. This improvement also verifies the 
existence of the periodic term in the [UTC(NTSC)-BDT] 
time series.

(2)

x(t) =a
0
+ a

1
(ti − t

0
) + a

2
(ti − t

0
)2

+

n
∑

j=1

Aj sin[2�fj(ti − t
0
) + �j] + Δi

Fig. 2   Fitting [UTC(NTSC)-BDT] using quadratic model. Top: resid-
ual series of half month. Bottom: sum of each day’s fitted 12 and 24-h 
curves to the residuals of fit

Fig. 3   Frequency analysis of the [UTC(NTSC)-BDT]. The main 
period is about 12 h, and the second period is about 24 h

Fig. 4   Fitting residual of the [UTC(NTSC)-BDT] quadratic model 
with two periodic terms
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Long memory of BDS time offsets

While analyzing the fractal behavior of [UTC-GPST] and 
[UTC-GLOT], Han et al. (2018) supposed that the fractal 
behavior may be universal in GNSS time offsets. A long 
memory of time series means that there is a type of per-
sistence or long-term range dependence in the fluctuation 
of time series; that is, there is a significant autocorrelation 
between the former data and the current data in a fractal time 
series. The former data will have a continuous impact on the 
fluctuation of the current data, which gives the time series 
certain predictability. The R/S analysis was first proposed by 
Hurst (1951). The Hurst exponent H is a criterion to identify 
this systematic nonrandom feature. The calculation process 
is as follows:

(1)	 Separate a time offsets time series {xi} with length N 
into M continuous subsequences of length n . Denote 
each subsequence as Im , m = 1, 2,⋯ ,M . Then, each 
element in Im is denoted as xk,m , k = 1, 2,⋯ , n and 
m = 1, 2,⋯ ,M.

(2)	 Compute the mean value em and the cumulative mean 
deviation xk,m of every subsequence Im:

(3)em =
1

n

n
∑

k=1

xk,m

Table 1   Values of the fitted parameters with their uncertainties and the residuals of [UTC(NTSC)-BDT] using Eqs. (1) and (2)

MJD Quadratic model Quadratic model + periodic terms

Value ± uncertainty Residual Value ± uncertainty Residual

a0 a1 a2 (10−3) rms (ns) A1 A2 rms (ns)

58,545 66.69 ± 0.09  − 0.134 ± 0.018 4.492 ± 0.712 0.143 0.086 ± 0.033 0.128 ± 0.033 0.073
58,546 65.66 ± 0.03  − 0.063 ± 0.007 3.308 ± 0.260 0.052 0.017 ± 0.017 0.044 ± 0.017 0.037
58,547 65.86 ± 0.05  − 0.170 ± 0.011 5.728 ± 0.442 0.089 0.083 ± 0.028 0.037 ± 0.0282 0.063
58,548 64.59 ± 0.05  − 0.167 ± 0.010 8.295 ± 0.399 0.080 0.027 ± 0.025 0.070 ± 0.025 0.056
58,549 65.22 ± 0.02  − 0.045 ± 0.004 3.689 ± 0.160 0.032 0.029 ± 0.010 0.005 ± 0.011 0.024
58,550 66.32 ± 0.04  − 0.114 ± 0.007 4.093 ± 0.292 0.059 0.076 ± 0.010 0.010 ± 0.010 0.022
58,551 65.91 ± 0.04  − 0.243 ± 0.008 8.800 ± 0.329 0.066 0.060 ± 0.018 0.034 ± 0.018 0.040
58,552 64.97 ± 0.02  − 0.161 ± 0.004 5.067 ± 0.170 0.034 0.021 ± 0.012 0.017 ± 0.012 0.027
58,553 63.73 ± 0.05  − 0.033 ± 0.010 3.923 ± 0.384 0.077 0.049 ± 0.020 0.067 ± 0.020 0.045
58,554 64.92 ± 0.07  − 0.050 ± 0.013 3.917 ± 0.527 0.106 0.099 ± 0.014 0.078 ± 0.014 0.031
58,555 65.58 ± 0.04 0.020 ± 0.007  − 0.954 ± 0.295 0.060 0.031 ± 0.020 0.045 ± 0.020 0.044
58,556 65.42 ± 0.07  − 0.106 ± 0.014 6.231 ± 0.564 0.115 0.130 ± 0.021 0.052 ± 0.021 0.047
58,557 66.03 ± 0.07  − 0.067 ± 0.014 5.174 ± 0.545 0.110 0.110 ± 0.019 0.071 ± 0.019 0.042
58,558 67.51 ± 0.10  − 0.206 ± 0.019 7.191 ± 0.768 0.420 0.315 ± 0.067 0.368 ± 0.067 0.151
58,559 66.97 ± 0.10  − 0.048 ± 0.020  − 0.485 ± 0.779 0.311 0.245 ± 0.048 0.260 ± 0.048 0.108

Fig. 5   Uncertainties fitted parameters and the fitting residual. Top: 
the uncertainties of five fitted parameters of equation (2) in each day. 
Middle: the phases of the first two main periodic terms. Bottom: the 
fitting residual of [UTC(NTSC)-BDT] using quadratic model and 
quadratic model with two periodic terms respectively
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(3)	 According to (4), the mean value of a cumulative mean 
deviation series {X1,m,X2,m,⋯ ,Xn,m} is zero. Define the 
range of subsequences Im as:

(4)	 Compute the standard deviation SIm and rescale/stand-
ardize it as RIm

/

SIm:

(5)	 The mean rescaled range of the M subsequence Im with 
length n is:

(6)	 Repeat the above steps with a different divided length 
(i.e. the different time scale) n ; more mean rescaled 
range values can be obtained. There is a power-law 
relationship between n and (R∕S)n:

	   Alternatively, we can say there is linear relationship 
between log (R∕S)n and log n:

(7)	 Use the double logarithm regression for n and (R∕S)n . 
The slope is the long-range correlation parameter, the 
so-called Hurst exponent H . Furthermore, the long-
range correlation parameter H of the time offsets can 
be estimated using the least square method.

The Hurst exponent can not only distinguish fractal time 
series from random time series, but also determine the per-
sistence or anti-persistence of a fractal time series. A time 
series with H = 0.5 is a random sequence. A time series with 
a Hurst exponent in the range (0.5, 1) is a long-memory time 

(4)Xk,m =

k
∑

i=1

(xi,m − em), k = 1, 2,⋯ , n

(5)RIm
= max(Xk,m) −min(Xk,m), k = 1, 2,⋯ , n

(6)SIm =

√

√

√

√

1

n

n
∑

k=1

(xk,m − em)
2

(7)(R∕S)n =
1

M

M
∑

m=1

(

RIm

/

SIm

)

(8)(R∕S)n = c ⋅ nH

(9)log (R∕S)n = c + H log n

series. It means that if an element is bigger (smaller) than 
the previous one, the next element will probably be bigger 
(smaller) than this element. The closer the Hurst exponent 
is to 1, the more likely this is. Otherwise, a time series is an 
anti-persistence sequence when 0 < H < 0.5 . It means that if 
an element is bigger (smaller) than the previous one, the next 
element will probably be smaller (bigger) than this element. 
The closer the Hurst exponent is to 0, the more likely this is.

However, for any long-memory time series, its long-term 
correlation is not endless, but has an average length called 
the memory span. The correlation between two elements in 
a long-memory time series will be significantly weakened 
when the time interval between them exceeds this memory 
span. That is to say, for a long-memory time series, when 
the length of the subsequence is sufficiently long, H will 
be less than 0.5. In this case, the subsequence length n0 , 
which makes H = 0.5 , is known as the memory span. The 
memory span n0 is estimated by constructing the V  statistic 
as follows:

Substitute equation (8) into (10) and take a derivative 
with respect to n:

Then, dV∕dn = 0 if H = 0.5 , i.e. the V  statistic curve 
meets the extreme point at n0 . The R/S analysis result and 
V  statistic curve of the [UTC(NTSC)-BDT] are shown in 
Fig. 6.

As shown in Fig.  6 (right), the V statistic curve 
of [UTC(NTSC)-BDT] meets its extreme point at 
ln n0 = 2.3418 , and the corresponding memory span is:

The curve of log (R∕S)n versus log n and the fitted lines 
of the log (R∕S)n − log n curve before and after the memory-
span are shown in Fig. 6 (left). The two fitted lines are:

(10)V =
(R∕S)n
√

n

(11)dV

dn
=

d
(

c ⋅ nH−0.5
)

dn
= c(H − 0.5)nH−1.5

(12)n0 = exp
(

ln n0
)

= 10.4 h

Fig. 6   Rescaled range analysis 
result (left) and V statistic curve 
(right) of [UTC(NTSC)-BDT]
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When n ≤ 10.4 h, the Hurst exponent of [UTC(NTSC)-
BDT] is 0.89 > 0.5, and the BDS time offsets series shows 
strong long memory. When n > 10.4 h, the Hurst exponent 
is 0.33 < 0.5, thereby indicating that the [UTC(NTSC)-BDT] 
series shows anti-persistence. The R/S analysis results above 
show that the [UTC(NTSC)-BDT] series is a fractal time 
series with long memory, and it is feasible to use fractal 
theory to study the prediction method.

Fractal prediction of BDS time offsets

The basic principle of fractal interpolation prediction is to 
construct an iterative function system by the given fractal 
set, then extend its domain in time, so that the extended iter-
ative function system can inherit the fractal characteristics 
of the original fractal set. In a given fractal interpolation set 
{(ti, xi) ∈ R

2
|i = 0, 1, 2,⋯ ,N} ( ti < tj when i < j ), the curve 

of the fractal interpolation function Γ ∶ [t0, tN] → R passes 
through all the points of this fractal set. This curve is the 
attractor of an iterative function system generated by affine 
transformations.

The model

The following affine transformation �i ∶ [t0, tN] × R → R is 
frequently applied to generate the affine iterative function 
system {R2; �i, i = 1, 2,⋯ ,N}:

It satisfies �i(t0, x0) = (ti−1, xi−1) and �i(tN , xN) = (ti, xi) , 
when

The parameters are calculated as follows:

The free parameters �i∈ (−1, 1) are called the vertical 
scaling factors, which can be obtained using an analytic 

(13)ln (R∕S)n =

{

0.89 ln n − 0.63, n ≤ 10.4 h

0.33 ln n + 1.43, n > 10.4 h

(14)�i(t, x) =
(

Li(t),Fi(t, x)
)

(15)

{

Li(t) = ait + ei

Fi(t, x) = cit + �ix + fi = �i(t) + �ix

(16)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ai =
ti − ti−1

tN − t0

ei =
tNti−1 − t0ti

tN − t0

ci =
xi − xi−1 − �i(xN − x0)

tN − t0

fi =
tNxi−1 − t0xi − �i(tNx0 − t0xN)

tN − t0

method (Mazel and Hayes (1992) or a geometric method 
(Han et al. 2018). To extend the iterative function system, 
we define �N+1 as:

and the parameters are:

After extending the fractal interpolation function Γ to the 
interval [t0, tN+1] using �N+1 ∶ [tN , tN+1] × R → R , the fore-
casted time offsets in [tN , tN+1] can be obtained. The vertical 
scaling factors �N+1 in [tN , tN+1] and the estimated X̂N+1 at 
tN+1 can be calculated according to Han et al. (2018).

Numerical example and discussion

Using the previous [UTC(NTSC)-BDT] time series as the 
observation, the prediction lengths are 1 h, 3 h, 6 h, and 
12 h. The prediction results of [UTC(NTSC)-BDT] using the 
fractal prediction method in Han et al. (2018) are shown in 
Fig. 7, and the prediction accuracies can be found in Table 2.

In the prediction process, we found that the prediction 
accuracy changes when adding a small disturbance Δx on 
x̂N+1 ; and there is a minimal prediction residual during this 
change, as shown in Fig. 8.

The phenomenon shown in Fig. 8 is of great importance 
to us. It shows that it is possible to improve the prediction 
accuracy by changing the value of x̂N+1 . Although we can get 
the prediction error in the numerical experiment, we cannot 
obtain the prediction error in the actual applications. Thus, 
our discussion will focus on how to use known conditions 
to estimate the disturbance of the endpoint, which corre-
sponds to the optimal (suboptimal) prediction accuracy. In 
order to solve this problem, two questions are posed here: 
first, whether there is a correlation between Δx for the opti-
mal prediction error and Δx� for the optimal interpolation 

(17)

�N+1(t, x) =

(

LN+1(t)

FN+1(t, x)

)T

=

(

aN+1t + eN+1

cN+1t + �N+1x + fN+1

)T

=

(

aN+1t + eN+1

�N+1(t) + �N+1x

)T

(18)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

aN+1 =
tN+1 − tN

tN+1 − t0

eN+1 =
tN+1tN − t0tN+1

tN+1 − t0

cN+1 =
x̂N+1 − xN − 𝜇N+1(x̂N+1 − x0)

tN+1 − t0

fN+1 =
tN+1xN − t0x̂N+1 − 𝜇N+1(tN+1x0 − t0x̂N+1)

tN+1 − t0
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error; second, whether there is a unique optimal solution 
for the interpolation error when the endpoint disturbance 
Δx� changes.

Endpoint‑based optimal fractal 
interpolation prediction method

The two questions proposed in the previous section are 
the key to improve the fractal prediction accuracy. The 
answer to question one is helpful for us to estimate the 

optimal prediction error by interpolating points defined 
by the given time offsets series. The answer to question 
two will help us to calculate the endpoint disturbance Δx� 
of the optimal interpolation error. There is a close rela-
tionship between these two questions. If their answers are 
both positive, then the prediction accuracy can be further 
improved.

A correlation between endpoint disturbances for the mini-
mal error of prediction and interpolation indicates that when 
the interpolation error in interval [t0, tN] is at a minimum 
value, the endpoint disturbance at x̂N+1 is Δx� . Consider Δx 
as the endpoint disturbance at x̂N+1 of the minimum pre-
diction error in interval [tN , tN+1] . First, we will calculate 
Δx and Δx� when the prediction length is 1 h, 3 h, 6 h, and 
12 h. Then, correlation analysis and linear regression will 
be performed.

Figure 9 shows that the four Pearson correlation coeffi-
cients are greater than 0.6; this indicates a strong connection 
between disturbances Δx� and Δx . Notably, for the 12 h pre-
diction, a 0.85 correlation coefficient shows a strong uphill 
(positive) linear relationship between the two disturbances.

Figure 10 shows scatter plots of Δx� verse Δx . The fitted 
line of the two endpoint disturbances shows that there is a 
linear relationship between them, and the regression equa-
tions are:

(19)Δx� =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1.08Δx + 0.01, 1 h;

0.99Δx + 0.02, 3 h;

0.80Δx + 0.08, 6 h;

0.53Δx + 0.16, 12 h.

Fig. 7   Prediction results of [UTC(NTSC)-BDT] shown as Fig.  1 
using the standard fractal interpolation prediction method. The fit-
ting lengths are more than 104 h, which is 10 times the memory span 
obtained by (12)

Fig. 8   Prediction residual curves of [UTC(NTSC)-BDT] when add-
ing disturbance ∆x on the estimated endpoint. Using the 1st, 3rd, 5th, 
7th and 9th prediction intervals as examples, the prediction length is 
12 h

Fig. 9   Pearson correlation coefficients between ∆x and ∆x’ in differ-
ent prediction lengths

Table 2   Prediction accuracies 
of [UTC(NTSC)-BDT] 
using the standard fractal 
interpolation prediction method 
in different prediction lengths

1 h 3 h 6 h 12 h

rms(ns)
0.036 0.124 0.312 0.473
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Thus, it is possible to estimate Δx with the value of the 
minimal interpolation endpoint disturbance Δx� . Moreover, 
the estimated endpoint X̂N+1 will be corrected.

Existence and uniqueness of estimated endpoint 
for minimal interpolation error

The next question is whether the minimum interpolation 
error exists and is solvable and whether the corresponding 
endpoint disturbance Δx� is unique. Discussing the end-
point disturbance Δx� and discussing the estimated endpoint 
x̃N+1 = x̂N+1 + Δx� are equivalent.

According to the definition of the fractal interpolation 
function, the Γ(t) curve passes through all the interpola-
tion points. So Γ(t) is formed by all the interpolation points 
in [t0, tN] . Consider the fractal interpolation function in 
[t0, tN+1] with the estimated endpoint x̃N+1 as Γ(t, x̃N+1) . In 
order to minimize the interpolation error caused by x̃N+1 , 
it is required that Γ(t, x̃N+1) − Γ(t) with ( t ∈ [t0, tN] ) be the 
minimum. We will take two iterations as an example. More 
detailed computing can be found in the appendix.

Fractal interpolation value

The initial point P0(t
∗, x∗) of the iterative function system 

is mapped into �i(P0) by mapping �i of [ti−1, ti] . Then, it is 
mapped into �j(�i(P0)) by mapping �j of [tj−1, tj] as shown 
in equations

and

When solving actual problems, the abscissa of point 
�j(�i(P0)) is generally taken as an integer, denoting it as 
P
i,j

0
 , we get:

where [⋅] is the rounding operation. For different i , the 
abscissa of Pi,j

0
 may be the same. Thus, the value of the inter-

polation result xjm will be the average of the Pi,j

0
 of those who 

have the same abscissa tm:

This equation will be used in calculating Γ(t,Δx�) − Γ(t) 
and assessing the prediction error. Next, we are going to 
calculate the bias between Γ(t,Δx�) and Γ(t).

Bias caused by endpoint disturbance

While forecasting the time offsets by fractal function exten-
sion, the initial point P0(t

∗, x∗) is mapped into �N+1(P0) in 
the interval [tN , tN+1] by �N+1 first. Then, it is mapped into 
�j(�N+1(P0)) in the interval [tj−1, tj] by �j . Like the calculat-
ing process above, the fractal interpolation value PN+1,j

0
 after 

a rounding operation is

The value of the interpolation result x̃jm in the prediction 
process is:

Thus, the interpolation bias between Γ(t, x̃N+1) and Γ(t) , 
denote as ΔΓ , is defined as:

(20)

�j

(

�i(t
∗
, x∗)

)

= �j

(

Li(t
∗),Fi(t

∗
, x∗)

)

=
(

Lj
(

Li(t
∗)
)

,Fj

(

Li(t
∗),Fi(t

∗
, x∗)

))

(21)

{

Lj
(

Li(t
∗)
)

= aj(ait
∗ + ei) + ej

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

= cj(ait
∗ + ei) + �j(cit

∗ + �ix
∗ + fi) + fj

(22)P
i,j

0
=
([

Lj
(

Li(t
∗)
)]

,Fj

(

Li(t
∗),Fi(t

∗, x∗)
))

= (tm, x
i.j
m
)

(23)xj
m
=

1

N

N
∑

i=1

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

(24)
P
N+1,j

0
=
([

Lj
(

LN+1(t
∗)
)]

,Fj

(

LN+1(t
∗),FN+1(t

∗, x∗)
))

= (tm, x
N+1.j
m

)

(25)x̃j
m
=

1

N + 1

N+1
∑

i=1

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

Fig. 10   Linear fit of endpoint disturbances for optimal prediction and 
interpolation error in different prediction lengths
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Next, we will prove the existence and uniqueness of the 
minimum value of the interpolation bias ΔΓ defined by (26) 
with respect to the estimated endpoint variable x̃N+1.

Proof of existence and uniqueness

First, denote the interpolation result in the prediction pro-
cess as:

Subtract (23) from (27) to obtain:

Because the last two terms inside the square brackets of 
the above equation does not contain x̃N+1 , we will calculate 
the first term inside the square brackets that contains x̃N+1 
to obtain:

(26)ΔΓ =

√

√

√

√

1

N

N
∑

j=1

(

x̃
j
m − x

j
m

)2

(27)

x̃j
m
=

1

N + 1

(

N
∑

i=1

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

+ Fj

(

LN+1(t
∗),FN+1(t

∗, x∗)
)

)

(28)

x̃j
m
− xj

m

=
(

1

N + 1
−

1

N

)

N
∑

i=1

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

+
1

N + 1
Fj

(

LN+1(t
∗),FN+1(t

∗, x∗)
)

=
1

N + 1

[

Fj

(

LN+1(t
∗),FN+1(t

∗, x∗)
)

−
1

N

N
∑

i=1

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

]

=
1

N + 1

[

𝜇jFN+1(t
∗, x∗) + 𝜙j

(

LN+1(t
∗)
)

−
1

N

N
∑

i=1

Fj

(

Li(t
∗),Fi(t

∗, x∗)
)

]

(29)

𝜇jFN+1(t
∗, x∗) = 𝜇j

(

cN+1t
∗ + 𝜇N+1x

∗ + fN+1
)

= 𝜇j

(

x̃N+1 − xN − 𝜇N+1(x̃N+1 − x0)

tN+1 − t0
t∗ + 𝜇N+1x

∗ +
tN+1xN − t0x̃N+1 − 𝜇N+1(tN+1x0 − t0x̃N+1)

tN+1 − t0

)

= 𝜇j

(

x̃N+1t
∗ − xNt

∗ − 𝜇N+1t
∗(x̃N+1 − x0) + tN+1xN − t0x̃N+1 − 𝜇N+1(tN+1x0 − t0x̃N+1)

tN+1 − t0
+ 𝜇N+1x

∗

)

= 𝜇j

(

x̃N+1
(

t∗ − 𝜇N+1t
∗ − t0 + 𝜇N+1t0

)

− xNt
∗ + 𝜇N+1t

∗x0 + tN+1xN − 𝜇N+1tN+1x0

tN+1 − t0
+ 𝜇N+1x

∗

)

= 𝜇j

(

x̃N+1(t
∗ − t0)(1 − 𝜇N+1) + (tN+1 − t∗)(xN − 𝜇N+1x0)

tN+1 − t0
+ 𝜇N+1x

∗

)

= 𝜇j𝜆(1 − 𝜇N+1)x̃N+1 + 𝜇j

(

(1 − 𝜆)(xN − 𝜇N+1x0) + 𝜇N+1x
∗
)

where � =
(

t∗ − t0
)/(

tN+1 − t0
)

 . Denote �j and �j as:

we have:

Then, the square of the interpolation bias ΔΓ is:

(30)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�j = �j�(1 − �N+1)

�j = �j

�

(1 − �)(xN − �N+1x0) + �N+1x
∗
�

+ �j

�

LN+1(t
∗)
�

−
1

N

N
�

i=1

Fj

�

Li(t
∗),Fi(t

∗, x∗)
�

(31)x̃j
m
− xj

m
=

𝛼jx̃N+1 + 𝛽j

N + 1
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Thus, (ΔΓ)2 meets the minimum value when

and so does ΔΓ . This completes the existence and unique-
ness proof.

Endpoint based optimal fractal prediction 
algorithm

According to the previous discussion, the optimization 
model is given as:

(32)

(ΔΓ)2 =
1

N

N
∑

j=1

(

𝛼jx̃N+1 + 𝛽j

N + 1

)2

=
1

N(N + 1)2

(

x̃2
N+1

N
∑

j=1

𝛼
2
j
+ 2x̃N+1

N
∑

j=1

𝛼j𝛽j +

N
∑

j=1

𝛽
2
j

)

(33)x̃N+1 = −

∑N

j=1
𝛼j𝛽j

∑N

j=1
𝛼
2
j

where the parameters �j and �j are defined as in (30). Then, 
the algorithm for computing the estimated endpoint for BDS 
time offsets by fractal prediction is obtained and its comput-
ing flow is shown in Fig. 11.

Figure 11 illustrates the processing diagram of the BDS 
time offsets prediction algorithm using endpoint-based opti-
mal fractal interpolation. Considering the current estimated 
endpoint for the minimal interpolation error and the end-
point estimation for the minimal prediction error, we divide 
this forecasting algorithm into two steps. The first step com-
putes the estimated endpoint x̃N+1 using (34) and obtains 
the disturbance Δx� of x̂N+1 according to Han et al. (2018). 
The second step computes the current endpoint disturbance 
estimation Δx using the current estimated Δx� and the lin-
ear relationship between the previous disturbance series 
{Δx�}k−1

1
 and {Δx}k−1

1
 . Thus, the estimated endpoint-based 

optimization model to predict BDS time offsets has been 
built. The prediction accuracy of this model will be verified 
in the following section by comparing it with the prediction 
residuals using other models. A more detailed computing 
process can be found in the appendix.

Numerical tests and prediction accuracy 
discussion

The prediction effect of the proposed algorithm will be 
tested by comparing its prediction error with that of the lin-
ear/quadratic model with two periodic terms and the stand-
ard fractal interpolation forecasting model (shown in Fig. 7). 
The prediction lengths are 1 h, 3 h, 6 h, and 12 h. After that, 
the [UTC(NTSC)-BDT] series will be transformed into the 
[UTCr-BDT] to meet the requirement of GNSS interoper-
ability; and the uncertainty of the corresponding prediction 
result is given.

Fitting length in the prediction process

When using the proposed algorithm or the standard frac-
tal model, the fitting length, i.e. the interpolation interval, 
can be determined according to the memory span of a time 
series; and it is always taken as an integer multiple of the 
memory span. In this study, the fitting length of forecasting 
for [UTC(NTSC)-BDT] is 10 times its memory span.

When using the linear/quadratic prediction model, the fit-
ting length of historical data affects the prediction accuracy 
directly (Vernotte et al. 2001). To verify the high precision 
of the proposed prediction model, we will choose the fit-
ting length of the linear/quadratic model that achieves the 

(34)

min ΔΓ(x̃N+1) =

√

N

N(N + 1)

�

�

�

�x̃2
N+1

N
�

j=1

𝛼
2
j
+ 2x̃N+1

N
�

j=1

𝛼j𝛽j +

N
�

j=1

𝛽
2
j

Fig. 11   Computing flow of the endpoint based optimal fractal predic-
tion algorithm
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minimal prediction error. Denote �(l) as the RMS of the 
prediction residual of fitting length l in the linear/quadratic 
model. The selected fitting length l0 satisfies:

The curves of �(l) versus l in the [UTC(NTSC)-BDT] 
linear/quadratic prediction model over different prediction 

(35)�(l0) = min{�(l)}

lengths are shown in Fig. 12. Using these fitting lengths 
to predict the [UTC(NTSC)-BDT] with a linear/quadratic 
model and adding two periodic terms, the prediction results 
are shown in Fig. 13. The divergence of prediction error is 
clearly seen in the figure, especially in long-term prediction 
situations.

Fig. 12   Curves of prediction error of [UTC(NTSC)-BDT] quadratic 
model prediction with different fitting lengths. Top: Prediction error 
curves of linear model. Bottom: Prediction error curves of quadratic 
model

Fig. 13   Prediction results of [UTC(NTSC)-BDT] using the linear/
quadratic model with two periodic terms added. Top: Prediction 
results of linear model. Bottom: Prediction results of quadratic model

Fig. 14   Prediction results of [UTC(NTSC)-BDT] using the endpoint 
based optimal fractal interpolation prediction model; forecast spans 
are 1 h, 3 h, 6 h, and 12 h; fitting lengths of each forecast span are 
longer than 104 h, which is 10 times of the memory span calculated 
by (12)

Table 3   Selected fitting lengths and the corresponding prediction 
error of [UTC(NTSC)-BDT] forecasting using the different models 
with two periodic terms added

The fitting length of both standard and optimal FP (fractal prediction 
model) is 10.4 h

Model Prediction lengths (h) 1 3 6 12

Linear Selected fitting length 
(h)

1.067 1.067 1.067 23.467

Prediction error (ns) 0.040 0.143 0.321 0.596
Expected error (ns) 0.029 0.079 0.152 0.508

Quadratic Selected fitting length 
(h)

2.933 2.933 5.867 45.600

Prediction error (ns) 0.053 0.173 0.426 0.739
Expected error (ns) 0.040 0.121 0.273 0.566

Standard FP Prediction error (ns) 0.036 0.124 0.312 0.473
Expected error (ns) 0.025 0.083 0.228 0.326

Optimal FP Prediction error (ns) 0.020 0.082 0.191 0.284
Expected error (ns) 0.014 0.060 0.124 0.194

Table 4   Relative accuracy improvements in percent of the endpoint 
based optimal fractal model compared with the quadratic model and 
standard fractal model

Model 1 h 3 h 6 h 12 h Average

Linear 50.00 42.66 40.50 52.35 46.38
Quadratic 62.26 52.60 55.16 61.57 57.90
Standard FP 44.44 33.87 38.78 39.96 39.26
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The prediction results of [UTC(NTSC)-BDT] using the 
endpoint based optimal fractal interpolation prediction algo-
rithm is shown in Fig. 14. Compared with the standard frac-
tal interpolation prediction model and the quadratic models 
(shown in Table 3), the proposed model has more precise 
prediction results than the others (see Table 4 and Fig. 15). 
The fitting lengths of the two fractal models are both 10.4 h, 
the memory span of [UTC(NTSC)-BDT] obtained by equa-
tion (12). Notice that the expected error in Table 3 is the 
mean value of extrapolated the fit forward in each forecast 
period using the full parameter matrix.

It can be seen from Fig. 15 that the order of prediction 
error is Optimal FP < Standard FP < LP < QP. The prediction 
model proposed in this study has more precise prediction 
results than the quadratic model and the standard fractal 
model. From Table 4, it is found that the prediction accuracy 

improvement of the proposed model is almost 60% com-
pared with the quadratic model and almost 40% compared 
with the standard fractal model. We have not explored the 
comparable prediction accuracy of a properly tuned Kalman 
filter involving linear, quadratic, 12 h, and 24 h terms in the 
presence of random walk noise; that will be the subject of 
a later work.

As we know, the prediction error increases as the forecast 
span increases. The proposed model not only improves the 
prediction accuracy but also restrains the increasing rate of 
prediction error with the increasing of the forecast span. To 
evaluate the inhibition of error divergence in each model, 
the average prediction RMS �i is considered; the specific 
formula is:

where �xi,j is the prediction residual at epoch i of the jth 
forecast span and m is the total number of the forecast span. 
Thus, the curve of �i will illustrate the average prediction 
error level with the increase in forecast epoch.

Figure 16 shows the �i curves of different models. It is 
clear that the proposed endpoint based optimal fractal pre-
diction model does restrain the divergence of the prediction 
error as the forecast epoch incenses. The increase rate of pre-
diction error in the proposed model is the lowest of the three.

BDT offsets prediction at GNSS 
interoperability level

However, the [UTC(NTSC)-BDT] time series does not 
meet the requirements for GNSS interoperability. The 
GNSS interoperability requires each system to transfer their 
timescales into a unique timescale, just like the UTC-GPS 
time offsets and UTC-GLONASS time offsets (denote as 
[UTC-GPST] and [UTC-GLOT] respectively) broadcasted 
by BIPM. To enhance the usability of BDT time offsets at 
interoperability level, the [UTC(NTSC)-BDT] should be 
transferred into UTC-BDT time offsets, denote as [UTC-
BDT], using UTC-UTC(NTSC) time offsets:

However, equation  (37) has only theoretical signifi-
cance rather than practical application value. The [UTC-
UTC(NTSC)] series is reported by the BIPM on a 5-day 
grid for MJD, which is quite different from the one-day data 
interval of the [UTC-GPST] and [UTC-GLOT]. The model 
error will transfer if we use the interpolation method to esti-
mate the data from daily [UTC-UTC(NTSC)].

(36)�i =

√

√

√

√

1

m

m
∑

j=1

�x2
i,j

(37)
[UTC-BDT] = [UTC-UTC(NTSC)] + [UTC(NTSC)-BDT]

Fig. 15   Predicted RMS of [UTC(NTSC)-BDT] using different mod-
els with different forecast spans (QP = quadratic prediction model, 
LP = linear prediction model, FP = fractal prediction model)

Fig. 16   Curves of average prediction RMS of each model in different 
forecast spans (QP = quadratic prediction model, LP = linear predic-
tion model, FP = fractal prediction model)
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Therefore, the rapid realization of UTC (UTCr) is consid-
ered to replace UTC in this section, because the frequency of 
[UTCr-UTC(NTSC)] data, published by BIPM, is one day. 
The formula for [UTCr-BDT] is,

The subscript i in equation (38) denotes the i th day of 
the given time offsets series; mean

(

[UTC(NTSC)-BDT]i
)

 is 
the mean value of [UTCr-UTC(NTSC)] in the ith day. The 
transformed [UTCr-BDT] series is shown in Fig. 17.

The simulated [UTCr-BDT] series shown in Fig. 17 is 
obtained from equation (38), the sum of the daily mean 
value of [UTC(NTSC)-BDT], and the [UTCr-UTC(NTSC)] 
value. The uncertainty of [UTCr-UTC(NTSC)] is not given 
by BIPM; and that of [UTC-UTC(NTSC)] during the same 
period reported in Circular T (T386) is about 2.6 ns. If we 
replace the uncertainty of [UTCr-UTC(NTSC)] with that 
of [UTC-UTC(NTSC)], the uncertainty of [UTCr-BDT] 
obtained from equation (38) during MJD 58,545–58,559 is 
estimated as 

√

4.592 + 2.62 ≈ 5.28 ns. The actual uncertainty 
of [UTCr-BDT] is bigger than this value.

UTCr‑NTCS offsets prediction

Forecasting the [UTCr-BDT] series in Fig. 17 is actually 
predicting both [UTCr-UTC(NTSC)] and [UTC(NTSC)-
BDT] series. Since the BIPM reports UTCr once a week, the 
prediction length of [UTCr-UTC(NTSC)] here will be 7 days 
to meet the requirement of real-time application. Therefore, 
a longer [UTCr-UTC(NTSC)] series is required, which can 
be downloaded from the BIPM website; and we will use the 

(38)

i =[UTCr-UTC(NTSC)]i

+mean
(

[UTC(NTSC)-BDT]i
)

fractal prediction method to predict this series. Before pre-
dicting, the fractal behavior of [UTCr-UTC(NTSC)] should 
be verified and its memory span should detected. After that, 
both standard and optimal fractal prediction model will be 
used to predict this series. The [UTCr-UTC(NTSC)] series, 
the fractal behavior detecting results, and the prediction 
error series are shown in Fig. 18.

As shown in Fig. 18a, the length of [UTCr-UTC(NTSC)] 
is 2093 days, started from July 2013 when BIPM began 
to report the UTCr offsets. The 77-days long [UTCr-
UTC(NTSC)] series from January 1, 2019 is shown in 
Fig. 18b. Like all fractal series carrying long memory, the 
memory span of [UTCr-UTC(NTSC)] is about 345 days 
shown as the peak point in Fig.  18d; and the slopes of 
regression lines of ln � ∼ ln (R∕S)

�
 curve before and after the 

memory span are 0.893 and 0.602, respectively, shown as 
Fig. 18c. Thus, the fractal behavior of [UTCr-UTC(NTSC)] 
series is verified according to Fig. 18c and d. The prediction 
results using both standard and optimal fractal prediction 
model are shown in Fig. 18e; the prediction accuracy of 
the optimal fractal prediction model has an improvement of 
more than 40% compared with the standard fractal predic-
tion model. Moreover, the prediction residuals using the two 

Fig. 17   [UTCr-BDT] series obtained by equation  (38). Top: The 
[UTCr-BDT] series. Bottom: The [UTCr-UTC(NTSC)] series from 
MJD 58,545 to 58,559 is download from BIPM website

Fig. 18   Original series, fractal behavior detecting results, and predic-
tion error series of [UTCr-UTC(NTSC)]. a: The [UTCr-UTC(NTSC)] 
series from MJD 56,467 to 58,559, the data to be forecasted is the 
last 14 days. b: The [UTCr-UTC(NTSC)] series start from January 1, 
2019. c: The rescaled range analysis result of [UTCr-UTC(NTSC)], 
the regression line before and after the memory span show different 
slopes. d: The V statistic curve of [UTCr-UTC(NTSC)], the abscissa 
the peak point is 5.844 (≈ln345). e: The prediction result using stand-
ard and optimal fractal prediction model of the whole forecasting 
interval. f: The prediction error curve of both standard and optimal 
fractal prediction models during MJD 58,545–58,559
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models during MJD 58,545–58,559 are shown as Fig. 18f. 
Next, the prediction results of [UTC(NTSC)-BDT] and 
[UTCr-UTC(NTSC)] will be combined together to obtain 
the [UTCr-BDT] prediction value.

UTCr‑BDT offsets prediction

The predicted [UTCr-BDT] offsets in a given day is com-
posed of the predicted [UTCr-UTC(NTSC)] value of the 
day and the mean value of predicted [UTC(NTSC)-BDT] in 
this day. Therefore, the [UTCr-BDT] prediction results are 
obtained and are shown in Fig. 19. The RMS of prediction 
residual is computed as the following formula:

r1 and r2 refers to the prediction residual RMS of [UTCr-
UTC(NTSC)] and [UTC(NTSC)-BDT] respectively; and r 
denotes the RMS of [UTCr-BDT] prediction residual.

As shown in Fig. 19, the prediction accuracies of [UTCr-
BDT] are no more than 1  ns, and their differences are 
small when the prediction length changes. The variance 
of [UTC(NTSC)-BDT] is about 0.86 ns and the prediction 
accuracies are no more than 0.3 ns; the variance of [UTCr-
UTC(NTSC)] series is almost 4 ns; and the 7-days long 

(39)r =

√

r2
1
+ r2

2

prediction accuracy is about 0.77 ns. Therefore, the pre-
diction error of [UTCr-BDT] series contributed by [UTCr-
UTC(NTSC)] is bigger than that by [UTC(NTSC)-BDT]. 
The main reason is that the variance of the original [UTCr-
UTC(NTSC)] series is bigger than [UTC(NTSC)-BDT] 
series.

Discussion and conclusion

A system time offsets prediction model is necessary accord-
ing to the requirements of GNSS interoperability. Since the 
system time offsets is different from clock offsets, the pre-
diction modeling should be processed according to its sta-
tistical characteristics. Thus, the fractal prediction model 
is proposed based on the fractal behavior of system time 
offsets. Some methods and conclusions can be summarized 
as follows:

(1)	 It is mathematically proven that the [UTC(NTSC)-
BDT] is a fractal time series with a memory span of 
10.4 h. In system offsets prediction, the fitting length 
should be an integer multiple of the memory span.

(2)	 The fractal interpolation prediction error is related to 
the value of the estimated endpoint. One of the most 
important conclusions of this research is that there is a 
correlation between the estimated endpoints with mini-
mal interpolation error and minimal prediction error. 
The other one is that the estimated endpoint with mini-
mal interpolation error exists and is unique.

(3)	 Based on the results above, we proposed the endpoint 
based optimal fractal prediction model of BDS-3 time 
offsets forecasting. Using the 15-day BDS-3 time 
offsets observation provided by the NTCS, the aver-
age prediction accuracy of the proposed prediction 
improves by 57.90% and 39.26% compared to that of a 
quadratic model and standard fractal prediction model, 
respectively.

(4)	 The proposed prediction model not only has high pre-
diction accuracy, but also has the ability to restrain the 
divergence of the prediction error as the forecast epoch 
increases. This shows that the proposed prediction 
model will improve the stability of long-term predic-
tion.

Fig. 19   Prediction results of [UTCr-BDT] using optimal fractal pre-
diction method. Top: The RMS of the prediction residual in each day 
of different prediction length. Bottom: The average RMS of the pre-
diction residual of different prediction length
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Appendix: Specific calculation process 
of fractal interpolation bias

The main purpose of this appendix is to provide the specific 
computing process of parameter �j . This will help us ensure 
the existence and uniqueness of the estimated endpoint dis-
turbance for minimal interpolation error.

First, we will simplify the parameters defined by equa-
tion (16). Since the interpolation series {ti} ( i = 0, 1,⋯ ,N ) 
is always an arithmetic progression, we have:

Then, the sums of ei , ci and fi are calculated as follows:

(40)

⎧

⎪

⎨

⎪

⎩

ai =
ti − ti−1

tN − t0
=

1

N

aN+1 =
tN+1 − tN

tN+1 − t0
=

1

N + 1

(41)

N
∑

i=1

ei =

N
∑

i=1

tNti−1 − t0ti

tN − t0
=

1

tN − t0

N
∑

i=1

(

tNti−1 − t0ti
)

=
1

tN − t0

(

N
∑

i=1

tNti−1 −

N
∑

i=1

t0ti

)

=
1

tN − t0

(

tN

N
∑

i=1

ti−1 − t0

N
∑

i=1

ti

)

=
1

tN − t0

[

tN

(

N
∑

i=0

ti − tN

)

− t0

(

N
∑

i=0

ti − t0

)]

=
1

tN − t0

[

(

tN − t0
)

N
∑

i=0

ti + t2
0
− t2

N

]

=

N
∑

i=0

ti −
(

tN + t0
)

=
(

tN + t0
)N + 1

2
−
(

tN + t0
)

=
(

tN + t0
)N − 1

2

(42)

N
∑

i=1

ci =

N
∑

i=1

xi − xi−1 − �i(xN − x0)

tN − t0
=

N
∑

i=1

xi − xi−1

tN − t0
−

(xN − x0)

tN − t0

N
∑

i=1

�i

=
xN − x0

tN − t0
−

xN − x0

tN − t0

N
∑

i=1

�i =
xN − x0

tN − t0

(

1 −

N
∑

i=1

�i

)

(43)

N
∑

i=1

fi =

N
∑

i=1

tNxi−1 − t0xi − �i(tNx0 − t0xN)

tN − t0

=
1
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tN

N
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N
∑
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N
∑
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=
1
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N
∑
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N
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1
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(

t0x0 − tNxN − (tNx0 − t0xN)

N
∑

i=1
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For the parameter eN+1 , we have:

According to equation (31), the expression of �j contains 
two parts:

(44)

eN+1 =
tN+1tN − t0tN+1

tN+1 − t0
=

tN+1tN − tNt0 + tNt0 − t0tN+1

tN+1 − t0

=
tN
(

tN+1 − t0
)

+ t0
(

tN − tN+1
)

tN+1 − t0
= tN −

t0

N + 1

(45)

�j = �j

(

(1 − �)(xN − �N+1x0) + �N+1x
∗
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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+�j

(
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∗)
)

−
1
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i=1

Fj
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∗),Fi(t
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)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Part II

Since Part I of �j is already simplified, we will focus on 
the last part. According to (15):

For the first segment of (46), using (40), (41) and (44), 
we obtain:

(46)
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For the second segment of (46), using (42) and (43), we 
obtain:

where � =
(

t∗ − t0
)/(

tN − t0
)

 . Substituting results (46), (47) 
and (48) into (45), the specific expression of �j is given as:

It is obvious that parameter �j does not contain x̃N+1 . This 
completes the calculation of the fractal interpolation bias 
ΔΓ.
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