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Abstract
Seasonal variability of the upper ocean on meso- and submesoscales is investigated in the framework of the quasi-normal
scale elimination theory, or QNSE. The longitudinal and transverse velocity spectra in this theory have a bi-component
structure comprised of the Coriolis and Kolmogorov-like branches that are identified with meso- and submesoscales,
respectively. For the former, spectral amplitudes are determined by the Coriolis parameter, f, while for the latter, the
amplitudes are quantified in terms of the energy flux, Πε, proceeding from larger to smaller scales. This flux can be
identified with the effective submesoscale dissipation. The Kolmogorov and Coriolis subranges are delineated at a length
scale Lc that marks a crossover between the respective spectra. The theoretical spectra agree well with those obtained in
many observational campaigns. In phase with the seasonal variations of the intensities of instabilities and turbulence, the
magnitudes of Πε and Lc increase in winter and decrease in summer. Mirroring these changes, the bi-component structure of
the kinetic energy spectra changes with seasons and renders meaningless the characterization of their seasonal variability in
terms of a single slope. The theoretical results are validated against the data collected in Oleander, LatMix and North-Western
Pacific observations.

Keywords 92.10.ak Eddies and mesoscale processes · 92.10.Ei Coriolis effects · 92.10.Lq Turbulence, diffusion, and
mixing processes in oceanography

1 Introduction

Oceanic submesoscale motions (SMMs) occupy the range
of the horizontal scales from, approximately, O(102) to
O(105) meters and vertical scales in the range of O(10)

to O(102) meters (McWilliams 2019). In the taxonomy of
the scales of Oceanic General Circulation shown in Fig. 1
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in McWilliams (2019), the SMMs are placed in the range
between the balanced instabilities and turbulence in the
process of isotropization. An important energetic aspect
of the SMMs is that most of their energy is supplied by
the mesoscale eddies by a downscale, or direct transfer.
In Yang et al. (2019), for example, it was shown that the
submesoscale energy can be maintained by the destruction
of mesoscale eddies encountering rough topography. In
this respect, the SMMs are similar to their mesoscale
counterparts in the atmosphere (Lindborg 1999; Galperin
and Sukoriansky 2020) (the latter reference will be referred
to as GS20 henceforth). In Zheng et al. (2020), the SMMs
were subdivided into 4 different categories whose physics
included such diverse processes as internal waves and
tides, instabilities and shear waves, spiral trains and trains
of coherent vortices, topographic waves, estuary plumes,
fronts, vertical mixing, turbulence, and offshore jets and
filaments.

Seasonal variability of SMMs has been recognized for
its important role in the ocean dynamics as well as global
circulation, transport and climate processes (Shcherbina
et al. 2015; Callies et al. 2015; Rocha et al. 2016; Su
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et al. 2018; Qiu et al. 2018; Buckingham et al. 2019).
The intensity of the SMMs is stronger in winter and
weaker in summer. The winter intensification is stipulated
by flow straining and development of the deep mixed layer
by seasonal winds that modulate mixed layer instabilities
(MLIs) and frontogenesis, e.g., Callies et al. (2015), Li et al.
(2019), and Zhang et al. (2020).

As an outcome of this variability, one would expect
turbulence intensity on the submesoscales to increase in
winter and decrease in summer. If the kinetic energy (KE)
spectrum on these scales were Kolmogorov-like, then the
turbulence intensity could be quantified by the rate of
the energy transfer, Πε, that enters the expression for the
spectrum. The slope of the KE spectrum on submesoscales
obtained from numerous observations indeed appears close
to Kolmogorov’s −5/3 but it has also been taken equal to
−2, e.g., Sasaki et al. (2014), as would be dictated, for
instance, by the Garrett and Munk spectrum for internal
gravity waves (Garrett and Munk 1979).

Studies of spectral amplitudes, in addition to the
slopes, could have helped to clarify the prevailing physical
mechanisms governing the SMMs. However, the slopes
have received far more attention in the literature than
the amplitudes, even though the latter harbor deeper
information on the physics governing dynamical processes.
For instance, in the case of the Kolmogorov turbulence,
the dimensional analysis enables one to infer the slopes
from the dimensions of the variables characterizing the
amplitudes, but one can neither deduce these variables
uniquely nor determine the amplitudes from the slopes
alone.

Difficulties with using Kolmogorov’s theory on oceanic
submesoscales stem from the fact that it applies to locally
homogeneous and isotropic turbulence while the oceanic
turbulence is patently anisotropic, e.g., Garrett (2006). In the
original Kolmogorov theory, the magnitudes of the slopes
of longitudinal and transverse KE spectra are established
from the dimensions of the variables forming the spectral
amplitudes by virtue of the dimensional analysis. In the
case of locally isotropic homogeneous turbulence, the
number of variables characterizing the inertial subrange
is limited to only two, Πε, and the wave number, k.
But in anisotropic turbulence, spectral anisotropization and
inherent proliferation of the critical dimensional variables
hinder the applicability of the dimensional analysis.
Progress in that case can only be achieved with an analytical
theory that systematically accounts for a contribution
of every term in the governing equations. Theories of
anisotropic turbulence are scanty, complicated, e.g., Sagaut
and Cambon (2018), and difficult to use. As a result,
investigations of the SMMs in the framework of anisotropic
turbulence are scanty as well. In this paper, however, the
emphasis will be put precisely upon anisotropic turbulence

using the recently developed analytical theory known as
the quasi-normal scale elimination, or QNSE (Sukoriansky
et al. 2005; Sukoriansky and Galperin 2016; Galperin and
Sukoriansky 2020).

Physical laws governing the spectra of oceanic turbu-
lence apply to atmospheric flows as well. Although a
conjecture about the similarity of these flows’ spectra has
been advanced by Charney (1971) some 50 years ago, its
implications have not been fully appreciated. A new impe-
tus towards its exploration emanates from GS20 where it
was substantiated in the framework of the QNSE theory.
The theoretical underpinning of QNSE is briefly explained
in the next section. The horizontal spectra predicted by
QNSE as media-independent universal expressions agree
well with those derived from numerous atmospheric and
oceanic observations. In this paper, the theory is applied to
quantify seasonal variability of oceanic flows on submeso-
and mesoscales.

Among the existing theories of atmospheric and oceanic
turbulence are the ones featuring the unbalanced, strongly
nonlinear dynamics, e.g., Lindborg (2006), Lindborg
(2015), Vallgren et al. (2011), and Deusebio et al. (2013)
and others, connecting to weakly nonlinear inertia-gravity
waves (Dewan 1979; VanZandt 1982; Callies et al. 2016)
and the Garrett and Munk spectrum (Garrett and Munk
1979).

It was argued in Lindborg and Cho (2001) that the
observed highly anisotropic atmospheric flows cannot
be explained within the classical three-dimensional (3D)
isotropic turbulence. In Lindborg (2006) it was hypoth-
esized that the atmospheric spectra could possibly be
attributed to stratified anisotropic turbulence. However,
numerical simulations detailed in Skamarock et al. (2014)
did not support this hypothesis. A surface quasigeostrophic
(SQG) model (Blumen 1978; Juckes 1994; Held et al. 1995;
Lapeyre 2017) based upon a premise that a discontinuous
profile of the background stratification may lead to a down-
scale buoyancy variance cascade and a −5/3 KE spectrum
was used to explain the occurrence of this spectrum on the
tropopause mesoscales, i.e., scales up to about 600 km. This
model was extended in Tulloch and Smith (2006) and Tul-
loch and Smith (2009) to also include the −3 spectrum
on larger scales. However, as argued in Lindborg (2009),
the SQG models are unlikely capable of dealing with the
mesoscale atmospheric dynamics because the Rossby num-
bers at those scales are too large and in addition, the
thickness of the layer where the SQG models apply is too
shallow. In reply to these arguments in Smith and Tulloch
(2009) suggestions were made towards the improvement of
the SQG model.

In a study presented in Lovejoy et al. (2009) a spotlight
was put on turbulence anisotropy with admonition that a
failure to account for different scaling laws in the horizontal
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and vertical directions may lead to spurious results. The
authors questioned the attribution of the two horizontal
scaling regimes to a transition from small-scale 3D isotropic
turbulence to a large-scale, two-dimensional (2D), isotropic
turbulence and suggested that in anisotropic turbulence,
structures progressively flatten out with increasing scale
and may obey a power law that is not based upon the
dimensional transition. They expressed some scepticism
about the fact that “the entire mainstream view of the
atmosphere has fundamentally been coloured by the
assumption of isotropic turbulence.” These and other issues
were elaborated in the following up discussions in Lindborg
et al. (2009) and Lovejoy (2009).

Most of the existing theories of the spectra on large
scales utilize Charney’s paradigm of geostrophic turbulence
(Charney 1971) according to which a fast rotating, stably
stratified 3D flow acquires dynamical properties analogous
to those of purely 2D turbulence. Then, the enstrophy
conservation gives rise to the enstrophy subrange (Batchelor
1969; Kraichnan 1967; Leith 1968) with the spectrum ∝
Π

2/3
ω k−3

h on scales smaller than the forcing scale (here, Πω

denotes the constant spectral enstrophy flux and kh is the
horizontal 2D wavenumber). In Lindborg and Cho (2001) it
was stated that there is no alternative to Charney’s (Charney
1971) theory that could explain the shape of the second-
order structure functions and underlying kinetic energy
spectra on atmospheric synoptic scales. The importance of
Charney’s theory has been reasserted recently in Bierdel
et al. (2016): “...there is a wide consensus about the
crucial role of quasi-two-dimensional balanced motions in
generating the shape of the kinetic energy spectrum on
synoptic scales (Charney 1971)...” and in Asselin et al.
(2018): “Synoptic-scale dynamics are typically interpreted
in the light of Charney’s theory of geostrophic turbulence,
which predicts a forward enstrophy cascade along a −3
spectrum below the baroclinic injection scale”.

One aspect common to all these theories is highlighting
the spectral slopes while according little to no attention to
the amplitudes. The slopes and the amplitudes are two sides
of the same coin, however. Comprehension of the physical
processes governing spectral laws requires clear quantitative
understanding of both characteristics.

The uncertain situation with theoretical description of
atmospheric and oceanic turbulence was recapped in a
remark by Yano (2010): “In summary, in spite of appealing
nature of the anisotropic turbulence theory that potentially
unifies the atmospheric flows of all scales, as it stands
for now, it remains a purely statistical theory without a
counterpart dynamical model for describing the system
in deterministic manner. Such a system should have
a capacity of continuously transforming from a quasi-
geostrophy to nonhydrostatic anelasticity. My naı̈ve feeling

is that an elaborated use of a renormalization group (RNG)
theory might potentially lead to a necessary theoretical
breakthrough, but I should not be too speculative.”

This remark was not too speculative as substantial
progress has been achieved with the application of the
RNG-based (Yakhot and Orszag 1986) QNSE theory to
neutrally stratified, rotating turbulent flows (Sukoriansky
and Galperin 2016). QNSE offers a new look at the physics
of the effect of rotation and produces analytical expressions
for one-dimensional (1D) and 3D spectra that are Coriolis
parameter- and, thus, latitude-dependent on large scales. In
GS20, these expressions were shown to agree fairly well
with numerous atmospheric and oceanic spectra throughout
the globe in both the amplitude and the slope.

QNSE does not employ the assumptions of geostrophic
turbulence or SQG. Instead, the expressions for the
longitudinal and transverse spectra are interpreted in GS20
as an evidence of the compression of the vertical dimension
of a flow by rotation in such a way that the total
dimensionality appears to become smaller than 3 but larger
than 2. In other words, rotating flows can be classified
as those with “compactified” (compressed) dimensionality
(Celani et al. 2010; Ecke 2017). Flows of this kind may
feature both upscale (inverse) and downscale (direct), i.e.,
dual energy cascade (Deusebio et al. 2014; Qiu et al. 2014;
Pouquet et al. 2017; King et al. 2015) in the same inertial
subrange. There may exist a transition, either continuous
or discontinuous, between the scales with opposite cascade
directions, e.g., Sahoo et al. (2017). An example of such
transition was detected in the hurricane vortices where the
cascade changed sign with altitude (Byrne and Zhang 2013).

In GS20 it was concluded that in oceanic flows on
mesoscales, the spectral amplitudes are determined by the
Coriolis parameter rather than the spectral energy/enstrophy
fluxes. For the first time, the latitudinal dependence of
the spectral amplitudes was detailed within a rigorous
theory. Another important outcome was the possibility of
estimating the rate of the energy transfer, Πε, from meso-
to submesoscales. This rate can exceed the microstructure
dissipation rate by one or more orders of magnitude.
Since, on the one hand, Πε represents the spectral energy
flux in the Kolmogorov spectra and on the other, it
characterizes collective dissipation processes throughout
the submesoscales, it was termed in GS20 effective
submesoscale dissipation, or ESD.

This paper will focus upon the seasonal variability of the
ESD. Its values will be estimated from the spectra available
from observations in the North-West Atlantic (Shcherbina
et al. 2015; Callies et al. 2015) and North-West Pacific
Oceans (Qiu et al. 2017).

The paper is structured in the following manner.
Section 2 provides a brief survey of the QNSE theory of
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rotating flows. Section 3 elaborates the application of the
QNSE results to oceanic turbulence. Section 4 provides
characterization of the turbulence’s seasonal variability in
terms of ESD, and Section 5 is discussion and conclusions.

2 A brief survey of the QNSE results
for rotating turbulence

The QNSE theory of rotating turbulence was developed
in Sukoriansky and Galperin (2016). The theory considers
neutrally stratified, 3D, incompressible (i.e., solenoidal)
rotating flows in an unbounded domain. QNSE accounts
for the interaction of turbulence and inertial waves. As the
geostrophic approximation is not invoked, the theory does
not differentiate between geostrophic and ageostrophic,
balanced and unbalanced motions. As argued in GS20, this
patently “minimalistic” albeit fully nonlinear framework
provides an adequate approximations for the 1D spectra of
the horizontal velocities throughout the oceanic meso- and
submesoscales. As an illustration of the successes of the
theory, one can recall the reproduction of the Nastrom and
Gage spectra (Nastrom et al. 1984) in the upper troposphere
and lower stratosphere.

Let f = 2Ω sin θ be the Coriolis parameter with Ω

and θ being the angular velocity of the Earth’s rotation
and the latitude, respectively. Denote the components of
a horizontal wave vector k by k1 and k2, respectively.
The QNSE expressions for the longitudinal (E1(k1)) and
transverse (E2(k1)) spectra of the horizontal velocity
variance relative to the direction k1 and in the limit of a weak
rotation are (Sukoriansky and Galperin 2016)

E1(k1) = 18

55
CKΠ2/3

ε k
−5/3
1 + Cf 1f

2k−3
1 , (1)

E2(k1) = 24

55
CKΠ2/3

ε k
−5/3
1 + Cf 2f

2k−3
1 , (2)

where CK � 1.5 is the Kolmogorov constant, Cf 1 =
0.0926 and Cf 2 = 0.24. The vertical direction and vertical
spectral component will not be considered here as they
depend on stable stratification and are out of the scope of
this paper.

Rotation renders 3D turbulence anisotropic yet it
preserves the horizontal quasi-isotropy in the f -plane
approximation: although the two longitudinal (E1(k1) ≡
EL(k1) and E2(k2) ≡ EL(k2)) and two transverse
(E2(k1) ≡ ET (k1) and E1(k2) ≡ ET (k2)) spectra
are congruent, the isotropic relationship between E1(k1),
E2(k1) and the total spectrum, E(k), derived in Monin and
Yaglom (1975) holds only for the Kolmogorov branch and
is violated in its Coriolis counterpart. This can be shown by
direct substitution of (1) and (2) in the analytical expression

relating E1(k1) and E2(k1) in isotropic solenoidal 3D flows
derived in Monin and Yaglom (1975),

E2(k1) = 1

2

[
E1(k1) − k1

dE1(k1)

dk1

]
. (3)

More details can be found in GS20.
In GS20 it was argued that (1) and (2) are expected

to provide good approximation to spectra in natural
flows when rotational effects dominate on the horizontal
scales while stable stratification dominates on the vertical
scales, i.e., f/N � 1, where N is the Brunt-Väisälä
frequency. This argument was backed by demonstrating
good agreement between (1) and (2) and atmospheric and
oceanic spectra at many different locations.

Equations (1) and (2) can be viewed as a generalization
of the classical Kolmogorov spectra to rotating flows. The
spectra exhibit superposition of the Kolmogorov and f -
dependent (Coriolis) branches with the wave-turbulence
crossover scale proportional to the Woods scale, LΩ =
(Πε/f

3)1/2, which is a rotational analogue of the Ozmidov
scale, LO = (Πε/N

3)1/2, in turbulent flows with stable
stratification. In this formulation, both the Woods and
Ozmidov scales are considered in the generalized form
whereas the energy flux, Πε, replaces the dissipation rate, ε.
Further discussion of the analogy between LO and LΩ can
be found in Sukoriansky and Galperin (2016).

The crossover scale between the Kolmogorov and
Coriolis branches can be defined by equating the two terms
in (1). In terms of the length scale, this crossover is

Lc � 5.43/4LΩ � 3.5LΩ . (4)

In GS20 it was shown that the development of the
Kolmogorov spectrum is a rather common phenomenon on
oceanic submesoscales that gives rise to the ESD. Thus,
the scale Lc could be associated with the upper bound of
SMMs. A taxonomy of these motions is given in Zheng et al.
(2020).

If the energetics of the SMMs variability can indeed be
encapsulated in one parameter, Πε, then the scale Lc, along
with Πε, can be viewed as a measure of that variability. If
the Kolmogorov branch of the spectrum roughly coincides
with the extent of the submesoscale, then Lc can be viewed
as a characteristic scale of the SMMs and its seasonal
variation mirrors that of the submesoscale turbulence.

Another measure of the SMMs variability was introduced
in Qiu et al. (2018) and denoted Lt . That length scale
defines a crossover between the balanced and unbalanced
motions. While Lc pertains strictly to the threshold of the
Kolmogorov spectrum, the scale Lt characterizes relative
importance of the wave processes. Considered on seasonal
time scales, these length scales characterize different
aspects of the variability.
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Equations (1) and (2) provide an important quantitative
characterization of the submeso- and mesoscale variabili-
ties. The former is driven by submesoscale processes that
may change Πε in a wide range and cause large variations of
the spectral amplitude. The latter, being determined by the
Coriolis parameter, is rather limited and can be predicted.
One can expect that observed and simulated spectra would
converge to a single line on the low wave number end of
the mesoscales. The size of the eddies can influence the
mesoscale KE variability via modification of the low wave
number end of the spectrum that contains high energy. The
variability of these eddies is not universal and can be best
assessed with satellite altimetry.

3 Seasonal variability of oceanic turbulence:
an analytical framework

A high-resolution simulation of a large area in the North
Pacific ocean undertaken in Sasaki et al. (2014) focused
on oceanic variability caused by MLI induced by synoptic
wind fluctuations. In addition to the atmospheric forcing, a
strong mesoscale strain field can also be a source of MLI
(Zhang et al. 2020). Judging by the results in Sasaki et al.
(2014) one infers that the MLI has a significant effect on the
oceanic submesoscales while the variability on mesoscales
is limited. Indeed, as evident in Fig. 5a in Sasaki et al.
(2014), large differences in the circulation features between
March and September shown in Fig. 1 of that paper had
almost no effect on spectral amplitudes on the mesoscales.
This important result is consistent with the QNSE theory
that predicts the dependence of spectral amplitudes in the
mesoscales range on the Coriolis parameter only.

To ascertain the quantitative conformity between the
theory and simulations in Sasaki et al. (2014), we use a
QNSE-based expression for the horizontal KE spectrum,
Eh(kh), kh being the horizontal wave number, as derived
from the general theory in Sukoriansky and Galperin (2016),

Eh(kh) = 7

110
B

(
1

6
,

1

3

)
CKΠ2/3

ε k
−5/3
h + Cf f 2k−3

h . (5)

Here, B(p, q) is a Beta-function, (7/110)B(1/6, 1/3) �
0.535, Cf = 0.33. Only the Kolmogorov (i.e., the
submesoscale) branch in (5) depends on Πε. The theoretical
spectral amplitude on mesoscales is solely determined by
the Coriolis parameter.

The expression for the first term in (5) is not well known
and so it is derived here using the classical expression
relating the spectrum tensor, Fij (k), to the 3D energy
spectrum, E(k), where k is the 3D wave vector and k is its
magnitude (Monin and Yaglom 1975),

Fij (k) = E(k)

4πk2
Pij (k). (6)

Here, Pij (k) = δij − kikj /k2 is the projection operator
and δij is the Kronecker δ-symbol. For the 3D Kolmogorov
spectrum, E(k) is

E(k) = CKΠ2/3
ε k−5/3. (7)

After separating k into its horizontal, kh, and vertical, kz,
components, the horizontal part of Fij (k) takes the form

Fh(kh, kz) = CKΠ
2/3
ε

4π(k2
z + k2

h)
11/6

(
2 − k2

h

k2
z + k2

h

)
. (8)

The integration of (8) in the vertical yields an expression for
the spectrum of the horizontal KE as a function of kh,

Eh(kh) = πkh

∞∫
−∞

Fh(kh, kz)dkz

= 7

110

Γ
(

1
6

)
Γ

(
1
3

)
π1/2

CKΠ2/3
ε k

−5/3
h

= 7

110
B

(
1

3
,

1

6

)
CKΠ2/3

ε k
−5/3
h . (9)

In (9), Γ (x) is the gamma function. Equation (9) is in a
good agreement with the simulations of stably stratified
turbulence presented in Kimura and Herring (2012). These
simulations show a weak dependence of the horizontal
spectra on stable stratification. The spectra preserved their
Kolmogorov shape, including the coefficients, even for
strong stable stratification thus providing an a posteriori
justification for the application of the QNSE theory to stably
stratified flows such as the oceanic ones. The derivation of
the horizontally anisotropic Coriolis branch, which is the
second term on the right-hand side of (5), is considerably
more complicated and cannot be detailed here.

To ascertain the validity of the QNSE-based predictions,
(5) was compared with the results of a realistic high-
resolution numerical simulation of the North Pacific Ocean
presented in Sasaki et al. (2014), their Fig. 5a. The latitude
in (5) was set at θ = 30◦ which corresponds to the middle
of the computational domain confined between 20◦ N and
43◦ N. The comparison, shown in Fig. 1, reveals different
tendencies on submeso- and mesoscales. Let us consider the
former first.

One notices a rapid decrease of the simulated spectra
on submesoscales. Quantitative accommodation of this
decrease within the QNSE theory requires Πε to be of
the order of 10−9 m2 s−3. The KE fluxes calculated from
geostrophic velocities and shown on Fig. 5d in Sasaki
et al. (2014) are of a similar order of magnitude. However,
these values are some 3 orders of magnitude smaller than
an average ESD (=Πε), of the order of 10−6 m2 s−3,
as evaluated in GS20 based upon the data collected by
ship-mounted acoustic Doppler current profilers (ADCPs)
throughout the world ocean. There exists a possibility that in

479Ocean Dynamics (2021) 71:475–489



Fig. 1 Spectra of the horizontal velocity in the North Pacific, as
computed in simulations in Sasaki et al. (2014), their Fig. 5a, and
shown as black and red solid lines for March 2002 and September
2002, respectively. The QNSE expression (5) for θ = 30◦ N is shown
by the black and red dashed lines for Πε = 7 × 10−6 m2 s−3 and 10−6

m2 s−3, respectively. Compared with the theoretical expressions, the
modeled spectra appear to be over-damped on submesoscales

the model, the fluxes are over-damped by a chosen subgrid-
scale (SGS) parameterization scheme and/or numerical
viscosity (Schubert et al. 2020). A similar over-damping is
notable in other studies. Among those is the comparison
of the QNSE predictions with high-resolution simulations
(1/48◦) of the horizontal spectra near Drake Passage with
MITgcm (Rocha et al. 2016) shown on the lower panel of
Fig. 9 in GS20. Another example is a simulation of the
Agulhas Current system in Schubert et al. (2020), their Fig.
2a. As evident in Fig. 1 here, the over-damping affects the
entire submesoscale range because not only the value of Πε

is too small but also the shape of the theoretical spectrum is
not congruent to the shape of its numerical counterpart.

One can question, however, whether or not the behavior
of the theoretical spectrum on submesoscales is realistic and
whether or not it provides a good quantitative approximation
to the data. To ascertain the accuracy of theoretical
predictions, Fig. 2 compares the QNSE-based 1D spectra
along the longitude 137◦ E in the region of the North
Equatorial Current, or NEC, with the multi-year averaged
spectra estimated with a ship-mounted ADCP reported in
Qiu et al. (2017). The figure demonstrates a good agreement
between the theoretical and observational spectra in the
entire wave number range that includes both submeso- and
mesoscales. In GS20, an equally good agreement between
the theory and data is shown in many other locations
throughout the world ocean.

On mesoscales, an agreement between the theory and
numerical simulations improves. A good correspondence
between the QNSE-based and computational spectra on

Fig. 2 Longitudinal (red) and transverse (blue) spectra obtained along
137◦E meridian in the North-Western Pacific in the vicinity of the
North Equatorial Current (NEC), at the latitude θ = 14◦ N. The data is
from Qiu et al. (2017) where the spectra were averaged over the depths
between 40 and 100 m. The dashed red and blue lines are (1) and (2),
respectively, with the estimated value of Πε of 2 × 10−6 m2 s−3. The
figure is adapted after Galperin and Sukoriansky (2020)

scales exceeding about 50 km is achieved with realistic
values of Πε, 7 × 10−6 m2 s−3 and 1 × 10−6m2 s−3 for
March and September, respectively. All spectra converge to
a single line well described by (5) which is an indication
that the spectral amplitudes in this subrange are prevalently
determined by the Coriolis parameter.

The latter is an important result on its own sake. Recall
that according to Fig. 5d in Sasaki et al. (2014), the
mesoscales feature an inverse energy cascade with a non-
constant, scale-dependent energy flux while the spectral
amplitudes are determined by the Coriolis parameter rather
than the energy or enstrophy fluxes. This outcome confirms
the QNSE theory prediction.

In a more general context, the oceanic meso- and
submesoscales harbor the coexisting direct and inverse
energy cascades, termed the dual cascade, e.g., Deusebio
et al. (2014), Qiu et al. (2014), Pouquet et al. (2017), King
et al. (2015), and Wang et al. (2015), that often develops in
flows with extra strains, i.e., strains additional to the basic
shear. Flows of this kind were first considered in detail
in Bradshaw (1973). As explained in GS20, in a certain
subrange of governing parameters, spectral amplitudes in
such flows are determined by the magnitude of the extra
strains (f 2 in the case of rotating flows) rather than the
energy/enstrophy fluxes.

Of importance, the spectral KE fluxes on submesoscales
are positive, both in the theory, as explained in Sukoriansky
and Galperin (2016), and in simulations, as evident in Fig.
5a in Sasaki et al. (2014), pointing to a direct energy
cascade. A direct cascade on submesoscales was also
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detected in observational studies such as, for instance, those
employing drifters as described in Poje et al. (2017) and
others, e.g., D’Asaro et al. (2011), Zhang et al. (2016), and
Gula et al. (2016). One needs to keep in mind that the effect
of rotation leads to redirection of a part of the direct cascade
upscales and that the partition of the cascade is scale-
dependent. Nevertheless, the Kolmogorov’s −5/3 spectral
law appears to remain a good approximation over the entire
submesoscale range and provide a single value of Πε that
represents the average downscale energy flux. Precisely this
property of Πε is behind the introduction of the notion
of ESD in GS20. In a general context, the applicability
of the Kolmogorov spectral laws beyond strictly specified
inertial subranges has been well known and inspired various
explanations such as that in Golitsyn (2018). In oceanic
mixed layers characterized by very strong anisotropy
(horizontal and vertical scales of about 10 km and 1 km,
respectively), the validity of the Kolmogorov spectrum in
the horizontal can be explained by a superposition of the
effects of rotation and stable stratification. Indeed, as was
shown in Galperin and Sukoriansky (2010) and Sukoriansky
and Galperin (2013), in stratified flows, the Kolmogorov
spectrum prevails on scales exceeding the layering scales. A
more detailed discussion of these issues is beyond the scope
of the present paper.

Concluding this section, we reiterate that the comparison
with simulations supports the initial QNSE theory-based
hypothesis that the variability of the submesoscale turbu-
lence can be quantified in terms of a single parameter,
ESD (=Πε), even though the turbulence may have many
sources. It can be produced by diverse factors such as break-
ing waves, instabilities, and tidal flows. Different aspects of
the commingling between waves and turbulence have been
addressed in the literature over the years as, for instance, in
Dritschel and McIntyre (2008), McIntyre (2008), Wood and
McIntyre (2010), and Galperin et al. (2014), where it was
clarified that in high-Reynolds-number geophysical flows,
there are no waves without turbulence and there is no turbu-
lence without waves. In other words, waves and turbulence
always coexist. In terms of the scale Lc given by (4), it was
around 6 km in summer and 15 km in winter for the QNSE
emulation of simulations in Sasaki et al. (2014) shown in
Fig. 1. This scale quantifies the horizontal extent of the
Kolmogorov turbulence subrange and can be viewed as an
additional characteristic of the submesoscale turbulence and
its seasonal variability.

4 Seasonal variability of oceanic
turbulence—comparisons with data

Further analysis of the seasonal oceanic variability on
meso- and submesoscales will be given via comparison

of the theoretical predictions with data collected by
ship-mounted ADCPs in the course of three different
observational programs. Two of these programs, Oleander
and LatMix, were carried out in the vicinity of the
Gulf Stream. The third program was conducted in the
North-West Pacific Ocean along the meridian 137◦ E as
described in Qiu et al. (2017). Comparisons between the
theory and observations are presented in the next three
subsections.

4.1 Oleander observations

Both data collection programs, Oleander and LatMix, are
described in Callies et al. (2015). Locations of the data
transects are shown in Fig. 3. The data from these programs
was described in Shcherbina et al. (2013) and processed in
Callies et al. (2015) where a full description of the data can
be found. The spectral results were digitized using a freely
available software package (https://apps.automeris.io/wpd/)
and used to produce Figs. 4 and 5 in this paper.

Long-term velocity and temperature data have been
collected by the CMV Oleander during its weekly cruises
between New York Harbor and Bermuda. The data from the
time window between 2005 and 2013 was used to study the
seasonal variation of the velocity and temperature spectra in
the vicinity of the Gulf Stream (Callies et al. 2015). In the
paper, half the sum, (1/2)[EL(k1) + ET (k1)], was defined
as the 1D spectrum of the horizontal turbulence KE. A more
conventional definition of such spectrum would involve the
horizontal wave number kh leading to (9). However, to be
consistent with the data in Callies et al. (2015), we shall use
their definition in the forthcoming comparisons.

Figure 4a compares the defined above 1D spectra at
the depth of 50 m collected during winters and summers
with the QNSE predictions. The average location of the
transects was set at 31◦ N. One notices a good agreement
between the theory and the data for spectral amplitudes and
slopes in the entire range of the wave numbers for both
seasons. On mesoscales, consistent with the results in Sasaki
et al. (2014) discussed in the previous section, the seasonal
variability is weak and the spectral amplitudes converge
to the value given in (5) as determined by the Coriolis
parameter. On submesoscales, however, the variability is
clearly attributable to changes in turbulence intensity. It can
be quantified in terms of the energy flux Πε, or ESD that
varies by about an order of magnitude, from 1.5 × 10−5

m2 s−3 in winter to 2 × 10−6 m2 s−3 in summer. The scale
Lc fluctuates from about 21 km in winter to about 8 km in
summer. Thus, Πε and Lc provide important characteristics
of the intensity and the length scale of the submesoscale
turbulence and its seasonal variation.

Figure 4b compares theoretical and data-based longitudi-
nal and transverse spectra averaged over the winter season.
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Fig. 3 Measurement locations for the Oleander and LatMix programs. Black lines show velocity transects. The color shading describes the
variation of the sea surface temperatures on 13–20 March 2012. White shading points to missing data. Adapted from Callies et al. (2015)

The theory reliably approximates observationally deter-
mined spectral slopes and amplitudes on both meso- and
submesoscales. The transverse spectrum exceeds its longi-
tudinal counterpart thereby pointing to flow solenoidality.

4.2 LatMix observations

Another investigation of the seasonal variability of the
near-surface ocean dynamics in the vicinity of the Gulf

Stream was conducted in the framework of the Lateral
Mixing Experiment (LatMix) along several transects off
Cape Hatteras in June 2011 (designated as summer) and
just south of the Gulf Stream extension in March 2012
(designated as winter) (Shcherbina et al. 2013; Callies et al.
2015). Figure 5a compares the 1D quantity (1/2)[EL(k1) +
ET (k1)] as estimated from the data and the theory in the
format analogous to Fig. 4a. Even though the data and
the theory exhibit similar trends and the spectra tend to

Fig. 4 (a) Seasonal variation of the quantity (1/2)[EL(k1) + ET (k1)]
deduced from the Oleander data for winter and summer, red and
black solid lines, respectively, at the depth of 50 m, as compared with
the QNSE predictions shown in dashed lines. The QNSE results are
obtained for θ = 31◦ N, Πε = 1.5 × 10−5 m2 s−3 and Lc � 21 km
in winter and Πε = 2 × 10−6 m2 s−3 and Lc � 8 km in summer.

(b) Longitudinal (solid red) and transverse (solid black) KE spec-
tra for the Oleander data vs. QNSE theory (dashed red and dashed
black, respectively) for winter. The parameters employed in QNSE are
θ = 31◦ N, Πε = 1.5 × 10−5m2 s−3, and Lc � 21 km. The light
shadings on both panels show the 95% confidence intervals. The data
is adapted from Callies et al. (2015)
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Fig. 5 (a) Seasonal variation of the quantity (1/2)[EL(k1) + ET (k1)]
deduced from the LatMix data for winter and summer at the depth
of 20 m, red and black solid lines, respectively, as compared with
the QNSE predictions shown in dashed lines. The QNSE results are
obtained with θ = 36◦ N, Πε = 1.5 × 10−5m2 s−3, and Lc � 17 km
in winter and θ = 32◦ N, Πε = 8 × 10−6m2 s−3, and Lc � 15 km in
summer.

(b) Longitudinal (solid red) and transverse (solid black) KE spectra
for the LatMix data at the depth of 20 m vs. QNSE theory (dashed red
and dashed black, respectively) for winter. The parameters employed
in QNSE are θ = 36◦ N, Πε = 1.5 × 10−5m2 s−3, and Lc � 17 km.
The light shadings on both panels show the 95% confidence intervals.
The data panel is adapted from Callies et al. (2015)

converge closer on mesoscales, the differences are marked.
There are two main reasons for these differences. First,
the length of the observational record was very short, only
one month for winter and summer each. Such records are
insufficient for reliable determination of the mean spectra
and as a result, the 95% confidence limits in Fig. 5 are
much broader than those in Fig. 4. Second, the sites of
the LatMix experiment were quite close to the Gulf Stream
and the results could be affected by the mean current
and the induced by it anisotropy. A study in Wang et al.
(2010) demonstrates that the Gulf Stream renders turbulence
strongly anisotropic while our own investigation detailed in
GS20 showed that in addition, spectral amplitudes on large
scales become significantly enhanced. The latter study also
revealed that when the study area is distanced from the Gulf
Stream, the agreement between the observed and theoretical
spectra improves. In a study in Bühler et al. (2017), a special
procedure was designed to alleviate the effect of the mean
flow anisotropy. That paper did not consider the seasonal
variability of the flows, however.

The tendency to increased spectral amplitudes in the
vicinity of the Gulf Stream manifests even clearer in Fig. 5b
that shows the longitudinal and transverse KE spectra
obtained in the LatMix observations. On mesoscales, the
amplitudes of both longitudinal and transverse spectra
are higher than those predicted by the QNSE theory. On
submesoscales, however, despite the shortness of the record,
the theory provides reasonable approximation to the data
such that the value of Πε can be estimated with sufficient
precision for use in SGS parameterizations in numerical
simulations.

4.3 North-Western Pacific observations

For this study, we used the shipboard ADCP data presented
in Qiu et al. (2017). The data was collected by the Japan
Meteorological Agency (JMA) along the 137◦ E meridian,
between 3◦ N and 34◦ N. The study area is shown in Fig. 6
along with the map of the eddy KE derived from the multi-
year AVISO (Archiving Validation and Interpretation of
Satellite Data in Oceanography; www.aviso.oceanobs.com).
All observational spectra are averaged over the depths
between 40 and 100 m.

The area from Japan in the north to 28◦ N contains the
Kuroshio, the western boundary current of the wind-driven
subtropical gyre. Like the Gulf Stream after its separation,
the intense surface Kuroshio current is accompanied by
enhanced mesoscale eddy variability maintained by the
mixed baroclinic-barotropic instabilities. The band 14–
28◦ N contains the subtropical countercurrent (STCC).
The eastward-flowing STCC overlies the westward-flowing
North Equatorial Current (NEC). Although the NEC is
a strong westward-flowing wind-driven confluent flow, it
is relatively stable compared to the other three current
systems of the North-Western Pacific. Nearly constant
potential vorticity (PV) gradient across the NEC region
is the cause of the relative stability of NEC. The North
Equatorial Countercurrent (NECC) lies between 3◦ and
7◦ N. Being an eastward-moving outflow of the low-latitude
western boundary current, the NECC is highly unstable
with horizontal scales in excess of 200 km. It derives its
energy mostly from the horizontal shear of the NECC via
barotropic instability.
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Fig. 6 Regional eddy variability
and ADCP track. Surface eddy
kinetic energy distribution in the
North-Western Pacific based on
the weekly AVISO SSH
anomaly data of 2004–2015.
Black dashed line along 137◦ E
denotes the track of repeated
shipboard ADCP measurements
by Japan Meteorological
Agency. Short black lines along
28◦ N, 14◦ N and 9◦ N
demarcate the boundaries of the
Kuroshio, STCC, NEC and
NECC bands. Adapted from Qiu
et al. (2017)

Figures 7 and 8 show seasonal KE spectra in the four
regions while Table 1 quantifies these spectra and their
variability in terms of Πε (or ESD) and Lc.

As shown in Fig. 7, the seasonal variation of the
subtropical Kuroshio and STCC bands differ from each
other. The former encompasses the western boundary
current that, just like the Gulf Stream in the North-Western
Atlantic, induces spectral anisotropy. To account for the
effect of this anisotropy, a special mathematical procedure
was developed in Bühler et al. (2017). As shown in GS20,
this procedure reduces spectral amplitudes and renders

them closer to QNSE predictions. In a similar fashion,
Kuroshio likely introduces spectral anisotropy enhanced by
MLI (Qiu et al. 2017) in winter. Since the procedure by
Bühler et al. (2017) was not applied, the observed spectral
amplitudes in winter are larger than the QNSE prediction,
red lines in Fig. 7a. In summer, however, the MLI weakens,
the anisotropy likely becomes less pronounced, and the
observed amplitude is in a better agreement with QNSE,
blue lines in Fig. 7a.

A study in Dong et al. (2020) that used the MITgcm
model analyzed the seasonal variability of the energy fluxes

Fig. 7 Seasonal variation of the
quantity
(1/2)[EL(k1) + ET (k1)]
deduced from the ADCP data in
the North-West Pacific Ocean in
the Kuroshio (a) and STCC (b)
bands for winter and summer,
red and blue solid lines,
respectively. They are compared
with the QNSE predictions
shown by respective dashed
lines. The data is given in
Table 1
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Fig. 8 Same as in Fig. 7 but for
NEC (a) and NECC (b). The
black dash-dotted line in (b)
shows the Kolmogorov branch
of the spectrum

across scales as related to the buoyancy production and the
mixed layer depth (MLD). This analysis considered not only
seasonal but also monthly variability which, in principle,
could also be represented in terms of Πε and Lc. However,
since the QNSE theory in its current form does not include
the thermodynamics, such analysis is beyond the scope of
this paper.

Similarly to the Kuroshio band, its STCC counterpart
also develops deep winter mixed layer prone to MLI
on submesoscales (Sasaki et al. 2014; Qiu et al. 2014).
Figure 7b indicates that the effect of turbulence anisotropy
may persevere in winter causing some discrepancy between
the observed and predicted spectra. In summer, however,
this effect virtually disappears and the QNSE prediction
attains a good agreement with observations.

Quantifying the visual results, Table 1 shows that for
both the Kuroshio and STCC bands, the estimated winter
values of Πε and Lc exceed their summer counterparts
while their annual averages are bounded by the seasonal
ones. Of importance, towards long mesoscales, spectra
converge to QNSE-predicted values determined by the
Coriolis parameter.

The tropical region south of 14◦ N that encompasses
NEC and NECC exhibits no appreciable seasonal change of
MLD. Accordingly, Fig. 8 shows that the variability of the
spectra in these bands is quite anemic. For the NEC band,

the seasonal cycle of ESD and Lc is opposite to those for
the Kuroshio and STCC bands while for NECC, the cycles
are in phase but the summer-winter contrast is quite weak.
Dynamically, the summer eddy KE enhancement is related
to the adjustment of the surface wind-forced upper ocean
across the North Pacific basin. Specifically, the seasonal
surface wind forcing over the Pacific Ocean has a winter
maximum and is coherent across the wide Pacific Ocean
basin. The wind-forced upper oceanic anomalies propagate
westward with the speed of the baroclinic Rossby waves
of about 0.15–0.30 m s−1 (Chelton and Schlax 1996) in
the NEC-NECC latitudes. The waves are baroclinically
unstable and produce intermittent turbulence with a dual
cascade that for the NEC and NECC bands generally
peaks in summer. As evident in Fig. 8, this mechanism
produces energy spectra with intermittently fluctuating
amplitudes. But such behavior appears inconsistent with
(5) predicting that on large scales, spectral amplitudes
depend on the Coriolis parameter only. This contradiction
is resolved by noting a close proximity of the NECC band
to the equator where the effect of the Coriolis parameter
diminishes. This fact manifests in a large value of Lc,
about 60 km. The large extent of the Kolmogorov subrange
is also evident in Fig. 8b where the Kolmogorov part of
the expression (1/2)[EL(k1) + ET (k1)] is shown along
with full observed spectra. The Kolmogorov expression

Table 1 Annual and seasonal values of Πε and Lc in the North-Western Pacific

Region Latitude, ◦ N Annual Seasonal

Winter Summer

Πε Lc Πε Lc Πε Lc

Kuroshio 34 3 8.3 4 9.5 1 4.8

STCC 18 3 20 4 23.2 2 16.4

NEC 14 2 24 2 24 3.5 31

NECC 8 3 67 3 67 2 54

Πε × 10−6 is in m2 s−3, Lc is in km; the annual data is from GS20
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provides good approximation for the data for scales up to
about 200 km, i.e., the entire range exhibiting intermittent
fluctuations of spectral amplitudes around Kolmogorov’s
profile. On larger scales, consistent with (5), winter and
summer spectral amplitudes are well represented by the
Coriolis part of (5) and nearly merge.

The visual results are quantified in terms of Πε and Lc in
Table 1. Once again, the seasonal values of these variables
bound their corresponding annual values.

It is of interest to compare the scale Lc with the
transition length scale Lt introduced in Qiu et al. (2017) and
marking the separation between the balanced geostrophic
flows and unbalanced internal waves. The results for Lt

are summarized in Table 2. Since the QNSE theory in its
present form excludes internal waves, this comparison can
only be descriptive. Both Lc and Lt tend to grow with
decreasing latitude which reflects the decreasing influence
of the Coriolis parameter, f , towards the equator. In Qiu
et al. (2017), Lt was found to strongly depend on the energy
level of local mesoscale eddy variability and so it may
exceed 200 km in a relatively stable NEC. In the QNSE
theory, on the other hand, Lc is determined by Πε and f

and as those parameters do not significantly differ from the
corresponding neighboring values, so does Lc.

One of the reviewers asked two interesting questions
concerning potential failures of the QNSE theory in
the equatorial region where the vertical component of
the Coriolis parameter, f , vanishes. One question was
concerned with the effect of the so-called non-traditional
component of the Coriolis parameter, fy , and the other one
regarded a possible importance of the β-effect as in the
absence of f , the equatorial dynamics is sensitive to the
β-term, β being the latitudinal gradient of f .

With regard to the first question, note that this paper deals
with the horizontal KE as a function of the horizontal wave
number. On large scales, the horizontal spectra depend on
f . The theory was derived for any value of f including zero.
The theoretical expressions were tested in GS20 at many
different latitudes and longitudes, including the equatorial
region, and every test demonstrated a good agreement
between the predicted and observed spectra.

To assess the importance of the β-effect in the equatorial
region, one can compute its characteristic length scale,
Lβ = 2π(Πε/β

3)1/5 (Galperin and Read 2019), which,
with Πε = 2 × 10−6 m2 s−3 and β = 2.3 ×
10−11 m−1 s−1, yields Lβ �1,100 km. Thus, on scales
smaller than about 1,100 km, the β-effect is small and
the longitudinal spectrum remains horizontally isotropic
and well approximated by the Kolmogorov expression, as
indeed confirmed in Fig. 8b.

5 Conclusions

The QNSE theory can be used to characterize seasonal
oceanic variability on meso- and submesoscales in terms
of the horizontal KE spectra. The theoretical expressions
for the spectra are comprised of two terms describing
the Kolmogorov and Coriolis branches. Being solely
determined by the rate of the energy transfer, Πε, and
the Coriolis parameter, f , they feature different spectral
exponents. These bi-component spectra cannot be well
approximated by a line with a single slope. Clearly, the
importance of analyzing not only spectral slopes but also the
amplitudes cannot be overstated. Besides, the amplitudes
harbor substantial information about the physical processes
governing the system. For example, in the framework of the
dimensional analysis, it is often possible to infer a spectral
slope from the variables forming the amplitude but the
opposite is not true.

The theory predicts that the submesoscale processes can
be quantified in terms of a single parameter, the energy
flux Πε, that can be associated with the effective sub-
mesoscale dissipation, or ESD. This flux governs various
submesoscale processes and may be quite different from
the dissipation rate, ε, taking place on the microstructure.
The analysis of oceanic observations shows that the val-
ues of Πε in winter may be higher than those in summer
by up to an order of magnitude. This outcome is qualita-
tively consistent with other observational studies showing
more energetic submesoscale dynamics in winter mixed
layer compared to its summer counterpart in the northern

Table 2 Annual and seasonal values of Lt in the North-Western Pacific

Region Latitude, ◦ N Annual Lt Seasonal Lt

Winter Summer

Kuroshio 28–34 15 < 10 18

STCC 14–28 50 20 60

NEC 9–14 250 —- —-

NECC 3-9 120 —- —-

Lt is in km; the data is from Qiu et al. (2017)
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hemisphere away from the tropics where the Kolmogorov
subrange is substantial and turbulence exhibits a high level
of intermittency. To the best of our knowledge, the sea-
sonal oceanic variability on submesoscales has neither been
quantified nor explained in terms of ESD in the preceding
investigations.

The theory predicts higher variability on submesoscales
than on mesoscales because the energy flux, Πε, is
sensitive to seasonal energy flux changes due to instabilities,
transients, fronts, and other factors. On the mesoscales,
the variability is limited by the spectral amplitudes’
dependence on the Coriolis parameter. These predictions
are substantiated by comparisons of the theoretical and
observed spectra in two seasons, winter and summer, at
several locations in the North-West Atlantic and North-West
Pacific Oceans.

Good agreement between the theoretical and observed
spectra indicates that the theoretical expressions can be used
to test the performance of numerical models. Such strategy
has been used for atmospheric models as described, for
instance, in Skamarock et al. (2014) where the ability of
a numerical model to reproduce the Nastrom and Gage
spectra has been often viewed as a measure of model’s
fidelity. In oceanographic research, steps are being made in
a similar direction.

In addition, as was discussed in Section 3, the SGS
schemes in the existing models may over-dissipate the
KE. Comparisons of the computed and theoretical spectra
have exposed the problem. The recent high-resolution
simulations detailed in Nelson et al. (2020) demonstrate
that the over-damping can be decreased with the increase
in resolution as it diminishes the role of the SGS
parameterization. The use of the QNSE-based SGS schemes
may alleviate the over-damping problem in simulations with
moderate resolution used in climate models.

The mesoscale range extends to large scales and features
steeper spectra that harbor high values of the eddy KE. If the
size of the eddies can be associated with the scale at which
the mesoscale spectrum flattens out, as, for example, a scale
around 100 km in Fig. 2 for the NEC, then the seasonal
variability of the eddy KE can be estimated by integrating
the Coriolis branch of (5).

As an illustration, this approach can be used to explain
the relationship between the observed seasonal variability of
the eddy size and the magnitude of the near-surface eddy KE
in the tropical Atlantic ocean presented in Aguedjou et al.
(2019). The data shows that in winter, the eddy size may
reach 100 km while the eddy KE attains about 600 cm2 s−2

while in summer, the scale reduces to about 70 km and the
eddy KE drops to 300–400 cm2 s−2. Taking into account
that on such scales, the spectrum is approximately described
by the Coriolis branch of (5) and integrating that equation

for the specified parameters at θ � 10◦, one recovers the
observed values.
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