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Abstract
Operational ocean nowcast/forecast systems require real-time sampling of oceanic data for representing realistic oceanic condi-
tions. Satellite altimetry plays a key role in detecting mesoscale variability of the ocean currents. The 10-day sampling period and
horizontal gaps between the altimetry tracks of 100 km cause difficulties in capturing shorter-term/smaller-scale ocean current
variations. Operational systems based on a three-dimensional variational method (3dVar) do not take into account temporal
variability of the data within data assimilation time windows. Four-dimensional data assimilation technique is considered as a
possible tool for more efficient utilization of the observations arriving from satellite altimeters by the dynamically constrained
interpolation. In this study, we develop and test the performance of the adjoint-free four-dimensional variational method (a4dVar)
for operational use in regional models. Numerical experiments targeting the Kuroshio path variations south of Japan demonstrate
that the a4dVar scheme dynamically corrects the initial condition so as to effectively reduce the satellite altimetry data misfit
during a 9-day time window. The corrected initial condition further contributes to improvements in the skill of reconstruction of
the Kuroshio path variation in a 30-day lead hindcast run.
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1 Introduction

Utilization of observation data on a real-time basis is crucial for
the operational ocean nowcasting/forecasting based on data-
assimilative ocean general circulation models (Bell et al. 2015).
Assimilation of satellite data including sea surface temperature
(SST) and sea surface height anomalies (SSHA) significantly
improves the estimates of positions, scales, and intensities of
mesoscale features of ocean current phenomena. In situ temper-
ature and salinity profile data (T/S) are essential for correction of
the water mass properties simulated by the ocean models.

The variational method is one of themajor approaches in data
assimilation (DA). The three-dimensional DA (3dVar) schemes
have been adopted for a long time to provide the nowcast/
forecast information of oceanic conditions (e.g., Miyazawa
et al. 2009). However, the 3dVar technique does not take into
account information on the time evolution of ocean state within
the DA time window despite the fact that this information is
always present in the observations. The four-dimensional DA
(4dVar) technique naturally incorporates prior information on
the ocean dynamics, and the respective numerical methods based
on the tangent linear and adjoint (TLA) codes have been already
developed for several ocean general circulation models
(OGCMs) (e.g., Wunsch and Heimbach 2007; Moore et al.
2011; Ngodock and Carrier 2014; Usui et al. 2015).

Development andmaintenance of the TLA codes in addition
to the forward model codes, which perpetually increase in com-
plexity, require significant efforts and expenses. For mitigation
of such difficulties, various kinds of ensemble-based variational
methods have been proposed (Zupanski 2005; Liu et al. 2008;
Zhang et al. 2009; Yaremchuk et al. 2009). These methods do
not require development of the TLA codes and employ ensem-
ble perturbations to estimate the cost function gradients.

The adjoint-free four-dimensional variational method
(a4dVar) developed by Yaremchuk et al. (2016, hereinafter
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Y16) seems to be suitable for oceanic applications of ensemble-
based 4dVar methods because the background error covariance
(BEC) of this scheme does not always require prescribed model
ensembles that should represent the realistic model error statis-
tics. In the ocean, observations are less abundant than in the
atmosphere and the ensemble-based BEC estimates which con-
stitute the backbone of other ensemble-based methods (Liu et al.
2008; Zhang et al. 2009) tend to be much less accurate. The
a4dVar method has been further modified to include hybrid of
seeds of the ensemble perturbations and the balance operator
representing the geostrophic and hydrostatic constraints included
in BEC (Yaremchuk et al. 2017, hereinafter Y17).

In the last decade, the Japan Coastal Ocean Predictability
Experiment (JCOPE) has been in operation for comprehensive
studies of ocean current predictability using OGCMs with a par-
ticular focus on the Kuroshio path variations south of Japan
(Miyazawa et al. 2008; Miyama and Miyazawa 2013, 2014).
The DA scheme of the present operational version is based on
multi-scale 3dVar (ms3dVar) (Miyazawa et al. 2017, hereinafter
M17;Miyazawa et al. 2019).Motivated by recent progress of the
computer facilities characterized by the perpetual increase in the
number of available processors, significant efforts have been
made to develop ensemble-based DA techniques that are highly
efficient in taking the full advantage of the massively parallel
architectures of modern computers. In the framework of the
JCOPE project, these techniques include the ensemble Kalman
filter (Miyazawa et al. 2012, 2013) and have no option of using
TLA codes.

In the present study, we explore the feasibility of imple-
mentation of the a4dVar scheme for representing the Kuroshio
variations south of Japan from a viewpoint of applicability of

the scheme for operational use. Although the a4dVar scheme
demonstrated compatibility with 4dVar in terms of skill and
computational efficiency in regional application (Y16; Y17),
its feasibility in operations is still unclear. In the present paper,
we focus on the (a) selection of the a4dVar parameters suitable
for representing the Kuroshio variations south of Japan, (b)
assessment of the possible skill improvements compared to
3dVar, and (c) exploration of the impact of the balance oper-
ator on the DA performance with a particular focus on assim-
ilation of SSHA component of the data. Studying these issues
is a prerequisite before comprehensive investigating the appli-
cability of the a4dVar scheme in future operations.

This paper is organized as follows. Section 2 provides a
basic description of the model and the 3dVar scheme used in
the present study and details of the a4dVar implementation
and describes sea level data used for independent validation
of the DA experiments. In Section 3, we provide the major
results of the a4dVar implementation, focusing on parameter
sensitivity and a4dVar comparison with the operational 3dVar
in terms of the skill in reproducing oceanic conditions includ-
ing the Kuroshio path variations south of Japan. Section 4 is
devoted to discussion and summarizes the results.

2 Methods and data

2.1 A regional ocean model with a multi-scale 3dVar
DA scheme

To examine the feasibility of a4dVar implementation for DA
simulations of the Kuroshio path variations south of Japan, a

Fig. 1 Bottom topography (color)
in the model region. Black dots
denote positions of the tide gauge
stations: Aburatsu (AB),
Tosashimizu (TS), Murotomisaki
(MU), Kushimoto (KS), Uragami
(UR), Miyakejima (MJ), and
Hachijojima (HJ)

1130 Ocean Dynamics (2020) 70:1129–1149



regional OGCM based on sbPOM (Jordi and Wang 2012) was
configured in the domain shown in Fig. 1. The domain covers a
horizontal range of 28–36° N and 128–142° E with a horizontal
resolution of 1/36° and 46 vertical sigma layers. The bottom
topography of the model (Fig. 1) was created from the 1/120°
data set provided by the Japan Hydrographic Association,
“JTOPO30.” The model was driven by wind and heat fluxes
calculated using the bulk formulae (Kagimoto et al. 2008) with
6-houly atmospheric variables provided from the National
Centers for Environmental Prediction (NCEP)/National
Center for Atmospheric Research (NCAR) reanalysis data
(Kalnay et al. 1996). The surface salt fluxwas relaxed to surface
salinity of the monthly mean climatology, World Ocean Atlas
2001 (Conkright et al. 2002) with a restoring rate of 10 m/
30 days. The lateral boundary condition was specified from
an operational nowcast/forecast system, JCOPE2M, with a hor-
izontal resolution of 1/12° and 46 vertical sigma layers (M17).
Tide forcing was not included.

Starting from temperature/salinity distributions interpolated
from the JCOPE2M product on 1 November 2016 with no mo-
tion and zero sea level, the model was spun up for 8 months
using the ms3dVar DA scheme developed in M17. Satellite sea
surface height anomaly (SSHA), satellite sea surface temperature
(SST), and in situ temperature/salinity profiles (T/S) data were
assimilated into the model with 2-day interval (see Table 1 for
details of the observation data). To reduce computational cost,
the ms3dVar DA analysis was represented on a coarser (1/8°, 24
levels) grid and was interpolated to the model grid. Parameters

required for ms3dVar were basically the same as those described
by M17 except for the setting of SSHA observation error. Time
windows of SSHA, SST, and T/S observational coverage were
respectively bounded by 4, 1, and 5 days before and after the
analysis time. The window size for each type of satellite data was
determined by the respective temporal acquisition frequency.
The major repeat periods of satellite operations are typically
10 days and 1 day for SSHA (e.g., Jason-3) and SST (e.g.,
Himawari-8), respectively. The time window length of T/S was
empirically determined because of the sampling irregularity in
the measurements. The inverse of the SSHA observation error
was specified by aGaussian function of the time interval between
the observation and analysis times with the values of 0.1 m at the
analysis time and 0.27 m at the ends of the observation window.

Incremental analysis update (IAU; Bloom et al. 1996) of
analysis temperature/salinity was also used for better initiali-
zation as in M17. The analysis temperature/salinity used for
IAU was smoothed spatially and temporally to preserve high-
frequency variations represented by the current DA model
which has higher horizontal (1/36°) and temporal (daily) res-
olutions than those of the analysis: 1/8° and 2-day mean, re-
spectively. The first guess state of the a4dVar experiment was
the result of IAU on 4 June 2017 (Fig. 2).

2.2 Implementation of the adjoint-free 4dVar scheme

The a4dVar minimizes a cost function penalizing a misfit
between the observation data and model state together with

Table 1 Details of the observation data used for the data assimilation (also see Acknowledgments)

Data type Horizontal distribution Instruments Product name

SSHA Along-track Cryosat-2, Jason-3, SARAL, Sentinel-3 The Ssalto/Duacs altimeter products

SST 1/10° gridded Himawari-8, Windsat, Global Change Observation
Mission - Water 1, and Global Precipitation
Measurement

JAXA P-Tree (Himawari-8)
JAXA/EORC
GHRSST
(Others)

T/S Profiles ARGO floats, ships, buoys Global Temperature-Salinity Profile
Program (GTSPP)

Fig. 2 Calendar diagrams
representing the first guess state
produced byms3dVar (black) and
the a4dVar time window (blue)
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that between the first guess and model states (Eq. 7) by itera-
tions (Y17; see Appendices 1, 2, and 3 for more details). The
a4dVar scheme in the present study was implemented with the
following parameters.

The background square root error variances V
T ;S;eU ;eV ;eζ

(Eqs. 20–21) were assumed to be stationary and evaluated

by computing root mean square (RMS) variances of the
ms3dVar assimilation products for a 1-year period starting
from 1 January 2017. To mainly focus on the mesoscale eddy
variability, we calculated RMS variance of temperature
(salinity) after removing the horizontal means from the tem-

perature (salinity) variable: RMST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔTt−ΔTt
� �2q

. Here,

Fig. 3 RMS variance of
temperature calculated from a
ms3dVar assimilation result for a
period between January 1 and
December 31, 2017. Horizontal
averages were subtracted from the
temperature field at 1 m (a) and
200 m (b) depths for removing
large-scale seasonal variations
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ΔTt=Tt− (Tt)hm denotes daily anomaly from the horizontal
mean (Tt)hm and overbars denote temporal averages over the
respective data sets. The resulting RMS variance of tempera-
ture deviation ΔTt actually represents the mesoscale variabil-
ity associated with the Kuroshio path variations and the sur-
rounding mesoscale eddy activity south of Japan both at the
surface (Fig. 3a) and at the subsurface levels (Fig. 3b).

The observation error matrix Rt (Eq. 7) was assumed to be
diagonal and stationary. Observation errors of SSHA and SST
were 0.1 m and 2 °C, respectively. Since the observation error
includes the measurement and representativeness errors (Cohn
1997), the magnitudes of the observation errors are usually
larger than those of the measurement errors. The amplitude
of the representativeness errors depends on the model
schemes, grid size, and sampling properties of the observation
data. Note that we applied a relatively large (2 °C) value of the
SST observation error, since we mainly focused on the SSHA
assimilation in the present study. Observation error profiles of
temperature and salinity were evaluated by taking the horizon-
tal mean values of the square root variances of temperature
and salinity deviations, respectively (Fig. 4). The subtraction
of the horizontal mean at each vertical level results in ampli-
fication of the magnitude around the main thermocline depth
(400 m), whose variability is closely related with the meso-
scale eddy variations.

The nondimensional magnitude ε of the ensemble pertur-
bations was 0.01. The relative magnitude of the unbalanced
components β in the SSH and velocity fields was 0.2. After
conducting a series of preliminary experiments, the number of
a4dVar iterations (ensemble updates) in minimizing the cost
function over the DA window was fixed at 10.

We tested three cases of the DA time window length N (5,
9, and 13 days) for a period starting from 4 June 2017. All

observation data including SSHA, SST, and T/S used for the
3dVar assimilation were projected on N+ 1 time layers with
daily interval in between. Throughout the experiments, the
number of search directions (ensemble size) was set to 2N.

In the course of sensitivity experiments, we also tested
three combinations of the horizontal correlation scales Ro1

and Ro2 specifying in the horizontal diffusion operators in
the BEC formulation for the T/S and SSH state vector com-
ponents, respectively: (1) Ro1 = 90, Ro2 = 45, (2) Ro1 = 45,
Ro2 = 21, and (3) Ro1 = 21, Ro2 = 21 (km). The horizontal cor-
relation scale is related to the spatial scale of the mesoscale
eddies in this region. A typical scale of 100 km south of Japan
(M17) provides an upper limit of the scale and the Nyquist
scale of 6 km (2× the grid size) should be the lower limit. We
found an optimum choice among the three combinations of
the parameters used for the sensitivity experiments as de-
scribed later (Section 3.1). We also investigated the effects
of relative weight CB of the BEC by specifying the cost func-
tion in the form,

J ¼ 1

2
x 0ð Þ−x f 0ð Þ� �T

CBBð Þ−1 x 0ð Þ−x f 0ð Þ� �þ ∑
N

t¼0
Htx tð Þ−yot
� �TR−1

t H tx tð Þ−yot
� �� �

;

ð1Þ
whereCB is a constant with tested values 2, 3, 4, and 5 (see Eq.
7 for detailed notations).

All experiments were performed on the Intel Xeon-
based scalar processor system (HPE Apollo 6000 with total
12,240 cores). Each ensemble member run was indepen-
dently calculated by parallel processing with 108 processor
cores. Maximum 108 (cores) × 26 (members) =2808 cores
have been simultaneously used for the ensemble simula-
tions. The average wall time for computing 10 a4dVar was
close to 6 h.

Fig. 4 Profiles of horizontal
averages of the RMS variances of
temperature (black curve) and
salinity (red curve) calculated
from the 1-year ms3dVar
products
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2.3 Independent observation data used for validation

For skill evaluation, we used four types of data, which were not
assimilated into the model. The first data set is sea level obser-
vation obtained at seven tide gauges along the southern coasts
of Japan (Fig. 1). To extract sea level variations associated with
ocean currents, we applied the barometric correction (Kawabe
1989) and removed the tidal variations from the data using the
tide killer filter (Hanawa andMitsudera 1985). It is well known
that the corrected daily sea level variations along the southern
coasts of Japan are closely related to the Kuroshio path and,
therefore, can serve as an important indicator of ocean variabil-
ity at larger scales (Kawabe 1989). The tide gauge sea level
(TGSL) data were never assimilated in both 3dVar and
a4dVar cases, and thus, they were independent from the DA
procedures. SSHA values from the DA model runs were com-
pared with the tide gauge observations after extracting temporal
means from both products during the DA target period.

The second type of observations used for validation is the
SSHA, SST, and T/S data acquired in a period immediately
following the DA window. After optimizing the ocean state at
the end of the DA window either 3dVar and a4dVar technique,
the model was run freely (without DA) over the period
(“hindcast,” later described in Section 3.3), and its output was
compared with the respective data acquired during this period.

The Kuroshio axis position data reported by the Japan Coast
Guard (the JCGKuroshio report) for monitoring the real oceanic
conditions were used for the validation of the hindcast results.

In addition, we also compared the ocean currents at 15 m
depth with drifter velocity (DFV) data calculated from
drogued drifter data compiled by the Drifter Data Assembly
Center (DAC) at the Atlantic Oceanographic andMeteorological
Laboratory (AOML). The drifter data were quality-controlled
and interpolated to 6-houlry intervals using an optimum interpo-
lation procedure (Lumpkin and Centurioni 2019).

2.4 Reference data for skill comparison

For skill comparison, we used daily level 4 gridded SSHA data
(L4SSHA) at 0.25° resolution from the COPERNICS Marine
Environment Monitoring Service (CMEMS). This data set was
synthesized from multiple along-track SSHA observations by

using a statistical interpolation technique (Pujol et al. 2016).
Both L4SSHA and our DA products have the same source
(along-track SSHA data) but were obtained using different (sta-
tistical and dynamical, respectively) interpolation techniques.We
evaluated the skill of L4SSHA with respect to the tidal gauge
SSHA for reference. The L4SSHA data provided from CMEMS
include the daily geostrophic current (CMEMS geostrophic cur-
rent) evaluated from the abovementioned daily SSH data com-
bining the absolutemean sea level and daily L4SSHAdata (Pujol
et al. 2016). We evaluated the skill of the CMEMS geostrophic
current with respect to the drifter data.

2.5 Skill metrics

To assess the skills of the DA products, we evaluated the
overall reduction ratio of the cost function (1),

rrcost ≡
J end
J fg

; ð2Þ

where the subscripts fg and end denote, respectively, the cost
function value of the first guess solution and at the end of
assimilation.

For a more detailed assessment, the reductions of the
model–data misfit term (the second term) of the cost function
(1) were estimated separately for each observation variable
type (SSHA, SST, T/S):

JType ¼ 1

2
∑
N

t¼0
HtType tð Þ−Typeot
� �TR Typeð Þ−1t H tType tð Þ−Typeot

� �
;

ð3Þ

Table 2 Skill dependence on lengths of the time window
(CB=3,Ro1 = 90,Ro2 =45)

Time window
length (day)

rrcost rrcost(ssha) rrcost(sst) rrcost(t) rrcost(s)

5 1.00 0.58 1.19 1.52 0.91

9 0.77 0.52 0.89 0.70 0.97

13 0.79 0.58 0.91 0.71 0.88

Table 3 Skill dependence on the horizontal correlation scales (CB=3,
9-day time window)

Horizontal
correlation
scale (km)

rrcost 10-day lead hindcast
CORTGSL=RMSDTGSL m=sð Þ

Ro1 = 90, Ro2 = 45 0.99 0.34/0.042

Ro1 = 45, Ro2 = 21 0.77 0.62/0.036

Ro1 = 21, Ro2 = 21 0.77 0.56/0.040

Table 4 Skill dependence on the weights of BEC (9-day time
window,Ro1 = 45, Ro2 = 21)

Weight
of BEC

rrcost 10-day lead hindcast
CORTGSL=RMSDTGSL m=sð Þ

2 0.79 0.54/0.037

3 0.77 0.62/0.036

4 0.77 0.48/0.039

5 0.83 0.62/0.039
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and the respective reduction ratios were computed:

rrcost Typeð Þ ≡ J end Typeð Þ
J fg Typeð Þ ð4Þ

To assess similarity in the field variation, we also calculat-
ed correlation (COR) and root mean square difference
(RMSD) between the model (Model) and observation (Obs)
variables (TGSL and DFV),

COR ¼
∑
L

Model−Model
� �

Obs−Obs
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

Model−Model
� �2

∑
L

Obs−Obs
� �2

r ; RMSD

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

Model−Obsð Þ2

L

vuut
;

ð5Þ
where L is the number of the target observations and overbars
denote averages over the respective data sets. To estimate the
skill in representing the TGSL observed at the seven stations
(Fig. 1), we further calculated averages of RMSD and COR
among all these stations,

CORTGSL ¼ ∑
7

n¼1
CORn; RMSDTGSL in mð Þ ¼ ∑

7

n¼1
RMSDn ð6Þ

3 Results

3.1 Experiments on sensitivity to variation
of the a4dVar experiments

We conducted a series of experiments for investigating sensi-
tivity of the time window length (N) on the skill. Other pa-
rameters were fixed at CB= 3, Ro1 = 45, Ro2 = 21. The time
window lengths affect the efficiency of the cost function min-
imization as shown in Table 2. The 9-day window is charac-
terized by the largest reduction ratio (rrcost) of the total cost

function. Reduction of a cost function term penalizing the
distance with SSHA observation (rrcost(ssh)) is less sensitive
to the time window length than the other terms.

Effects of the horizontal correlation scales Ro1 and Ro2 on
the skills were examined by conducting three experiments
with fixed parameters of the 9-day window length and
CB= 3 (Table 3). In addition to the DA runs during the time
window from 4 to 13 June 2017, we performed hindcast runs
from 13 June to 23 June 2017 (10-day lead hindcasts) without
DA starting from the optimized states on 13th of June
obtained after the DA runs. The use of the larger hor-
izontal scales (Ro1 = 90,Ro2 = 45 km) results in skill de-
terioration for both the DA and 10-day lead hindcast
periods. The larger-scale diffusion parameters of BEC
suppress smaller-scale features in the correction incre-
ment to the initial condition by intensively smoothing
them (not shown). Table 3 further indicates the smaller
correlation scales (Ro1 = 21,Ro2 = 21 km) tend to produce
somewhat worse skills for the 10-day lead hindcast (right
column in Table 3).

Using the 9-day DA window (N= 9) and the horizontal
correlation scales of Ro1 = 45, Ro2 = 21 km, we conducted a
series of sensitivity experiments by varying the relative
weighting CB of the BEC (Eq. 1). Table 4 indicates that the
case withCB= 3 provides the best skills for both of the DA run
and the 10-day lead hindcast. We thus decided to analyze the
a4dVar best case with N= 9, Ro1 = 45, Ro2 = 21 and CB= 3
(hereafter referred as “a4dVar”) in more detail.

The ratio of total cost (rrcost) (Eq. 2) reduced to a fixed
level of 0.77 after 10 iterations (not shown) which seems to be
significantly larger than that reported in the regional study of
Y17 of the Adriatic Sea (0.2). This is because the first guess
state in the present study was initialized by the well-tuned
3dVar (M17) but not a free running simulation as in Y17.
All terms of the cost function penalizing distances between
the model and observations (Eq. 3) show reduction of their
values. In particular, the SSHA model–data misfit
(rrcost(SSHA)) (Eq. 4) demonstrates the most significant

Fig. 5 Time sequences of RMSD
between the simulated and
observed SSHA during the 9-day
DA window for the first guess
(blue curve), the a4dVar best case
(green curve), and the ms3dVar
assimilation product (red curve)
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reduction (0.52, Table 2) of the initial value. A time sequence
of RMSD between the modeled and observed SSHA in the
a4dVar case (Fig. 5, green curve) exhibits a reasonable reduc-
tion to the level around 0.1 m, which is a prescribed measure-
ment error of SSHA, as compared to relatively large RMSDs
of the first guess run starting from the initial condition

Fig. 6 Corrections to temperature
(shades) and velocities (vectors)
of the initial conditions at 1 m (a)
and at 200 m (b) depths on 4
June 2017 in the a4dVar best case

�Fig. 7 (Left) Snapshots of temperature (shades) and velocities (vectors) at
200 m depth during the 9-day DAwindow period in the a4dVar best case.
(Right) Difference in temperature (color) and velocities (vectors) between
the a4dVar and the first guess solutions. White-colored arrows represent
the positive temperature anomaly associated with a rise of sea level at
Hachijojima on 13 July 2017 (see Fig. 11b)
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Fig. 8 a–c B-smoothed SSHA
data misfit (color) and difference
in temperature (contours)
between the a4dVar and the first
guess solutions
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generated by 3dVar (Fig. 5, blue curve). The RMSD in the
a4dVar run also exhibits a similar level of fitting to
SSHA as compared to that in the 3dVar assimilation
product (Fig. 5, red curve).

3.2 Oceanic conditions represented by a4dVar
within the 9-day time window

The a4dVar increment to the initial condition δx = x − xf,
shown in Fig. 6, indicates that regions of the largest correc-
tions are confined around the Kuroshio main stream. This
feature is consistent with the enhanced variability around the
Kuroshio front represented by the square root mean variance
(Fig. 3), which is included in BEC (Eq. 20). Horizontal scale
of the correction in the temperature field is generally larger at
the surface (Fig. 6a) than at the subsurface (Fig. 6b). The
magnitude of correction to the temperature field is stronger
at 200 m depth than at 1 m depth. This is also consistent with
the vertical profile of the temperature variance (Fig. 4). In
contrast, the correction to the flow field is larger at 1 m depth
than at 200 m depth reflecting the structure of vertical profiles
of velocity variance (not shown).

Figure 7 compares snapshots of the a4dVar-optimized sub-
surface fields (left) and the respective differences between the
optimized and first guess fields (right) during the 9-day DA
window. Changes by applying a4dVar are most evident east
of 135° E as seen in the increment structure. In particular, the
southeastward elongation of the Kuroshio meander around
32° N, 138° E visible on 13 June 2017 in the first guess run
(not shown) is less profound in the a4dVar case.

Comparison of the B-smoothed SSHA (Eq. 30) model–
data misfit and difference in the subsurface conditions be-
tween the a4dVar and first guess runs (Fig. 8) demonstrates
that the a4dVar scheme dynamically corrects the first guess
state to reduce model–data misfit at the later observation
times. Blue/red colors in Fig. 8 indicate that the first guess
run overestimates drop (rise) of SSHA at measurement times.

The negative SSHAmisfit on June 4 is partly compensated by
the positive increments of the subsurface temperature denoted
by the black solid contours (top panel of Fig. 8). This means
that the a4dVar scheme vertically projects the information on
the SSHA data misfit to the subsurface oceanic condition. The
downstream propagation of the temperature increment (to 32°
N 138° E on June 13, shown by the white arrow in the right
panels of Fig. 7) tends to correct the SSHA data misfits around
the measurement places at the measurement times in the
a4dVar run (middle and bottom panels of Fig. 8).

Validation by the independent TGSL data (Table 5, Eq. 6)
indicates a4dVar improves the correlation of the first guess
run even though it slightly increases RMSD. The correlation
of the a4dVar run shows the best skill among all the products.
The skills of 3dVar assimilation and L4SSHA product are
worse than a4dVar because they have a tendency to smooth
temporal variations of SSHA at time scales shorter than the
typical satellite repeat cycle of 10 days. Comparison of the
surface current with the independent DFV data indicates a
slight improvement in the estimate of the skills by the
a4dVar iteration (cf. itr = 1 and itr = 10 in Table 6). The
ms3dVar assimilation and CMEMS products outperform the
a4dVar result during this DA window because the former
products assimilate additional data that are not included in
the a4dVar DA window. This additional information might
be effective for representing the surface currents even it is
not obtained within the DA window period, because the tem-
poral scale of the surface drifter currents ranges from 1 to
7 days in the subtropical ocean (McClean et al. 2002).

3.3 Comparison of the hindcast run initialized
by the a4dVar and other products

We conducted 60-day hindcasting experiments beyond the 9-
day DA window to investigate the differences in the skills
between hindcast runs starting from the 3dVar- and a4dVar-
optimized initial conditions on 13 June 2017. We used the

Table 5 Skill comparison within the 9-day time window for the TGSL data

Time window length
(day) | period

First guess run (itr = 1)
CORTGSL=RMSDTGSL m=sð Þ

a4dVar run (itr = 10)
CORTGSL=RMSDTGSL m=sð Þ

ms3dVar assimilation
CORTGSL=RMSDTGSL m=sð Þ

CMEMS L4SSHA
CORTGSL=RMSDTGSL m=sð Þ

9 | 4 to 13 June 2017 0.24/0.049 0.34/0.050 0.29/0.059 0.17/0.039

Table 6 Skill comparison within the 9-day time window for the DFV data

Time window length (day) |
period

First guess run (itr = 1)
CORDFV=RMSDDFV m=sð Þ

a4dVar run (itr = 10)
CORDFV=RMSDDFV m=sð Þ

ms3dVar assimilation
CORDFV=RMSDDFV m=sð Þ

CMEMS geostrophic
current
CORDFV=RMSDDFV m=sð Þ

9 | 4 to 13 June 2017 0.37/0.52 0.39/0.51 0.53/0.38 0.63/0.19
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3dVar-initilized condition on 10 June 2017 because the 3dVar
scheme assimilated SSHA obtained during the almost the
same DA window (from 5 to 13 June) for producing the anal-
ysis on 9 June 2017 (Fig. 9). The only difference between the
3dVar and a4dVar runs was the initial conditions: all other
external forcing data for providing the surface and lateral
boundary conditions were exactly the same. Since the surface
forcing and lateral boundary conditions were created from the
atmospheric (NCEP/NCAR) and oceanic (JCOPE2M) reanal-
ysis products, the assimilation runs are referred as “hindcasts”
that were examined in terms of predictability of the model
trajectories initialized on 13 June 2017 by the ms3dVar and
a4dVar DA techniques.

Figure 10 compares RMSD of SSHA between the hindcast
runs and observation data during the first 10-day period from
13 to 23 June 2019. Note that no SSHA data were obtained on
19 June. The a4dVar run shows significantly (3–5 cm) smaller
SSHA RMSD within the first 4 days (June 13–17) than the
ms3dVar hindcast run (green and blue lines in Fig. 10) and is
at a comparable level with the ms3dVar DA product (red line).
RMSDs of SST are quite of similar levels around 1 °C and

gradually increase for both a4dVar and ms3dVar runs as com-
pared to a relatively stable RMSD variation of the ms3dVar
product (not shown).

Validation using the independent TGSL data exhibits a
significantly better a4dVar hindcast as compared to
ms3dVar. Table 7 clearly demonstrates that the a4dVar run
considerably outperforms the ms3dVar run for the hindcast
periods from 10 to 30 days. Figure 11 a visualizes significant
improvements in correlation by a4dVar at all the seven sites
for the 30-day hindcast period. A typical example of the skill
improvements at Hachijojima (HJ, see Fig. 1 for the location)
is shown in Fig. 11b. The a4dVar run successfully represents a
sea level rise on 13 July 2017, whereas the ms3dVar run fails
to do it, as denoted by an arrow in Fig. 11b. This is because the
a4dVar run successfully simulates a ridge of SSH at the east
side of the Kuroshio meander around HJ (Fig. 12b), while the
ms3dVar run does not (Fig. 12a). The difference in tempera-
ture and velocities at 200 m between the a4dVar and ms3dVar
runs (Fig. 12c) shows that a positive temperature and anticy-
clonic circulation anomaly (white arrow in Fig. 12c) is respon-
sible for the prominent SSH ridge around HJ in the a4dVar

Fig. 9 Calendar diagrams
representing the hindcast runs
initialized by a4dVar (blue) and
ms3dVar (black) operations

Fig. 10 RMSD evolution of the
SSHA model–data misfit for
various model products for the
10-day hindcast period. Blue,
green, and red curves denote the
runs initialized by the a4dVar,
ms3dVar, and ms3dVar products,
respectively
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Table 7 Skill dependence on the lengths of the hindcast leading period for the TGSL data

Hindcast leading
time (day) | period

ms3dVar-optimized
initialization
CORTGSL=RMSDTGSL m=sð Þ

a4dVar-optimized
initialization
CORTGSL=RMSDTGSL m=sð Þ

ms3dVar assimilation
CORTGSL=RMSDTGSL m=sð Þ

CMEMS L4SSHA
CORTGSL=RMSDTGSL m=sð Þ

10 | 13 to 23
June 2017

− 0.03/0.050 0.62/0.036 0.52/0.040 0.50/0.036

20 | 13 June to 3
July 2017

0.26/0.077 0.69/0.068 0.62/0.060 0.81/0.060

30 | 13 June to 13
July 2017

0.52/0.071 0.76/0.069 0.71/0.063 0.80/0.067

60 | 13 June to 12
August 2017

0.39/0.087 0.43/0.097 0.62/0.077 0.62/0.065

Fig. 11 a Comparisons of the
correlations between the modeled
and observed sea level data at the
seven tide gauge stations for the
30-day hindcast period (13 June–
13 July 2017). Station locations
are shown in Fig. 1. b Evolution
of the sea level anomaly at
Hachijojima (HJ). Blue, green,
and black curves denote the run
initialized by a4dVar, ms3dVar,
and observation data, respectively
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Fig. 12 a A snapshot of SSH
(color) on 13 July 2017 in the run
initialized by ms3dVar. A blue
curve denotes the Kuroshio axis
position of the model.White color
curves denote the weekly mean
observed axis positions provided
from the Japan Coast Guard. The
duration of the weekly mean
period was daily updated and then
all position data including the
target day in their weekly mean
periods were plotted. A red circle
indicates the Hachijojima tide
gauge station. b Same as in a
except for the run initialized by
a4dVar. c Difference in
temperature (color) and velocities
(vectors) between the runs
initialized by a4dVar and
ms3dVar. A white arrow
indicates the positive temperature
anomaly associated with the
observed increase of sea level at
Hachijojima
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run. This anomaly originates from the positive temperature
increment around 33° N, 137° E added to the first guess initial
condition (white arrows in the right panels of Fig. 7).

Note that RMSD in the latitudinal position of the meander
(defined as the strongest SSH gradient positions that were
detected among the grids with kinetic energy magnitudes larg-
er than 0.4 m2/s2 in a longitudinal range from 133 to 141° E,
shown by the blue curves in Fig. 12 a and b) and the JCG
Kuroshio reports (white curves in Fig. 12 a and b) is much
larger (0.39°) for the ms3dVar run (Fig. 12a) as compared to
the a4dVar (0.25°) run (Fig. 12b). Temporal mean RMSDs for
the period from 13 June to 13 July 2017 are 0.37° and 0.29°
for the ms3dVar and a4dVar runs, respectively.

Table 7 further indicates that the a4dVar hindcast demon-
strates comparable or slightly better skills as compared to the
ms3dVar DA and L4SSHA products for the hindcast periods
of 10 to 30 days. In particular, the a4dVar run provides the
best skill among all the products for the 10-day hindcast peri-
od, implying a superiority of the a4dVar scheme which clearly
demonstrates a capability of dynamically consistent correc-
tions to the initial condition.

The hindcast skill of the a4dVar run deteriorates for the 60-
day hindcast period as shown in Table 7. In this case, the
Kuroshio meander merged with a cyclonic eddy around 30°
N, 140.5° E in the last half of July 2017 causing a significant
intensification of the meander at the beginning of August (not
shown). Such episodic nonlinear interactions with the mean-
der and the eddy affected the skills. Other simulations (e.g.,
initialized by a4dVar with CB = 5) demonstrated no such
merger event (not shown), and the skills in those cases are
better for the 60-day hindcast period than that in the present
case. We assume that the Kuroshio path variations at hindcast
times exceeding 1 month after the initialization are basically
beyond of the predictability limit (Miyazawa et al. 2005).

Validation by the independent DFV data shows that the
a4dVar-optimized run results in better skills for relatively lon-
ger validation periods than the ms3dVa-optimized run
(Table 8). Figure 13 shows sampling positions of the surface
drifter velocities during the 10-day (Fig. 13a) and 60-day
(Fig. 13b) hindcast periods. Figure 13 suggests that the skill
assessment could be affected by the sampling locations and
timings. For most of the sampling positions which cover

almost the entire model region, the a4dVar-optimized hindcast
run exhibits a good enough skill comparable to those of the
alternative data assimilation (ms3dVar and CMEMS) prod-
ucts (60-day length in Table 8 and Fig. 13b).

We compared temperature and salinity profiles of the
hindcast runs with those independently observed during the
same hindcast period. With increasing the target period length,
RMSDwith the observed data generally increases (not shown).
Validation results for the 60-day hindcast length (Fig. 14) show
that RMSDs of the a4dVar-optimized run are slightly larger
than those of the ms3dVar-optimized run, while the RMSD
amplitudes of both runs (Fig. 14) are quite similar to the RMS
variances of the BEC (Fig. 4). Although during the 9-day DA
window, the a4dVar optimization reduces RMSD of T/S data
(Table 2), the a4dVar optimization does not much affect the
reproducibility of temperature and salinity distributions during
the following hindcast period. This is partly attributed to the fact
that a4dVar correction of the initial conditions is mainly driven
by improving the fit to SSHA data, although attraction to the T/
S data partly contributes to the overall cost reduction evaluated
during the DA window period (Table 2).

4 Summary and discussion

This study demonstrated the successful implementation of the
adjoint-free 4dVar scheme (Y16; Y17) in JCOPE operational
ocean nowcast/forecast system originally based on a ms3dVar
DA scheme (M17). It is shown that by correcting the first
guess initial condition produced by ms3dVar, the a4dVar
scheme improves the nowcast/forecast skills in representing
the Kuroshio path variations south of Japan. Similar to 4dVar,
the a4dVar is capable of reducing the model–data misfits
within the accuracy of the measurement errors at right timing
within the 9-day DA window used in the experiments.

We attribute the major improvements in fitting SSHA ob-
servations to inclusion of the information on the B-smoothed
data misfits into the set of ensemble perturbations and the use
of the balance operator in specifying the BEC structure. These
a4dVar features allowed effective transformation of the infor-
mation on the SSHA data misfit to the balanced perturbations
of subsurface temperature/salinity and velocity fields which

Table 8 Skill dependence on lengths of the hindcast leading period for the DFV data

Hindcast leading time (day) |
period

ms3dVar-optimized
initialization
CORDFV=RMSDDFV m=sð Þ

a4dVar-optimized
initialization
CORDFV=RMSDDFV m=sð Þ

ms3dVar assimilation
CORDFV=RMSDDFV m=sð Þ

CMEMS geostrophic
current
CORDFV=RMSDDFV m=sð Þ

10 | 13 to 23 June 2017 0.18/0.40 0.02/0.44 0.58/0.33 0.67/0.18

20 | 13 June to 3 July 2017 0.88/0.31 0.83/0.33 0.79/0.31 0.67/0.18

30 | 13 June to 13 July 2017 0.64/0.40 0.68/0.41 0.89/0.20 0.81/0.16

60 | 13 June to 12 August
2017

0.52/0.33 0.77/0.23 0.82/0.27 0.84/0.20
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are able to dynamically constrain the model state at the later
times within the DA window (Figs. 6, 7, and 8).

Since the a4dVar scheme requires neither a prescribed en-
semble representing the background error statistics as in other
ensemble-based 4dVar methods (e.g., Liu et al. 2008), nor the
TLA codes for efficient estimation of the cost function gradi-
ent, it has been smoothly introduced into the established op-
erational forecast system without significant modifications of
the system software. The implementation of the a4dVar

scheme leveraged the results available from the multi-scale
3dVar DA scheme (M17) which were used as the first guess
to safely obtain the incremental improvements of the skills in
addition to those delivered by the established operational sys-
tem. Comparison of the wall time consumption by ms3dVar
and a4dVar has shown that, similar to 4dVar, the a4dVar
scheme is approximately 8 times more time consuming and
requires 115 times more total CPU time. We estimate, how-
ever, that these numbers would have decreased at least four

Fig. 13 The surface flows
evaluated from the drogued drifter
tracks (black vectors) and the
velocities at 15 m depth of the run
initialized by a4dVar (blue
vectors). a 13 to 23 June 2017. b
13 June to 12 August 2017
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times if the ms3dVar analysis were executed at the same res-
olution as a4dVar, whose grid had 38 times more nodes than
the ms3dVar analysis grid. We should also note that such
unfavorable comparison would further relax with time due
to the perpetual growth of the number of processor cores in
the modern computational architectures. However, since the
present study dealt only with a specific period of the Kuroshio

variations, a comprehensive testing of the a4dVar scheme for
other periods/cases awaits further exploration.

The a4dVar skills was found to be sensitive to the relative
magnitudes of observation and background errors and the
horizontal correlation scales used in the information of BEC,
as indicated by Tables 3 and 4. The BEC formulation could be
further generalized by including the flow-dependent/

Fig. 14 Profiles of horizontal
averages of the RMSD of a
temperature and b salinity
calculated for the 60-day hindcast
period from 13 June to 12 August
2017. Blue, green, and red curves
denote the runs initialized by the
a4dVar, ms3dVar, and ms3dVar
products, respectively
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anisotropic correlations to further improve the skills of the
a4dVar implementation. As an example, development of hy-
brid schemes (e.g., Yaremchuk et al. 2011) combining ensem-
ble Kalman filter (e.g., Miyazawa et al. 2012) and a4dVar
methodologies may be feasible in near future perspectives.
In particular, the flow-dependent error covariance represented
by the ensemble Kalman filter is effective for the assimilation
of the high-resolution SST with relatively short-term variabil-
ity (Miyazawa et al. 2013).
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Appendix 1. Adjoint-free 4dVar (a4dVar)
scheme

The a4dVar scheme minimizes a cost function,

J ¼ 1

2
x 0ð Þ−x f 0ð Þ� �T

B−1 x 0ð Þ−x f 0ð Þ� �þ ∑
N

t¼0
Htx tð Þ−yot
� �TR−1

t Htx tð Þ−yot
� �� �

;

ð7Þ
where x( t) is the vector of model state variables
(t= 0, 1,…,N), xf(t) is the first guess state,B(Rt) is background
(observation) error covariance matrices, and Ht is a linear op-
erator projecting the model state variables to the observation
data, yot . The cost function (7) is modified and approximated
by using an incremental form: δx= x− xf, with the new vari-
able v=B−1/2δx, and the linearized model operator:Mt(M0 = I;
I is the identity matrix) of the original nonlinear model oper-
ator: Nt(x(t) =Nt(x(0))),

J vð Þ≅J 0
vð Þ ¼ 1

2
vTvþ ∑

N

t¼0
HtMtB1=2v−dt

� �T
HtMtB1=2v−dt

� �� �
;

ð8Þ

where Ht ¼ R−1=2
t ; dt ¼ R−1=2

t yot −HtMtB1=2x f 0ð Þ� �
. A solu-

tion of the 4dvar DAmethod is obtained by applying the zero-
gradient condition,

∇J
0 ¼ vþ ∑

N

t¼0
B1=2TMT

t H
T
t HtMtB1=2v−dt
� �

¼ 0: ð9Þ

By introducing the following notation for the Hessian ma-

trix eH and the right-hand side term b,

eH ¼ I þ ∑
N

t¼0
BT=2MT

t H
T

t HtMtB1=2 ; ⋅b ¼ ∑
N

t¼0
B1=2TMT

t H
T

t dt; ð10Þ

we define the solution of the normal equation

∇J 0 ¼ Hv−b ¼ 0.
We seek the optimal correction of the control variable (the

initial condition) v in the search subspace spanned by ms aux-
iliary ensemble perturbation vectors pm:

v←vþ ∑
l¼1

ms

SlPl; ð11Þ
where the coefficients sl satisfy for m= 1, 2, …, ms,

pTm∇J
0 ¼ pTm H vþ ∑

l¼1

m2

slpl

	 

−b

	 

¼ 0: ð12Þ

Rewriting (12) leads to,

∑
l¼1

ms

pTm eHplsl ¼ pTm b−eHv
� �

: ð13Þ

To solve Eq. (13) for sl, we introduce small perturbations
δcm= εpm. If ε is sufficiently small, we can evaluate linear per-
turbations modified by the action of the square root Hessian,

δYm ¼ eH1=2
δcm; ð14Þ

where eH ¼ HT=2H1=2,

eH1=2
¼

B−1=2

H0

H1M
⋮

HNMN

266664
377775B1=2; ð15Þ

and MtB
1/2δcm≅Nt(x

f+B1/2(v+ δc))−Nt(x
f+B1/2v).

With use of the linear approximation for the small ampli-
tude perturbation (14), Eq. (13) is rewritten in the form,

∑
l¼1

ms

δYT
mδY lsl ¼ εδcTm b−eHv

� �
¼ −εδcTm∇J

0
vð Þ: ð16Þ

Solving Eq. (16) is still difficult, because calculation of a
right-hand side term requires the adjoint operator, MT

t .
Introducing further approximation of the cost function pertur-
bations via Taylor expansion inδcm, we get:

J vþ δcmð Þ−J vð Þ≅δcTm∇J
0
vð Þ þ 1

2
δcTm eHδcm

and thereby,

∑
l¼1

ms

δYT
mδY lsl ¼ ε

1

2
δYT

mδYm− J vþ δcmð Þ−J vð Þð Þ
	 


: ð17Þ
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The ms×ms size matrix equation (17) could be formally
solved, if the symmetric matrix of the left side has all positive

eigenvalues. For instance, if all the vectors of δcm are eH -
orthogonal among each other: δYT

mδY l ¼ ε2δml (δml is the
Kronecker delta),

sl ¼ ε
2
−
1

ε
J ν þ δcmð Þ−J νð Þð Þ ð18Þ

This suggests that the choice and size of ensemble pertur-
bations are critical in solving the matrix equation (17), and this
issue is described in detail later. By repeating the correction of
the initial condition (11), the cost function (7) is gradually
minimized. The matrix equation (17) does not require actions
of no tangent linear (Mt) and adjoint (MT

t ) operators, and
therefore, this method is originally called “adjoint-free”
(Y16; Y17).

Appendix 2. BEC matrix with a balance
operator

The vector of state variables (x) contains the values of temper-
ature (T), salinity (S), velocities u!¼ U ;Vð Þ� �

, and sea sur-
face height (ζ) fields in the model grid points. Assuming that
they are partitioned into (TS(x1)) and ( u!ζ x2ð Þ ) components
satisfying, x2 ¼ Lx1 þex2, where L is a (linear) balance oper-
ator, the BEC can be expressed in the following form:

B ¼ xxT
� � ¼ x1xT1

� �
x1xT2
� �

x2xT1
� �

x2xT2
� �� �

¼ B1 B1LT

LB1 LB1LT þ B2

� �
¼ I1 0

L I2

� �
B1 0
0 B2

� �
I1 LT

0 I2

� �
; ð19Þ

where B1 ¼ x1xT1
� � ¼ BT 0

0 BS

� �
; B2 ¼ ex2exT2� � ¼

BeU 0

0 BeV
" #

are unbalanced (ageostrophic) components of x2, and I1, I2
are the identity matrices of respective sizes (Yaremchuk and
Martin 2016). The covariance matrixes B

T ;S;eU ;eV ;ζ are defined
by.

BT ;S ¼ VT ;SCT ;SVT ;S ; ð20Þ
BeU ;eV ;ζ ¼ β2V eU ;eV ;ζCeU ;eV ;ζV eU ;eV ;ζ ; ð21Þ

where V
T ;S;eU ;eV ;ζ are the diagonal root mean square error var-

iance matrices of T ; S; eU ; eV ; ζ; C
T ;S;eU ;eV ;ζ are the respective

correlation matrices; and β is the relative magnitude of the
unbalanced components of eU ; eV ; ζ.

C
T ;S;eU ;eV ;ζ could be modeled by the polynomial approxima-

tion Cp or the exponential expression Ce of the solution of a

diffusion equation representing horizontal correlation of the
target variables:

Cp≅ I−
R2
o

4
Δ

� �−2
; Ce≅exp

R2
o

2
Δ

� �
; ð22Þ

where Ro is the decorrelation radii and Δ is the horizontal
Laplacian operator. The square root operators of C

T ;S;eU ;eV are

conveniently represented as

C1=2
p ≅ I−

R2
o

4
Δ

� �−1
; C1=2

e ≅exp
R2
o

4
Δ

� �
: ð23Þ

We used two values of the decorrelation radii: Ro1 and Ro2,
which were applied for TS (x1) and u!ζ (x1) variables, respec-
tively (Ro1 >Ro2 as in Y17). The square root of B and its
inverse are represented as,

B1=2 ¼ I1 0
L I2

� �
V1 0
0 V2

� �
C1=2

1 0

0 C1=2
2

" #
ð24Þ

B−1=2 ¼ C−1=2
1 0

0 C−1=2
2

" #
V−1
1 0
0 V−1

2

� �
I1 0
−L I2

� �
ð25Þ

Our implementation adopts the exponential form (Ce) for
calculation ofB and B1/2 and utilizes the polynomial form (CP)

for calculation of B1/2 (C−1=2
p ≅I− R2

o
4 Δ ), because Ce is not

invertible numerically.
The balance operator L is defined by the finite-difference

approximation of the following equations:

Ug ¼ −
1

f ρ0

∂p
∂y

; Vg ¼ 1

f ρ0

∂p
∂x

; ζg ¼ −
1

ρ0
∫

z¼0

z¼−h
ρ x; y; z

0
� �

dz
0
;

ð26Þ

where the hydrostatic pressure, p ¼ g ρ0ζ þ ∫
z
0 ¼0

z0¼z
ρ x; y; z

0� �
dz

0

" #
,

and the linearized density equation, ρ = ρr(T0, S0) +
αT(x, y, z,T0, S0)T

′+βS(x, y, z,T0,S0)S
′ with temperature and

salinity anomaly values, T′ and S′, and their associated con-
stants, αT and βS, respectively (Yaremchuk and Martin 2016).

Appendix 3. Ensemble perturbations
within the range of BEC

Consider a generalized eigenvalue problem for a sample co-
variance matrix XXT:

XXTE ¼ BEΛ; ð27Þ

where X is the I× J matrix of sample data, E is the I× J
matrix of B-orthonormal eigenvectors, and Λ is the diagonal
J × J matrix of the respective eigenvalues. The matrix of
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search directions S is defined by S = BE. The problem (27) is
reduced to the standard eigenvalue problem,

X
0
X

0T
E

0 ¼ E
0
Λ; ð28Þ

where X′=B−1/2X, E′=B−1/2E, and S=B1/2E′.
Columns of the sample data matrix Xi at iteration i are

composed of the hybrid sequences,

X i ¼ xit¼0; s
i
t¼0; x

i
t¼1; s

i
t¼1;…; xit¼N ; s

i
t¼N


 �
; ð29Þ

where xit¼n is the model state at iteration i and time n, and

sit¼n ¼ BHT
t¼n Hxit¼n−yt¼n

� � ð30Þ

is the B-smoothed data misfit. Extraction of the leading modes
from the hybrid sequences (29) by solving (27) allows to
produce the ensemble perturbations which include informa-
tion combining the model dynamics (trajectory) and balanced
error fields (29, 30) on the current a4dVar iteration.
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