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Abstract A dense cohesive sediment suspension, sometimes
referred to as fluid mud, is a thixotropic fluid with a true yield
stress. Current rheological formulations struggle to reconcile
the structural dynamics of cohesive sediment suspensions
with the equilibrium behaviour of these suspensions across
the range of concentrations and shear. This paper is concerned
with establishing a rheological framework for the range of
sediment concentrations from the yield point to Newtonian
flow. The shear stress equation is based on floc fractal theory,
put forward by Mills and Snabre (1988). This results in a
Casson-like rheology equation. Additional structural dynam-
ics is then added, using a theory on the self-similarity of clay
suspensions proposed by Coussot (1995), giving an equation
which has the ability to match the equilibrium and time-
dependent viscous rheology of a wide range of suspensions
of different concentration and mineralogy.
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1 Introduction

A dense cohesive sediment suspension, sometimes re-
ferred to as fluid mud, is a thixotropic fluid with a true

yield stress (Berlamont et al. 1993; Toorman 1997). The
rheological properties of mud characterise its resistance
to flow, deformation and structural changes. They are
important for the estimation of sensitivity to liquefaction
and erodibility, damping of turbulence and the prediction
of density currents and fluid mud flow (Berlamont et al.
1993). As such, these properties are particularly impor-
tant for estuaries with high (several grammes per litre)
sediment concentrations, for muddy beds or intertidal
banks or which experience significant wave action, for
the side slopes of muddy dredged channels and for the
navigation response of vessels sailing in low underkeel
clearance in muddy estuaries. This paper is concerned
with improving the description of mud rheology, devel-
oping a framework for the rheology of dense clay sus-
pensions based on the physics of flocculated suspen-
sions. It will be seen that this results in an equation
which includes both structural dynamics and the ability
to match the equilibrium rheology of a wide range of
suspensions of different concentration and mineralogy
in the viscous regime.

The paper includes a brief description of the similarity
that results from fractal nature of flocs, a description of
the structural similarity of clay suspensions identified by
Coussot (1995) and a description of the structural dynam-
ics approach put forward by Worrall and Tuliani (1964),
all of which form significant inputs to the model devel-
opment. A brief review of rheological models is also in-
cluded which will provide an explanation of motivation.
The paper will then develop a rheological model based on
the principles of flocculation using an approach by Mills
and Snabre (1988). The resulting rheological model is
compared with equilibrium data for different clays across
a range of concentrations and is compared with step-up
and step-down data for different sediment suspensions.
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2 The quasi-fractal nature of clay suspensions
and formation of gels

The primary mineral components contributing to the cohesion
of muds are clay minerals. Clays have a plate-like structure
and generally have primary particles of diameter less than
2 μm. Cohesion arises through the combined efforts of both
the electrostatic charging of the clay minerals (if they are
suspended in saline water) and various biogenic long-chain
polymer molecules (Gratiot and Manning 2008; Manning
et al. 2011). In general, clay particles aggregate with each
other to form clusters or flocs with an apparent fractal struc-
ture (Huang 1993; Khelifa and Hill 2006;Winterwerp and van
Kesteren 2004; Xu and Dong 2016). To be a truly fractal
structure, however, the flocs would have to share a similar
average structure characterised by a stochastic fractal nature
and be scale invariant or Bself-similar .̂ In practice, this is not
strictly true, and the fractal dimension varies slowly with floc
size in a manner that can reasonably be characterised by a
power law with an exponent of the order of −0.1 (Maggi
2007; Markussen and Andersen 2013; Xu and Dong 2016).
In common with these researchers, in this paper, we make use
of relationships relating to floc structure which follow from
the fractal approximation (Sect. 5), but we do not constrain the
fractal dimension to be a constant.

The flocs immobilise part of the continuous phase (in our
case, water) which (as discussed later) leads to an increase in
the effective sediment volume and to an increase in viscosity
(Quemada 1998; Genovese 2012; Willenbacher and
Georgieva 2013). Under conditions promoting clustering or
flocculation (e.g. increasing volume concentration), flocs will
aggregate further to form still larger clusters. Above a critical
volume fraction, which is typically much smaller than the
maximum packing fraction, these floc clusters form a large
interconnected macroscopic network (Van Olphen 1956;
Pignon et al. 1998) which is also (approximately) fractal and
self-similar (Quemada 1998; Bremer 1992; Genovese 2012).
This space-filling network results in highly elastic gel-like
behaviour and an apparent yield stress (Toorman 1997;
Willenbacher and Georgieva 2013).

3 A very brief review of rheological models
for shear-thinning clay suspensions

There are a variety of different rheological models, but these
models are often unsatisfactory either because they only de-
scribe the rheology well over a limited range of shear or be-
cause they are unable to represent the thixotropic (time depen-
dent) nature of rheology of sediment suspensions by incorpo-
rating structural dynamics. At the heart of the first of these
problems is that in general, for small shear rates, the stress
associated with mud suspensions varies non-linearly with

shear rate, while for high shear, the stress varies increasingly
linearly as the Newtonian state is approached (Coussot 1995).
Linear models like the Bingham model (τ = τ0 + ηBγ, ηB is a
constant) perform well for higher shear (where as the shear
becomes larger, the viscosity tends to a linear, increasingly
Newtonian, relationship), while non-linear models like the
power law (τ =mγn, m and n are constants) or Herschel-
Bulkley (τ = τ0 +mγn) models tend to be better at lower shear
(where in general, suspensions do not behave in a linear fash-
ion). None of these models performs well across the range of
shear and yield stress dynamics. More sophisticated models
like the Crossmodel and the Carreaumodel provide a better fit
of the rheological behaviour of shear-thinning substances over
a larger range of shear but require more empirical parameters.
The Cross model is given by

η − η∞
η0 − η∞

¼ 1

1þ mγn
ð1Þ

The Carreau model has the following form:

η − η∞
η0 − η∞

¼ 1

1þ mγ2ð Þn=2
ð2Þ

where η is the apparent viscosity, η0 and η∞ are viscosity as
γ→ 0 and γ→∞, and m and n are constants, These models
also do not provide a transition to near Newtonian conditions
under high shear, instead tending to a power law. Some of
these equations can be modified to include additional rheolog-
ical phenomena such as the transition from static to dynamic
yield stress (e.g. Toorman 1997; de Souza 2011).

In addition to these viscous models, in more recent years,
there has been a significant vein of research which has exam-
ined Maxwell or Jeffreys type rheological models combining
viscous with viscoelastic contributions to rheology (e.g.
Dullaert and Mewis 2006; Blackwell 2013; de Souza and
Thompson 2013; Armstrong et al. 2016). These more com-
plex models have largely targeted, with some success, the
solid/low-shear transition to better reproduce thixotropic phe-
nomena such as avalanching and the evolution from static
yield to dynamic yield stress, although the viscous regime
component is often based around a relatively simple
Bingham-like term (e.g. Dullaert and Mewis 2006). These
models have started to be applied to large amplitude oscilla-
tory shear flows which allow rheological investigations over a
wide range of deformation amplitudes and timescales
(Armstrong et al. 2016).

As for structural dynamics, the time dependence of rheol-
ogy of clay suspensions in the literature has largely focused on
Bingham (Worrall-Tuliani) rheology models (e.g. van Kessel
1996; Toorman 1997; Knoch and Malcherek 2011; Oberrecht
and Wurpts 2014), although some examples exist of use of
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other models (e.g. Armelin et al. 2006; Moller et al. 2009) as
well as the more complex time dependence of the thixotropic
elastoviscoplastic models mentioned above.

The vast majority of rheological models have been devel-
oped from a standpoint of being able to empirically reproduce
rheological phenomena (rather than being developed from a
purely physically based point of view). The more complex the
model (allowing more phenomena to be described), the more
empirical parameters required. The values of these empirical
parameters are drawn from laboratory studies. From a view
point of sediment transport modelling, where suspension con-
centrations (as well as shear) can vary hugely in time, these
models are not fit for purpose since a very large amount of
laboratory study is required to describe how the rheology may
vary under the range of conditions at a given site. A more
physically based approach, however, could reduce the extent
of this empiricism. This paper moves some way towards this
goal by drawing upon aspects of the physics inherent in the
structure of flocculating clays.

4 Structural dynamics—the Worrall Tuliani
approach

The time-dependent rheological behaviour of a dense cohe-
sive sediment suspension is often approximated by the struc-
tural kinetics theory, based on the Worrall and Tuliani (1964)
approach, in which the fluid is described as a non-ideal
Bingham fluid and the yield stress is taken as a measure for
the structural parameter (Toorman 1997). For a Bingham fluid
in equilibrium (exposed to a constant shear rate for a suffi-
ciently long time), the shear stress is given by (Worrall and
Tuliani 1964; Toorman 1997)

τ ¼ τ0 þ μ∞γ
̇ þ cγ̇

1þ βγ̇
ð3Þ

where τ is the shear stress, τ0 is the yield stress at equilib-
rium, γ is the shear rate, μ∞ is the Newtonian viscosity of the
suspension at high shear rate, is a constant, and β and c are
constants. The time-dependent version of Eq. 1 is given by
(Toorman 1997)

τ ¼ λτ0 þ μ∞ þ cλþ βτ0λeð Þγ ð4Þ

In this equation, the structural parameter C is a mea-
sure of the degree of structure in the suspension. The
value of λ is taken to be 0 for the situation where the
bonds between clay particles are fully broken (in the limit
of high shear) and taken to be 1 for the situation where
the clay is fully structured. Moore (1959) defined a rate
equation (Eq. 5) which expresses the structural state as the

net result of break-up and recovery of the structure. The
rate of break-down was assumed by Moore to depend on
the shear rate γ causing the deformation and on the frac-
tion of links existing at any given instant, and therefore,
the rate of break-down was defined to be −bλγ . The rate
of build-up was assumed to be proportional to the fraction
of links remaining to be formed a(1 − λ ) resulting in the
form of the equation shown in Eq. 3.

dλ
dt

¼ a 1−λð Þ−bλγ̇ ¼ −a
1

λe
λ−λeð Þ ð5Þ

where a and b are constants and λ has an equilibrium value
of

λe ¼ 1

1þ b
a
γ̇ ¼ 1

1þ βγ̇

ð6Þ

A modified version of the Moore equation of the time de-
pendency of λ is used in this paper (though other formulations
exist, e.g. Coussot et al. 2002; Møller et al. 2006; Alexandrou
et al. 2009), and γ is replaced by γm, resulting in

dλ
dt

¼ a 1−λð Þ−bλγ̇m ¼ −a
1

λe
λ−λeð Þwhere λe ¼ 1

1þ βγ̇
m

ð7Þ
The rate of convergence of the structural parameter has

been observed to vary with different powers of m (e.g.
Galindo-Rosale and Rubio-Hernández 2006; Hammadi et al.
2015; Bekkour et al. 2005), and Eq. 7 caters for this variation.
The physical significance of m is that it allows the assumed
rate of break-down of the links within the clay structure to
vary in a non-linear fashion with the shear rate.

The Worrall-Tuliani approach (Eqs. 4 and 5) requires five
empirical values for τ0 , μ∞ , c , β and a (Toorman 1997).
However, in a time-varying cohesive sediment suspension,
some of these empirical values vary depending on the sedi-
ment concentration.

5 Structural similarity of sediment suspensions

An important feature of the framework that will be intro-
duced later in this paper is the idea that sediment suspen-
sions are structurally similar. This idea was put forward
by Coussot (1995) who showed experimentally that, in a
wide solid fraction range, the behaviour of clay suspen-
sions is similar and goes through a transition from non-
Newtonian to Newtonian when a non-dimensional shear
rate increases. An example is shown in Fig. 1 for a series
of kaolin-water suspensions.
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Coussot identified that the equilibrium shear and stress for
low shear could be described by a power law involving non-
dimensional values,

T ¼ 1þ KΓn ð8Þ

where T ¼ τ
τ0
, Γ ¼ γ̇μ∞

τ0
, and K and n are constants depen-

dent on mineralogy but independent of concentration. For the
two clay suspensions investigated, Coussot found K ~4.5–7.6
and n ~0.2–0.25.

6 Deriving a rheological model from physical
principles associated with flocculation

6.1 Rheology under equilibrium conditions

Consider first a densely concentrated Newtonian suspension
of hard spheres. The viscosity of the suspension is given by
(Quemada 1977).

μ
μ0

¼ 1

1−ϕ=ϕ*� �2 ð9Þ

where μ is the viscosity of the suspension, μ0 is the viscos-
ity of the liquid phase, ϕ is the sediment volume concentration
and ϕ∗ is the maximum sediment volume concentration. Other
equations similar to Eq. 9 can be used—for instance the
Krieger and Dougherty (1959) equation or the Chong et al.
(1971) equation, but Eq. 9 has the additional merit of simpli-
fying the algebra.

Now consider a densely concentrated floc suspension.
Under these conditions, the viscosity is a function of the
effective sediment volume, ϕeff (Quemada 1998; Blachier
et al. 2013; Willenbacher and Georgieva 2013). This is be-
cause some amount of suspending fluid is trapped within the

floc structures and ϕeff is the sediment volume concentration
which takes this into account. The equivalent of Eq. 5 for floc
structures is given by Eq. 10

μ
μ0

¼ 1

1−ϕeff =ϕ
*� �2 ð10Þ

We assume that the suspension is formed of flocs of fractal
dimension D. The fractal dimension can be used to describe
the effective volume concentration as follows (Mills and
Snabre 1988; McClements 1999; Coupland and Sigfusson
2006; Metin and Bonnecaze 2014):

ϕeff ¼ ϕ
RF

d

� �3−D

ð11Þ

where RF is the characteristic dimension of the floc struc-
ture and d is the dimension of the primary particles.

The focus of this paper is the application of Eq. 11 and the
rheological model that results for dense concentrated suspen-
sions beyond the gel point. For such dense cohesive suspen-
sions, the suspension is a gel formed of an infinite cluster of
fractal flocs, the characteristic dimension of which is RF at
equilibrium (Mills and Snabre 1988). The characteristic di-
mension RF is governed by the balance between the shear
forces acting to rupture and break down the flocs and by the
inherent strength of the floc to resist this rupturing process.We
use this idea with the method of Mills (1985) and Mills and
Snabre (1988) to establish a relationship between RF and the
shear applied. To do this, we introduce a surface energy, ,
which represents the ability of the floc to resist break-up,
and we equate this surface energy with the applied shear at
the point of rupture. The energy required to rupture a flow
consists of two parts: the energy to rupture the links which
have been formed between the particles inside the floc and the
energy to stretch (but not break) the elastic links between
particles within the floc. Of these two parts, most of the energy
dissipation is associated with the stretching processes rather
than the rupture (Firth and Hunter 1976; Bache and Gregory
2007). It is necessary to characterise both these contributions.

We start with the stretching or deformation process. It can
be shown that the energy required per unit area (the surface
energy, ) to stretch the bonds within a floc prior to rupturing
scales is (Mills and Snabre 1988)

Ζ∝τDRF ð12Þ

where τD is that part of the shear stress acting to stretch
(deform) the floc bonds. The same result can be derived from
the Firth and Hunter (1976) result that the total energy re-
quired to stretch bonds within floc scales is ETot∝FDRF , (as-
suming that the energy dissipation due to fluid flowing into
the space left by the stretching bonds between flocs is small
compared to that from stretching of the bonds), and therefore,
Ζ∝ETot=R2

F∝τDRF .

Fig. 1 Plot of non-dimensional stress against non-dimensional shear for
kaolinite suspensions of varying concentration. Figure reproduced from
Coussot (1995) with the permission of the American Physical Society
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Now, we characterise the floc rupture. Derjaguin et al.
equation (1975) gives the relationship between the force need
to overcome the strength of the floc surface FR and the surface
energy as

FR ¼ 2πRFΖ ð13Þ

where FR is the force necessary to cause rupture. But be-
cause the force acts over the surface of the floc, then FR∝R2

F
τR (Snabre et al. 1987), where τR is the shear at the point of
rupture. This gives the result

Ζ∝τRRF ð14Þ

Since the total shear stress acting on the floc can be
decomposed into the shear acting to cause elastic stretching
and the shear acting to induce rupture, τ = τR + τD . Both τR
and τD scale as Ζ/RF, so it must be true that the total stress
contributing to floc break-up τ does so as well.

The surface energy in the section of rupture can also be
defined in terms of the bond energy between primary particles.
In this way, Ζ equals the product of the number of bonds (per
unit area) and the bond energy between each bonding pair of
particles. It is convenient to establish Ζ in terms of the total
number of primary particles within the floc and the radii of
primary particle and floc, but for the purposes of this deriva-
tion, it is not necessary to go into detail regarding the nature of
the bonds themselves (Mills and Snabre 1988). The exact
nature of the physicochemical interactions (van der Waals,
electrostatic, bridging, etc) is hence deliberately ignored.

Z ¼ Nsur f ζa2

R2 ¼ N f loc
4πR2

Fd
4

3
πR3

F

0
B@

1
CA ζa2

R2

¼ N f loc
3ζa3

R3

� �
ð15Þ

whereNsurf is the number of primary particles in the surface
of the floc, Nfloc is the total number of primary particles in the
floc, and ζd2 is the bond energy between every pair of particles
with ζ an empirical parameter denoting bond energy strength.
Equations 12, 14 and 15 lead, along with the definition of the
fractal dimension, Nfloc = (RF/d)

D (Maggi 2005), to the result

Rf

d
¼ Aτ*

τ

� �1= 4−Dð Þ
ð16Þ

where A is a constant related to floc break-up and τ* ¼ ζ
d is

a yield strength property related to the surface energy.Mills and
Snabre (1988) note that in the limit, under high shear, Rf→ d

rather than zero and therefore Eq. 16 needs to be adapted as
follows:

Rf

d
−1 ¼ Aτ*

τ

� �1= 4−Dð Þ
ð17Þ

We now combine Eqs. 7 and 13 and we get

ϕeff ¼ ϕ 1þ λ
λe

� �1= 4−Dð Þ Aτ*

τ

� �1= 4−Dð Þ" #3−D

ð18Þ

Inserting Eq. 18 into Eq. 10 gives

μ
μ0

� �1
2

¼ 1

1−ϕ=ϕ*� �
1þ λ

λe

� 	 1
4−D ϕ=ϕ*

1−ϕ=ϕ*ð Þ
� �

Aτ*
τ

� �1= 4−Dð Þ
� �3−D( ) ð19Þ

or

μ
μ∞

� �1
2

¼ 1

1þ λ
λe

� 	 1
4 −D τ0

τ

� �1= 4−Dð Þ
� �3−D ð20Þ

where μ∞
μ0

¼ 1
1−ϕ=ϕ*ð Þ

2 and

τ0 ¼ ϕ=ϕ*

1−ϕ=ϕ*� �
" #4−D

Aτ*
� � ð21Þ

Equations 20 and 21 lead to

τ
1

4−D−
λ
λe

� � 1
4−D

τ
1

4−D
0

" #3−D

¼ μ∞
μ

� �1=2

τ
3−D
4−Dð Þ ð22Þ

This can be rewritten as

τ
1

4−D ¼ λ

λe

� � 1
4−D

τ
1

4−D
0

þ μ∞ γ
̇

� 	 1
4−D μ

μ∞

� �ϵ

where ϵ ¼ 1

4−D
−

1

2 3−Dð Þ
ð23Þ

We approximate μ
μ∞

� 	
by the equilibrium form of Eq. 20,

into the right hand side of Eq. 23, which results in

≈
λ
λe

� � 1
4 −D

τ
1

4 −D
0 þ μ∞ γ̇ð Þ 1

4 −D

� 1−
3−D
4−D

−
1

2

� �
τ0
τ

� 	 1
4 −D

� �
ð24Þ
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In practice, the 3−D
4−D −

1
2

� �
τ0
τ

� � 1
4 −D term is small. Even when D

is close to 3 and τ is close to τ0, then γ is small and the contri-
bution of this term to τ is small. Henceforth, we will assume that
this term can be ignored. When D is equal to 2, then at equilib-
rium, Eq. 22 becomes equal to Casson’s equation.

As indicated in Worrall and Tuliani (1964) and Toorman
(1997), an additional term f(λ) needs to be added to Eq. 24 to
account for the effect of structural dynamics on the shear rate
term, i.e.

τ
1

4 −D ¼ λ
λe

� � 1
4 −D

τ
1

4 −D
0 þ 1þ f λð Þ
 � 1

4 −D μ∞ γ̇ð Þ 1
4 −D ð25Þ

Putting Eq. 25 in the same form as Eq. 8, we get

T
1

4 −D ¼ 1þ 1þ f λð Þ
 � 1
4 −D Γ

1
4 −D ⇒T≈1

þ 4−Dð Þ 1þ f λð Þ
 � 1
4 −D Γ

1
4 −D for small Γ ð26Þ

In order for the equation to become equal to the power law
found by Coussot (1995) for smallΓ (see Fig. 1), f(λ) has to be

of the form γ̇

γ0
Þ−m

�
for equilibrium conditions, where m is

positive. This is satisfied by setting

f λð Þ ¼ λ
1−λ

� �m τ0
μ∞

� �m

ð27Þ
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Fig. 2 Yield stress of the clay
suspensions considered in this
chapter. Data from Coussot
(1995). Model predictions are
from Eq. 21

Fig. 3 Comparison of Eq. 29
(red line) with data for a kaolinite
suspension (black/grey symbols).
The best overall fit using a
Bingham model is shown by the
blue circles. Measured data from
figure reproduced from Coussot
(1995) with the permission of the
American Physical Society
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where, as discussed in Sect. 4, the equilibrium value of the
structural parameter λ is given by λe ¼ 1

1þβγ̇m . This gives the

final form of the time-dependent and equilibrium equations as

τ
1

4 −D ¼ λ

λe

� � 1
4 −D

τ
1

4 −D
0 þ 1þ τ0

μ∞

� �m λ

1−λ

� �m
( ) 1

4 −D

μ∞ γ
̇

� 	 1
4 −D ð28Þ

τ
1

4 −D ¼ τ
1

4 −D
0 þ 1þ 1

βγm

� �
τ0
μ∞

� �m
( ) 1

4 −D

μ∞ γ
̇

� 	 1
4 −D ð29Þ

7 Results

In this section, Eqs. 28 and 29 are applied to data for equilib-
rium and time-varying conditions. The equilibrium

comparisons will show that Eq. 29 is able to describe the
equilibrium rheology of a range of clays across the range from
low to high shear and for a range of sediment volume concen-
trations from 5 to 50%. The comparisons of data under time-
varying (step-up and step-down tests) will show that Eq. 28 is
able to describe the time-varying rheology.

7.1 Equilibrium conditions—data from Coussot (1995)

For this set of comparisons, the data used for comparison with
Eq. 29 is from Coussot (1995) and includes

& A natural kaolinite.
& A debris flow deposit from St. Bernard (French Alps), a

mixture of chlorite and illite.
& A deposit from Lake Eybens (also French Alps), a mixture

of chlorite and illite.

Coussot (1995) provides values of τ0 for these three clays
for a range of concentrations (Fig. 2). Although we use the
values measured by Coussot in Figs. 3, 4 and 5, it is worth-
while examining the underlying assumptions used in the pres-
ent model regarding the yield strength. Equation 21 gives the
form of the yield strength with respect to volume concentra-

tion as τ0 ¼ k ϕ=ϕ*

1−ϕ=ϕ*ð Þ
� �2 4−Dð Þ

where k = Aτ∗ in Eq. 21 and

Fig. 4 Comparison of Eq. 29
(red line) with data for a St.
Bernard clay suspension (black
symbols). Figure reproduced from
Coussot (1995) with the
permission of the American
Physical Society

Fig. 5 Comparison of Eq. 29 (red line) with data for a Lake Eybens clay
suspension (black symbols). Figure reproduced from Coussot (1995) with
the permission of the American Physical Society

Table 1 Rheological constants used to fit Eq. 29 in Figs. 3, 4 and 5

Clay type D 1/(4 − D) m β

Kaolinite 2.3 0.60 0.62 0.17

Lake Eybens 2.3 0.60 0.72 0.5

St. Bernard 2.1 0.52 0.55 0.14
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D is specified by the fit in Figs. 3, 4 and 5. Equation 21 is
similar in form to equations given by Zhou et al. (1999), who

found τ0 ¼ k′ ϕ
1−ϕð Þ

h ic′
� 1

d2
where d is the particle diameter of

the clay suspension. A comparison between the Zhou and
Eq. 21 models is shown in Fig. 2. The Zhou model result is
derived by treating k ′ /d2 and c′ as fitting parameters. This is
compared with the Eq. 21 result where the only fitting param-
eter used is k (the exponent 2(4 −D) being prescribed by the
parameter fitting in Figs. 3, 4 and 5). Both model results are
similar and fit the data well with Eq. 21 fitting the data better
asϕ tends to the maximum packing fraction (typically ≈0.6 for
clays), while the Zhou model (aided by the greater degree of
freedom resulting from two fitting parameters) fits the data
better at low values of ϕ.

Application of Eq. 29 to the three different clays for equi-
librium conditions is shown in Figs 3, 4 and 5. It can be seen
that Eq. 29 fits the data well for the range of sediment con-
centrations and shear. It appears that the proposed model is
able to predict the smooth transition between shear stress
dominated by the yield stress to that dominated by the
Newtonian viscosity. The relevant rheological constants
achieved through calibration for these three applications of
the equilibrium form of Eq. 29 are presented in Table 1. The
values of μ∞ were computed from Eq. 8 and so varied with
volume concentration. The values of τ0 were taken from the
measurements of Coussot shown in Fig. 2. Note that the

calibrated constants—the fractal dimension, D, the exponent,
m, and the structural equilibrium parameter β—were valid for
the whole of the spectrum of volume concentrations.

It should also be noted that the good fit achieved with
Eq. 29 was not achieved with a best fit Bingham model with
the Worrall-Tuliani structural dynamics (Eq. 3)—as shown in
Fig. 3.

7.2 Equilibrium conditions—data from Hendratta
and Ohmoto (2012)

For this set of comparisons, the data used is from Hendratta
and Ohmoto (2012). This data set is composed of the rheolog-
ical measurements of the shear stress of kaolin suspensions
under equilibrium conditions, under different shear rates and
at different sediment volume concentrations. The kaolin used
had a median particle size diameter of 5.3 μm and was primar-
ily composed of very fine silt (with <20% clay-sized particles).

Figure 6 shows the comparison of Eq. 29 with the
Hendratta and Ohmoto data. The parameters used to fit the
data are shown in Table 2. Figure 6 shows that Eq. 29 gives a
reasonable fit across the range of shear rate and volume con-
centration based on only four parameters.

7.3 Step-up and step-down tests by Coussot (1993)

In this section, Eq. 28 is compared to the model against step-
up and step-down shear experiments from Coussot (1993).
The suspension used was bentonite-water mixture containing
about 90% of montmorillonite with particle diameter below
2 μm and small percentages of kaolinite, illite and calcite. The
bentonite was mixed with water (at a solid volume concentra-
tion of 4%) for 20 min and was left to rest for 24 h.

Fig. 6 Comparison of Eq. 29
(continuous lines) with data for a
kaolin-water suspension
(symbols). Data from Hendratta
and Ohmoto (2012)

Table 2 Rheological constants used to fit Eq. 29 in Fig. 6

D 1/(4 − D) m Β k (Eq. 21)

1.7 0.43 0.001 100 7.4
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Equation 28 was applied in a straight forward upwind fash-
ion with the shear stress at time ti+1 calculated on the basis of
the values of γ , λe and λ at time ti. The convergence of λ→
λe was calculated using Eq. 2. The time step used was
2 × 10−3 s, and the model prediction and measured data were
compared over the duration of a second.

Figure 7 shows a comparison of the predicted and mea-
sured between start-up flow of the bentonite mixture, increas-
ing the shear of the mixture from zero to 100 s−1 and from zero
to 50 s−1 and a comparison of the predicted and measured
between sudden reduction in shear of the bentonite mixture,
reducing the shear of the mixture from 300 to 100 s−1. The
rheological parameters used for the comparisons in Fig. 6 are
given in Table 3. Additional parameters are μ∞ = 0.064 Pa. A
dynamic yield stress of 103 Pa s was derived based on a fit of
Eq. 28 to the equilibrium data provided in the Coussot (1993)
paper. As in Toorman (1997), who modelled the same data
using a Bingham approach, it was assumed that the rotation
speed of the shearing apparatus takes a finite time to adjust.
The adjustment to the new shear is assumed to be γ = γ2 + (γ1
− γ2)e

−αt with α = 0.03. The adjustment to the near shear is
99% complete within the first 0.15 s.

The step-up tests show an initial increase in shear stress
resulting from the sudden increase in shear rate and the reduc-
tion in the equilibrium value of the structural parameter λe
compared to the time-dependent value λ. This causes an in-

crease in the yield strength τ y ¼ λ
λe

� 	
τ0 which causes the

shear stress to increase. As λ⟶ λe, then τy⟶ τ0, and the
shear stress reduces in consequence. For the step-up tests, the

situation is similar, but τy ¼ λ
λe

� 	
τ0 initially reduces before

slowly increasing as λ⟶ λe.

The results indicate that Eq. 28 performs well in reproduc-
ing the behaviour of clay suspensions in non-equilibrium con-
ditions. The model performance does not require representa-
tion of different stationary and dynamic yield stress to repro-
duce the observations.

7.4 Step-up tests by Dullaert and Mewis (2006)

In this section, Eq. 28 is compared against step-up shear (and
equilibrium) experiments from Dullaert and Mewis (2006).
This is a test of the model on a clay-like but non-aqueous
colloidal suspensions. The suspension in the measurements
was composed of fumed silica particles, dispersed in a
Newtonian mixture of paraffin oil and 27.5 vol% PIB. The
viscosity of the suspending fluid was 0.65 Pa s. Equation 28
was applied as in Sect. 6.3. The convergence of λ→ λe was
calculated using Eq. 7. The time step used was 2 × 10−2 s, and
the model prediction and measured data were compared over
the duration of 100 s. Figure 8 shows a comparison of the
predicted and measured between start-up flow of the flumed
silica slurry, increasing the shear of the mixture from 0.1 to
5 s−1, from 0.1 to 2.5 s−1, from 0.1 to 1.0 s−1, from 0.1 to
0.5 s−1 and from 0.1 to 0.25 s−1. The rheological parameters
used for the comparisons in Fig. 6 are given in Table 4.
Additional parameters are μ∞ = 0.078 Pa (calculated on the
basis of Eq. 8 using the stated fluid viscosity of 0.065 Pa s
(Dullaert and Mewis 2006) and an estimate of the maximum
packing fraction of flumed silica of 0.33 (Mondragon et al.
2012).

Firstly, the equilibrium form of Eq. 28 (Eq. 29) is compared
against the measured data (Fig. 8). These parameters are then
used as a basis for the comparison of the time-dependent data
in Fig. 9. The results indicate that Eq. 28 (and Eq. 29) per-
forms adequately in reproducing the viscous behaviour of the
flumed silica suspension in non-equilibrium conditions.
However, as the model considered here is purely viscous, it
is not able to reproduce the elastic behaviour noted byDullaert
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Fig. 7 Comparison of changes in
shear stress in response to step-up
(0–50 and 0–100 s−1) and step-
down (300–100 s−1) experiments
using bentonite from Coussot
(1993)

Table 3 Rheological constants used to fit Eq. 28 in Fig. 7

D 1/(4 − D) m a β τ0 (Pa)

2.9 0.9 0.4 0.3 8 103

Ocean Dynamics (2017) 67:485–497 493



and Mewis (the initial rise in shear stress for the smaller shear
rates) that occurs over the first 0.1 s. Dullaert and Mewis
(2006) were able to reproduce this effect by including a vis-
coelastic contribution to the stress.

8 Discussion

There are many aspects of the study of rheology, and different
models can be useful under different circumstances for de-
scribing the rheology of a particular substance. In this paper,
we consider the rheology of aqueous clays, and in particular
with an interest in coastal situations where clay suspensions
can be mobilised and can result in a range of shear and of
suspension concentrations. For this area of study, rheological
models need to be applicable across these ranges, and there-
fore, a greater understanding of the underlying dependence of
the rheology is required than is currently afforded by rheolog-
ical models in the literature. The more sophisticated rheolog-
ical models available in the literature (see Sect. 3) are designed
to reproduce the detail of rheological phenomena and have a
large number of fitting parameters to facilitate this which have
to be derived from laboratory measurements. Such models
have greatly improved the understanding and prediction of
the elastic-viscous regime transition, but, while the fitting of
a large number of empirical parameters allows a specific rhe-
ology to be well reproduced, this not necessarily enable the
rheology of a similar but more concentrated sediment solution
might behave. Moreover, increasing model sophistication
through increasing the number of model parameters tends to
increase, rather than decrease, uncertainty in the model pre-
diction (Hill et al. 2013).

The equation developed in this paper includes aspects of
the physics inherent in clay flocculation. The new equation is
shown to compare well with both equilibrium data across the
range of shear and sediment concentration and with time-
varying data for shear step-up and step-down experiments.
However, the equation has limitations—in particular, it does
not at present include an elastic component and therefore is
unable to reproduce the full aspects of the elastic-viscous re-
gime transition which has implications for phenomena such as
avalanching and fluidisation.

The proposed model is composed of two equations: one
governing the time dependence of the structural parameter
(Eq. 28) and one governing the dependence of the shear stress
on shear rate and the structural parameter (Eq. 7).

The proposed model depends on the following six param-
eters, of which five require estimation or tuning, depending on
the circumstances. Each of these parameters is discussed, in
turn, below.

D The fractal dimension may be measured, but it is more
common that D is a tuning parameter and identified through
best fit analysis. Measurement of the fractal dimension can be
undertaken using a light scattering technique (e.g. using a

Malvern Mastersizer 2000). The scattering vector Q ¼ 4πη
χ sin

θ
2

� �
is related to the intensity of scatted light via the relation

I(Q) ∝Q−D, and D can then be found from a double logarith-
mic plot of I against Q (Pignon et al. 1997; Amjad and Khan
2016). In this equation, η is the refractive index of the
suspending medium, X is the wavelength of the radiation
and θ is the scattering angle. The fractal index can also be
derived using N2 adsorption data (Aparicio et al. 2004). For
dilute floc suspensions, video techniques can be used (Maggi
2007), but such video techniques are unlikely to work satis-
factorily for dense suspensions.

Based on the fits to data in this study, D was most com-
monly found to have a value of around 2.3 (i.e. 1

4−Dð Þ∼0:6Þ;
but the Bentonite example in this study had a much higher
value of around 2.9 ( 1

4−Dð Þ∼0:9Þ, and the Hendratta and

Ohmoto example of kaolinite had a value of around 1.7
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Fig. 8 Comparison of Eq. 29
with data using fumed silica from
Dullaert and Mewis (2006)

Table 4 Rheological constants used to fit Eqs. 28 and 29 in Figs. 8 and 9

D 1/(4 − D) m a β τ0 (Pa)

2.3 0.6 0.36 0.1 7 7
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( 1
4−Dð Þ∼0:43Þ. This range of values is typical of the range en-

countered in clay suspensions of the type considered in this
paper.

As noted in Sect. 2 the fractal dimension is not strictly
constant, and in practice, it reduces slowly with increasing
floc size. It can therefore be expected that the fractal dimen-
sion reduces with increasing shear. The evidence shown in this
paper suggests that in practice, this does not matter, but it may
be necessary under some circumstances to include this
variation.

m This is a parameter from the structural dependency equa-
tion (Eq. 28) which also appears in Eq. 29. It therefore affects
both the rate at which the structural parameter approaches
equilibrium and the rate at which the non-Newtonian effects
on the shear stress decline with increasing shear. If the value of
the fractal dimension is known, then m can be established
from a plot like Fig. 3 since at low non-dimensional shear
rates, the behaviour of T = τ/τ0 is a power function of
Γ = γ=γ0 with an exponent of 1

4−Dð Þ−m which is equal to the

gradient of the double logarithmic plot. Otherwise, D and m
are tuning parameters and identified through best fit (e.g. least
squares) analysis.

The clays examined in this study exhibit a range of values
of m varying from 0.001 through to 0.75. It is not surprising
that the value of m varies with the type of clay, but it can also
vary significantly for similar clays—as a comparison between
the kaolinites studied by Coussot (1995) andMondragon et al.
(2012) shows. Bekkour et al. (2005) showed that the variation
in the exponent m of the shear in the rate equation is partly a
function of the sediment volume concentration. Further stud-
ies of the exponent m for different clays and conditions are
required.

τ0 τ0 may bemeasured for a range of concentrations or for a
few values but sufficient to identify the parameter c in

τ0 ¼ k ϕ=ϕ*

1−ϕ=ϕ*ð Þ
� �2 4−Dð Þ

, or τ0 may be a tuning parameter.

μ∞ This is the high shear limit of the viscosity and is cal-

culated from μ∞ ¼ μ0
1

1−ϕ=ϕ*ð Þ
� �2

β This is a parameter from the structural dependency equa-
tion (λe in Eq. 28) which also appears in Eq. 29. It therefore
affects both the rate at which the structural parameter ap-
proaches equilibrium and the rate at which the non-
Newtonian effects on the shear stress decline with increasing
shear rate. In practice, it is a tuning parameter and is identified
through best fit (e.g. least squares) analysis. However, a guide
to the value of β may be derived from a plot like Fig. 3. The
intercept of the linear fit of the double logarithmic plot at low

(non-dimensional) shear is approximately ln 1
β1= 4−Dð Þ 4−Dð Þ
h i

.

a This is an empirical parameter controlling the rate of
convergence of the structural parameter to its equilibrium val-
ue. In practice, it is a tuning parameter and is identified
through best fit analysis.

9 Conclusions

This paper establishes a framework for rheology of clay sus-
pensions valid for the whole range of sediment concentrations
and shear from the yield point to Newtonian flow. The shear
stress equation is reconstructed from first principles of floccu-
lation using an approach adapted from Mills and Snabre
(1988). Structural kinetics theory (Moore 1959; Worrall and

Fig. 9 Comparison of changes in
shear stress in response to step-up
(from 0.1 to 5 s−1, to 2.5 s−1, to
1.0 s−1, to 0.5 s−1 and to 0.25 s−1)
experiments using fumed silica
from Dullaert and Mewis (2006)
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Tuliani 1964) is then added to this equation. The deriva-
tion results in a rheology equation which is able to repro-
duce the behaviour of clay suspensions at low and high
shear, incorporates the dependence of yield strength and
viscosity on clay volume concentration, reproduces the
effects of time-dependent structural changes on rheology
and is compatible both with the form of structural simi-
larity highlighted by Coussot (1995). The new equation is
shown to compare well with both equilibrium data across
the range of shear and sediment concentration and with
time-varying data for shear step-up and step-down exper-
iments. Five tunable parameters are required to fit the
model to data, depending on the information available.
Inclusion of aspects of the physics inherent in clay floc-
culation, together with structural dynamics, allows the
proposed rheological model to represent the breadth of
clay suspension behaviour and appears to represent an
improvement over the available rheological models of
the viscous regime; although, as the model does not in-
clude an elastic rheology component, the model is not
able to reproduce well the behaviour associated with the
elastic-viscous transition.
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