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Abstract
The genetic algorithm (GA) model presented here provides specific JONSWAP parameters that can be used for wave
modelling. This work describes a validated heuristic model based on GA, to select JONSWAP spectra parameters, regardless
of water depth restrictions and sea state conditions. The identification of the JONSWAP spectra parameters is difficult, as the
alpha and gamma coefficients have scattered distributions that modulate the spectral peak energy. In addition, the selection of
alpha and gamma coefficients from in situ free surface records may be difficult and time-consuming, because of the amount
of data and nonlinearities involved. The proposed model uses either in situ or numerically modelled wave data and has three
main steps: (1) generation and crossover, (2) minimisation of the cost function ΔHs, defined as the minimum difference
between the calculated artificial significant wave height and the in situ wave height (instrumented or modelled), and (3)
mutation and natural selection. To apply the model, in situ wave data measured by an acoustic Doppler current profiler over
5.5 months was used in this research. The results show a high correlation (r2), of 0.95, between the best fitted curves of
modelled spectra and measured data.
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1 Introduction

Wave spectra information is necessary for the design of ma-
rine structures, the management of harbour operations and the
setup of boundary conditions for numerical wave models such
as SWAN (Deltares 2014). The maritime and offshore engi-
neering industry use the JONSWAP spectra for vessel and
structure design through hydromechanic numerical models
such as ANSYS Aqwa (www.ansys.com), while coastal
engineers apply the JONSWAP spectra to control wave

generation in flumes. The spectral information is generally
obtained through the use of theoretical models. Because the
shape of the ocean wave power spectra allows mean, extreme
and rogue waves to be determined (required for designing
marine, coastal and naval structures), the means of selecting
the shape parameters for these models is still under
investigation (Osborne and Ponce de León 2017; Ponce de
León et al. 2018).

Several researchers have adapted one-dimensional wave
spectrum models to local wave conditions, such as Dattatri
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et al. (1977), who analysed wave data from the west coast of
India to improve a theoretical wave spectrum. The JONSWAP
spectrum is the model most used for engineering applications.
This model is considered universal because of its idealised
fetch-limited conditions and its applicability for variable wind
regimes in deep water during storms and hurricanes
(Hasselmann et al. 1973; Chakrabarti 2005).

The JONSWAP spectra can be formulated using
shape parameters through the alpha coefficient, known
as the scale parameter, and the gamma coefficient,
known as the peak enhancement factor. The alpha and
gamma parameters can also be calculated through the
dimensionless relat ions of the peak frequency.
However, the scatter in the values of alpha and gamma
shape parameters is wide, and as a result an accurate
correlation with the dimensionless fetch cannot be pro-
duced (Holthuijsen 2010).

For practical applications, the JONSWAP model gives a
well-measured swell spectrum, particularly in the high-
frequency range (Lucas and Guedes Soares 2015). This model
is still used for several engineering and research projects,
where alpha and gamma parameters are considered for the
spectra estimation (Pascoal et al. 2017; Calini and Schober
2017; Cifuentes and Kim 2017; Zhang et al. 2018), although,
there is no practical way to determine alpha and gamma pa-
rameters efficiently.

Several studies suggest a constant value for gamma
(γ = 1) and a free alpha value should be considered
(Ochi and Hubble 1976; Boukhanovsky et al. 2007;
Boukhanovsky and Guedes Soares 2009). Sanil Kumar
and Ashok Kumar (2008) carried out a multi-regression
analysis of in situ wave data collected by buoys at
different depths and locations along the coast of India.
They evaluated the JONSWAP, Donelan and Scott spec-
tra and compared them against the measured wave spec-
tra, pointing out that the theoretical spectra over- or
underestimate the spectral peak energy. As a result, they
proposed two equations to determine the alpha and
gamma parameters for an enhanced local JONSWAP
spectra model.

Wang (2014) determined the wave crest distribution of
nonlinear waves in shallow waters through the JONSWAP
spectra. His work used a constant gamma value, γ = 3.3,
for all the cases tested. Dong et al. (2014) investigated the
effect of the bottom slope on the nonlinear transformations
of irregular waves generated by the JONSWAP spectra.
However, the authors did not show the spectra parameters
nor which JONSWAP equation they used. It is therefore
impossible to compare their results with other studies
which used representative climate variations. Later,
Breivik et al. (2016) published a new approximation of
the Stokes drift velocity profile, using a constant gamma
value of 3.3 to calculate the JONSWAP spectra.

Wijaya and Van Groesen (2016) analysed radar images to
estimate significant wave height (Hs). In order to synthesise
the radar images, they applied the JONSWAP spectra to gen-
erate free surface data for setting sea states, although they only
evaluated the peak enhancement factor coefficient (γ).
Montazeri et al. (2016) estimated sea and swell waves using
shipboard measurements, testing several gamma coefficients
to determine unimodal wind, sea and swell spectra through the
JONSWAP spectra.

In the model developed by Mackay (2016), related to
unimodal and bimodal ocean wave spectra, the author
highlighted several disadvantages in proposals suggested
earlier to estimate the spectra shapes (Mackay 2011).
The two limitations mentioned are that a spectrum fit
is a time-consuming operation that requires complex op-
timisation routines, and that the accuracy of the
parameterisation could have a weak correlation, leading
the algorithm to fail during the process of optimisation.
He also showed that the method proposed in 2011
might not be accurate in identifying variations of the
spectral shape, and recommended using another method
to partition the spectra.

Heuristic models and optimisation methods were inte-
grated to simulate wave spectra. A support vector re-
gression (SVM) and a model tree (MT), known as
data-driven methods, were applied by Sakhare and Deo
(2009) to estimate the wave spectra for short-term sea
states. According to the results of Sakhare and Deo, the
correlation coefficient between the observed (measured)
spectra and the modelled (SVM and MT) spectra was
less than 0.78. A hybrid genetic algorithm–adaptive
network-based fuzzy inference system (GA-ANFIS)
model was developed by Zanaganeh et al. (2009) to
obtain the wave parameters in Lake Michigan through
the JONSWAP spectra. The study presented scatter dia-
grams for the validation of the modelled wave parame-
ters against the measured data, but it did not prove that
the shape of the modelled spectra accurately fits the in
situ spectra.

Aranuvachapun (1987) performed Monte Carlo simula-
tions to assess the JONSWAP spectral model and its
parameters. The study reported that increasing the degrees of
freedom and filtering raw data will improve the modelled
spectra. However, the author mentioned that the wave
spectra simulated by Monte Carlo are independent of the
geophysical factors, a statement that differs from what
Rueda Bayona (2017) found in the nonlinear effects of ba-
thymetry and sea states on the alpha and gamma parameters
of JONSWAP spectra.

In the aforementioned literature, the authors did not
include a sensitivity test for alpha and gamma, nor did
they address the relevance of water depth or climate var-
iability. There is no evidence of the validation of the
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shape of the modelled spectra by the application of the
GA-ANFIS model. As a result, they applied spectra
models based on assumptions that probably modify the
numerical results. Also, the scattered values of alpha and
gamma obtained in the literature require the development
of an efficient and flexible method to set the parameters
of the JONSWAP spectra for different sea states or water
depth.

To overcome these deficiencies and limitations, this re-
search presents a heuristic model which can identify the
JONSWAP spectra parameters (alpha and gamma) for ex-
treme and normal sea states at any water depth. The proposed
model uses wave data (in situ or modelled) to calculate the
parameters of JONSWAP spectra through genetic algorithms
(GA).

2 Materials and methods

2.1 The genetic algorithm

The heuristic model proposed considers a genetic algorithm
(GA) which is an optimisation technique, based on principles
of genetics and natural selection (Holland 1975). The tradi-
tional GA begins with the selection of a chromosome or vector
of values to be optimised. If the vector dataset has Nvar vari-
ables (anNvar-dimensional optimisation problem) given by p1,
p2, …, pNvar, then, the chromosome is written as an Nvar ele-
ment row vector (Haupt and Haupt 2004), see Eq. 1.

chromosome ¼ x; y½ � ¼ α; γ½ � ð1Þ

where Nvar = 2. Each chromosome has a cost, found during
the function evaluation (Eq. 2), f, in p1, p2, pNvar:

Cost ¼ f chromosomeð Þ ¼ f p1; p2; :::; pNvar

� � ð2Þ

The GA minimises the cost function ΔHs, which is the
minimum difference between the artificial significant wave

height,Ĥs, calculated from the JONSWAP spectra, and the
in situ significant wave height Hs (instrumental or
modelled); the in situ is known as the target. The applica-
tion of the heuristic method uses a pseudo-code structure,
presented in Fig. 1. This method allows the performance of
the GA model to be verified, as indicated in the bottom left
rhomboid of Fig. 1, and allows the quality of the modelled
results against in situ data to be verified, as suggested in
the central rhomboid of the flow diagram.

We can rewrite the cost function as follows (Eq. 3):

min ΔHs n:mð Þ
� � ¼Ĥs 1;mð Þ−Hs n;1ð Þ ð3Þ

The matrix operation for finding the minimum difference is
(Eq. 4):

ΔHs n:mð Þ ¼
Ĥs 1;1ð Þ ⋯ Ĥs 1;mð Þ
⋮ ⋱ ⋮

Ĥs n;1ð Þ ⋯ Ĥs n;mð Þ

2

4

3

5−
Hs 1;1ð Þ
⋮

Hs n;1ð Þ

2

4

3

5

¼
ΔHs 1;1ð Þ ⋯ ΔHs 1;mð Þ

⋮ ⋱ ⋮
ΔHs n;1ð Þ ⋯ ΔHs n;mð Þ

2

4

3

5 ð4Þ

where n = length of the data vector and m = length of chro-

mosome population.Ĥs is determined using the JONSWAP
spectra (Eq. 5) and (Eq. 6) (Holthuijsen 2010).

Ĥs ¼ 4:004
ffiffiffiffiffiffi
m0

p ð5Þ

S ωð ÞJONSWAP ¼ ∫∞0 αg
2ω−5e

−1:25 ω
ωp

� �−4

γδdω ¼ m0 ð6Þ

where

δ ¼ e
−

ω−ωpð Þ2
2σ2

a;bð Þω
2
p & σ a;bð Þ ¼ σa¼0:07 when;ω≤ωp

σa¼0:09 when;ω > ωp

�

The JONSWAP spectra parameters consider the Earth’s
gravity constant, g = 9.81 m/s2, the zero-order spectral mo-
ment m0, an energy scale coefficient α, a δvariable that de-
scribes the width of the region near to the peak, a peak en-
hancement coefficient γ, a the peak enhancement factor γδ to
control the peak of energy density, shape parameters σ(a, b), the
angular frequencies ω and peak frequency ωpin rad/s and the
shape parameters σ(a, b) shown above.

The wave height depends on the potential energy of the
spectrum. Therefore, the minimisation of the cost function

requires a comparison between the peak energy Ep and Ĥs;
the increments of Hs must be associated positively with the
spectral peak. Hence, it was necessary to correlate these two
variables (Ep vs.Hs) for every artificial dataset generated by a
chromosome. When in situ wave spectra data is available, the
heuristic procedure is organised in three main steps, as seen in
Fig. 2.

In step 1, the user defines the number of chromosomes for
the first generation through a random matrix of alpha and
gamma values (Fig. 2). Then, the GA evaluates the
JONSWAP spectra, locates the peak energy and calculates

the artificial Ĥs through the zero-order spectral moment.
Then, the GA crosses over the first generation of chromo-
somes and re-evaluates the JONSWAP spectra, to calculate

the crossedĤs and locate the spectral peak energy. Step 2 is
the analysis of the correlation between Hs and peak energy
(Ep) to verify their physical relation (Fig. 2). Then, the GA
verifies if the correlation is equal to, or higher than, 0.8 and
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selects the chromosome that generated the highest correlation

(Ep vs.Ĥs ). If the correlation restriction is fulfilled, then the
GA selects the respective chromosome and minimises the cost
functionΔHs. Step 3 is the final part of the GA, validating the
artificial wave spectra against the in situ (measured or
modelled) wave spectra (Fig. 2). As a result, the GA selects
the lowestΔHs as the best solution and mutates the associated
alpha parameter by dividing it by a random vector with values
between 100 and 100,000. Finally, the GA calculates theΔSω
in a way similar to the calculation of theΔHs, and selects the
lowest ΔSω as the best solution. The GA also compares the
artificial JONSWAP spectra curve (Sω _ J) against the in situ
spectral curve (Sω _ raw), shown in the central rhomboid of the
flow diagram (Fig. 1), to verify whether the mutated chromo-
some correctly simulates the in situ wave spectra.

3 Results and discussion

In this research, in situ wave time series were used to validate
numerical results, using the proposed genetic algorithm. The
GA performance was also evaluated to find the optimal

solution, considering the number of chromosomes and com-
putational time.

3.1 Model setup

Applying the pseudo-code structure of the GA (Fig. 1), using
available wave spectra (Fig. 2), we analysed a wave time
series measured by an acoustic Doppler current profiler
(ADCP) with acoustic surface tracking (AST) at 11.038° N
74.943° W (Fig. 3), at 8-m water depth. The ADCP was
installed on the seafloor, configured to 10 min of recording
time, at 2 Hz, at hourly intervals, for five and a half months.

A numerical method must be efficient in the computational
time needed to run the model. The computational time de-
pends on the number of targets and chromosomes. The popu-
lation size test evaluates the efficiency of an algorithm to find
a robust solution for a feasible region, minimising computa-
tional time. The population size test to evaluate the GA per-
formance in this work comprised determining the minimum
number of chromosomes needed to solve the cost function.

For the feasible domain selected, alpha ranged between 0
and 0.1 and gamma between 1 and 10. We used a laptop with
Intel Core i5-4200UCPUwith a 2.30-GHz processor, 4 GB of

Fig. 1 Flowchart of the proposed
heuristic method for determining
the alpha and gamma parameters
for the JONSWAP wave spectra
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RAM and Win8.1 64 bits to test the GA in Matlab. The ex-
periment had 1, 5, 10, 50, 100, 200 and 400 chromosomes for
step 1, and generated 1, 5, 10, 50, 100, 200 and 400 alphas for
the mutation in step 3 (Fig. 2). The results of the population
size test showed that the best solution was found with five (5)
chromosomes for generation and crossover (step 1), and 120
alphas for the mutation (step 3).

In the present research, changing the number of chromo-
somes for the GA, according to the correlation results, is sug-
gested. The variability and shape of the in situ spectra can be
simulated with less or more chromosomes, depending on the
nonlinear behaviour of the wave time series associated to qua-
druplets and triads wave-wave interactions (Holthuijsen
2010), or wind effects during storms (Osborne et al. 2019);

Fig. 2 Application of the proposed genetic algorithm with in situ wave spectra used for validation

Fig. 3 Location of the ADCP in the projected coordinate Magna-Sirgas (Bogota zone)
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these nonlinearities may be handled through numerical ap-
proaches, such as the nonlinear Fourier analysis (Osborne
2010). This study identified that between 5 and 400 chromo-
somes are required for generation and crossover, and 5 to 400
alphas for mutation, to find the best solution efficiently. The
higher the number of chromosomes, the longer the computa-
tional time.

3.2 Heuristic modelling

The results of the minimisation of the cost function ΔHs
(step 2) are plotted in Fig. 4, where the GA found the
first alpha and gamma combinations (chromosomes) to

simulate every Hs jth through the Ĥs jth (central
rhomboid of flow diagram, Fig. 1). The results show that
the GA modelled the Hs with a linear correlation of 0.87.
Considering the scatter of the alpha and gamma parame-
ters (Fig. 4), the gamma is seen to behave randomly
along the time series. As a result, this research proposes
to mutate the alpha parameter only to find the optimal
solution.

In step 3, the GA mutated the alpha parameter, and the
lowest ΔSω was selected as the best solution. As a result, the
GA compared the artificial JONSWAP spectra curve (Sω _ J)
with the in situ spectral curve (Sω _ raw) to validate the GA
results (Fig. 5).

We selected data from 15 days in June 2015 (Fig. 5) to
validate the results of the GA after the mutation (step 3).
Figure 5a shows the evolution of Hs for June 1–15, where
the normal event presents an Hs of about 0.5–1 m, and an

extreme event presents an Hs of 1.5–2.5 m; this wave classi-
fication takes into consideration the wave climate analysis
reported for the study area (Urbano-Latorre et al. 2013;
Rivillas-Ospina et al. 2017; Rueda Bayona 2017). The differ-
ences between the peak of the spectra Sω _ raw jth and the arti-
ficial spectra Sω _ J jth show that the residual increases as the
spectral energy rises (Fig. 5b). In order to reduce the observed
errors in Fig. 5b without filtering the raw input data (Hs), the
users could increase the number of chromosomes for genera-
tion and crossover (step 2).

Next, we compared the spectra curves and the linear
correlation between the peaks of each Sω jth (Fig. 6) for
the 15 days in June. The residual for June 4 at 05:00 h
was close to 0, and the residuals for June 11 at 12:00 h
and 13 at 14:00 h were the highest. Hence, we plotted
these spectra (Sω jth) to verify if the residual affected the
shape of the artificial spectra Sω _ J jth.

Figure 6a shows the curve of the raw and simulated spectra
for the minimum residual ΔSω jth during a normal wave
event. Figures 6 b and c show the spectra curve for the max-
imum residual mentioned above. From the spectra curves, this
study recommends increasing the value of the alpha for mu-
tation until the artificial spectra Sω _ J jth simulates the raw
spectra Sω _ raw jth properly; the best shape of the curve will
depend on the requirements of the user.

To consolidate the validation of the numerical results of the
GA, Fig. 6c shows the linear correlation between Sω _ J jth and
Sω _ raw jth. The determination coefficient of 0.95 and the p
value close to 0 ensure that the GA found the specific alpha
and gamma values that correctly simulate the wave spectra
(Fig. 6d).

Fig. 4 Comparison of the in situ significant wave height (Hs), measured in 2015, against the modelledHs after step 1 (generation and crossover) and step
2 (minimisation ofΔHs). a Target vs. artificial Hs (r2 = 0.87, p value = 0). b Residual ΔHs. c Hourly alpha coefficients. d Hourly gamma coefficients
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The peak energy (Ep) of the spectra is the most
probable wave height of the dataset; therefore, the com-
parison between Sω _ J jth and Sω _ raw jth (Fig. 6d) is
correct for identifying the wave height with the highest
frequency of occurrence (Hp) and its associated peak
period (Tp). The Hp value is important in the design
of structures which face extreme wave load conditions,
as it gives the highest wave height. However, other
research and engineering applications use the significant
wave height (Hs) to identify the mean wave height of
the data.

As some GA solutions showed ΔHs of over 0.5 m (Fig.
4b), this study performed a new mutation process to en-
hance the solution of the heuristic model; the new muta-
tion changes the gamma value of the chromosome until

the Ĥs is similar to the raw Hs, with a maximum ΔHs
of 0.8 m to flexibilise the margin error of the solution.
The increment of the error threshold (flexibilisation) al-
lows the GA to expand the solution space of the mutated
chromosome, to inspect any nearby solution that could
have been ignored during the generation and crossover
processes (Fig. 4b).

Fig. 5 Comparison of the in situ significant wave height (Hs) measured in 2015 against the modelled Ĥs after step 1 (generation and crossover) and step
2 (minimisation ofΔHs). a Hs. b Peak of each Sω jth. c Residual of the peaks. d Hourly alpha coefficients. e hourly gamma coefficients

Fig. 6 Validation of the GA results for three Sω _ J jth and three Sω _ raw jth. a June 4 at 05:00 h. b June 11 at 11:50 h. c June 13 at 14:00 h. dValidation of
all jth versus Sω _ J jth for June 1 to June 15
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The results of the mutation process applied (Fig. 7) to the
three Sω _ J jth (Fig. 6) showed a change in the modelled wave

spectra to fit the Ĥs. It was observed that gamma decreased in
different ratios for the three spectra (Fig. 7), which proves the
nonlinear relation of the Hs, alpha and gamma, described in
Rueda Bayona (2017). The JONSWAP spectra must reduce
the gamma parameter to simulate the raw Hs, excluding raw
spectra peaks (outliers). Using raw spectra data without pre-
vious data filtering of free surface records in the time domain
may generate spurious results. Filtering the free surface time
series could remove significant information, such as high-
frequency wave records. Therefore, tuning the JONSWAP
spectra by the mutation of gamma may be a means of filtering
peaks of the spectra that affect the Hs estimation through the
zero-order spectral moment (m0).

In order to compare the simulation of the raw spectra
against statistical software, the alpha and gamma parameters
were calculated through the parametric equations developed
by Hasselmann et al. (1973) and integrated by the WAFO
Matlab toolbox (WAFO 2011). Then, the Hs and Tp
(Table 1) of the raw wave spectra (Figs. 6 and 7) were used
to calculate the alpha and gamma parameters through the para-
metric equations mentioned above.

Applying the parametric equations of Hasselmann et al.
(1973), Fig. 8 shows the modelled wave spectra and the cal-
culated alpha and gamma for each date. The results show that
the parametric approach overestimates the raw wave spectra
and the modelled JONSWAP spectra by the GA (Fig. 6).

In addition, it was seen that the use of the parametric equa-
tions forHs 0.59m and Tp 6.74 s gave values of 3.8475 × 1023

for gamma and − 0.0128 for alpha. For Hs 0.67 m and Tp

7.42 s, the values of 1.15 × 1032 for gamma and − 0.0149 for
alpha were found. Given the negative alpha values obtained, it
is suggested that the Hasselmann et al. (1973) gamma and
alpha equations exceeded the range of feasible values when
Hs values were close to 0.6 m and Tp higher than 6 s, simu-
lating an inverted JONSWAP spectra curve.

Considering that a normal wave event and an extremewave
event will have different JONSWAP parameters (Fig. 5a), we
used the alpha and gamma generated by the GA (Fig. 5c, d) to
define the representative JONSWAP spectra coefficients for
each wave state through probability distributions (Fig. 9).
Additionally, we calculated the probabilities of the gamma
and alpha parameters for normal wave events (Fig. 9a, b)
and extreme events (Fig. 9c, d) using the most probable Hs
value. After fitting the probability distributions, it was found
that lognormal distributions best fit the alpha and gamma
values in normal conditions. Normal distributions represent
the alpha and gamma values in extreme conditions.

We extracted the validated spectrum for each wave event,
according to the normal and extreme wave event classification
(Fig. 5). The resulting probability plots for the gamma param-
eters show that the increase of the spectral energy concentrates
the gamma values in the second quartile (50%), with tails
associated to a normal distribution (Fig. 9a, c). The probability

Fig. 7 Validation of the new mutation process through the comparison of three Sω _ J jth and three Sω _ raw jth. a June 4 at 05:00 h. b June 11 at 11:50 h. c
June 13 at 14:00 h

Table 1 Raw wave
parameters for three
dates of the modelled
JONSWAP spectra with
the GA and WAFO
toolbox

Date Hs (m) Tp (s)

June 4 at 05:00 h 0.92 4.87

June 11 at 11:50 h 2.08 5.23

June 13 at 14:00 h 2.14 5.07
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plots of the alpha parameters (Fig. 9b, d) show positively
skewed distributions, showing that for probabilities of over
50%, the alpha value increases its variance.

The non-normality of the probability plots (positively
skewed) shows that the nonlinearity of the wave spectra evo-
lution during the wave event influenced the variance of the
alpha parameter (Fig. 9b, d). To validate the in situ spectra (Sω
_ raw jth) evolution using the modelled spectra (Sω _ J jth), we
recommend the mutation of the alpha parameter, because this
parameter can effectively modify the spectral energy of the
artificial spectra.

Table 2 shows the alpha and gamma parameters of the
JONSWAP spectra for normal and extreme events. The results
show the precision of the alpha parameter for the optimal
simulation of the raw spectra (Sω _ raw jth).

The proposed method depends directly on the input
data, then, when raw spectra (Sω _ raw) data is available
for validation according to step 3 (central rhomboid of
Fig. 1, the lowest panel of Fig. 2), it is important to set
up the wave sensor (ADCP) properly, to record in situ
wave spectra. Otherwise, the GA cannot find a feasible
solution when comparing the artificial JONSWAP spectra
curve (Sω _ J) against a spurious in situ spectral curve (Sω
_ raw). Indeed, a limitation of the method would be the
requirement of trained personnel to successfully perform
the validation process (step 3).

This study assessed the ability of the GA to model the
raw spectra in the time and frequency domain, but the work
of Aranuvachapun (1987) only showed the numerical re-
sults in the frequency domain which makes it difficult to
check the accuracy of the model for every time step. The
Aranuvachapun study (1987) clearly differs from the pro-
posed GA method because it cannot control the alpha and
gamma parameters, nor connect the numerical results with
the geophysical characteristics associated to the raw spec-
tra data.

Fig. 8 Modelling of the JONSWAP spectra using the parametric equations of Hasselmann et al. (1973). a June 4 at 05:00 h. b June 11 at 11:50 h. c
June 13 at 14:00 h

Fig. 9 Probability distribution for the alpha and gamma coefficients in
normal and extreme wave events, modelled by the GA. a, b June 3 to 5. c,
d June 13 to 14

Table 2 Probability
results for the second
quartile (50%) of alpha
and gamma distributions

Sea state Alpha Gamma

Normal event 1.05 × 10−5 4.05

Extreme event 1.50 × 10−4 4.69
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TheMonte Carlo simulation performed by Aranuvachapun
(1987) is based on a pure, random search (stochastic algo-
rithm), unlike the genetic algorithm, where some rules of evo-
lution and mutation govern the optimisation process. As a
result, genetic algorithms allow trends and interactions be-
tween the JONSWAP spectra parameters to be identified
(Rueda Bayona 2017), avoiding the necessity of an abstract
random process and allows the effects of geophysical charac-
teristics of the study area to be inferred.

In contrast with Aranuvachapun (1987), the numerical re-
sults of the proposed GAwere associated to the expected sea
states in the study area, where the significant wave heights
may be represented by a unimodal spectral curve with spectral
energy density below the 20 m2/Hz (Rueda Bayona 2017).
The present study also attempts to state a clear procedure
which is easy to follow, to ease the applicability of the pro-
posed GA method.

Finally, this research gathered statistical and numerical
techniques for adapting the JONSWAP spectra model to spe-
cific places, regardless of water depth and dominant wave
climate state. The proposed model used the following steps
before the GA implementation:

1. Determination of the wave climate to give the wave event
classification

2. Assessment of the GA population
3. Verification of the physical results through correlation of

Ĥs (artificial data) and peak energy (Ep)
4. Selection of the initial spectra coefficients (alpha and

gamma) according to the r2 between Ĥs and Hs (target
data)

5. Validation of the in situ wave spectra (Sω _ raw jth) through
r2 and graph analysis after the mutation

6. Selection of the alpha and gamma parameters through the
probability distributions

7. Optional step: to reduceΔHs, for the gamma parameters
to specific solutions, the modeller could add a new muta-
tion process of the modelled wave spectra

4 Conclusions

A heuristic model based on genetic algorithms was proposed
to identify the alpha and gamma parameters of the JONSWAP
spectra. ADCP was used to measure hourly wave parameters
for five and a half months to validate the numerical results of
the GA against in situ data. A population test was also used to
assess the performance of the GA in identifying the most
efficient number of chromosomes. The effectiveness of the
GA was evaluated considering the physical relation between
peak energy (Ep) and significant wave height (Hs), and the

correlation between the in situ (Sω _ raw jth) and simulated
spectra (Sω _ J jth).

From the probability analysis, it is possible to select the
representative values of alpha and gamma parameters for nor-
mal and extreme wave conditions. The probability results in-
dicate that alpha and gamma values in normal conditions can
be represented by a lognormal function, while in extreme con-
ditions, a normal distribution better fits the alpha and gamma
values.

The accuracy needed to obtain the alpha and gamma
values of the JONSWAP spectra can be handled and
solved successfully with GA. In this and other studies,
the sensitivity of alpha and gamma parameters shows the
nonlinear effects of these spectra parameters over the
modelled behaviour of Hs and Tp. Applying parametric
equations, such as that developed by Hasselmann et al.
(1973), has numerical restrictions because of the limita-
tion of the statistical techniques. Considering the natural
behaviour of in situ raw datasets, heuristic models, such
as GA, are seen as an alternative method to calculate the
coefficient parameters, and solve the restrictions of the
parametric equations.

In conclusion, the proposed genetic algorithm is offered as
an innovative tool to determine the spectra parameters for the
JONSWAP model, regardless of water depth and whether the
periods are short- or long-term. The model proposed is seen as
an alternative method to support engineering and scientific
activities that require wave spectra information.
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