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Abstract Hindered settling, the process by which the settling
of sediment particles becomes impeded due to the proximity
of other sediment particles, can be an important process for the
coastal modeller, especially in highly muddy environments. It
is also a significant process in other disciplines such as chem-
ical engineering, the modelling of debris flow, the study of
turbidites, piping of slurries and the understanding of process-
es occurring within a dredger hopper. This study first exam-
ines the hindered settling behaviour of monodisperse suspen-
sions in order to create a framework for polydisperse hindered
settling that works for both non-cohesive and cohesive sus-
pensions. The Richardson–Zaki equation is adapted to make it
compatible with the changes with viscosity that occur near the
point at which suspensions become solid. The modified
monodisperse settling equation is then compared to data for
hindered settling of cohesive suspensions and shown to be
consistent with the transition between hindered settling and
the initial permeability phase of consolidation. Based on the
monodisperse framework developed initially, this paper pro-
poses a hindered settling model for sand/mud mixtures which

is based on a modification of the Masliyah (1979) and Lockett
and Bassoon (1979) hindered settling equation. The model is
shown to reproduce the hindered settling of a variety of dif-
ferent sediment mixtures whilst reducing the extent of empir-
icism often associated with the modelling of polydisperse hin-
dered settling of mud/sand mixtures.

Keywords Hindered settling .Mixed sediment . Numerical
model . Richardson and Zaki . Permeability . Cohesive
sediment

1 Introduction

A knowledge of particle settling velocity dynamics is ex-
tremely important when considering depositional rates and
transport fates of both mixed and non-mixed suspended sed-
iments (e.g. Chesher and Ockenden 1997; van Ledden 2002;
Winterwerp et al. 2006; Baugh and Manning 2007; Waeles
et al. 2008; Soulsby et al. 2013). Hindered settling—the pro-
cess by which the settling of sediment particles becomes im-
peded due to the proximity of other sediment particles—can
be an important process for the coastal modeller, especially in
highly muddy environments. It is also a significant process in
other disciplines such as chemical engineering, the modelling
of debris flow, the study of turbidites, piping of slurries and the
understanding of processes occurring within a dredger hopper.

The prime texts for coastal modellers regarding hindered
settling (e.g. Richardson and Zaki 1954; Soulsby 1997;
Winterwerp 1999; van Rijn 2007) were written on the basis
of work on monodisperse solutions. These formulae are not
directly applicable to the more widely encountered polydis-
perse solutions containing a range of sand as well as silt and
clay fractions. This is because the different fractions interact
with each other resulting in departure from the monodisperse
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predictions. It is noted that the discipline of coastal sediment
science is by nomeans the hub of research into hindered settling
processes. Much of the research originates from chemical
engineering researchers, and indeed, the Richardson and Zaki
(1954) paper itself came from this discipline. In addition, major
contributions have come from theoretical fluid mechanics, and
the important work on polydisperse settling of spheres by
Batchelor (1982) is the most prominent example of this.
Authors from these various disciplines (e.g. Masliyah 1979;
Davis and Gecol 1994; Wang et al. 1995; Winterwerp and
Van Kesteren 2004; Cuthbertson et al. 2008; Dorrell et al.
2011) have since adapted these well-known equations, to make
them more attributable to bidisperse or polydisperse settling.
The applications to polydisperse non-cohesive sediments have
been relatively successful (e.g. Davis and Gecol 1994; Dorrell
et al. 2011). However, the results for mixed cohesive and non-
cohesive sediments have to date been unsatisfactory.

Amongst the uncertainties encountered by the researchers
of hindered settling is the increase in viscosity with increasing
cohesive and non-cohesive sediment concentration. Some of
the hindered settling approaches listed above are based on the
assumption that the viscosity of the suspension fluid varies
with solid concentration in similar fashion to a dilute suspen-
sion of spheres. For concentrated or cohesive (floc) suspen-
sions, this is not the case and the effect of solid concentration
on viscosity is stronger. Further, many of the hindered settling
functions discussed above do not take the effective volume
concentration of sediment into account but only consider the
strict volumetric concentration. This contrasts with the stan-
dard formula for the effect of sediment concentration on vis-
cosity which take sediment packing into account (e.g. Krieger
and Dougherty 1959; Chong et al. 1971; Quemada 1977).

A further obstacle has been a lack of suitable experimental
data. Whilst there are many settling column studies in the
literature reporting the settling of bidisperse or even tridisperse
non-cohesive sediments, experiments involving the settling of
mixed cohesive and non-cohesive sediments are more limit-
ing. The experiments undertaken by Amy et al. (2006) are
notable since they include the settling of both non-cohesive
and mixed polydisperse suspensions. In addition, measure-
ments by Te Slaa et al. (2013) and Van and Pham Van Bang
(2013) have more recently become available and are used in
this study to validate the proposed hindered settling approach.

This paper establishes a common framework for hindered
settling for non-cohesive and cohesive sediment based on a
modified Richardson–Zaki formula. The paper then discusses
the status of the current state of hindered settling knowledge of
mixed sediments and suggests a modelling approach based on
the Masliyah (1979) and Lockett-Bassoon (1979) polydis-
perse form of the (modified) Richardson–Zaki formula
(henceforth referred to as the MLB model) as a basis for re-
producing laboratory observations of polydisperse settling
from literature.

2 Theoretical development

2.1 Introduction to the settling of sediment particles

2.1.1 Non-cohesive particles

For Rep ¼ dws;0

ν < about 1 (round sediment particles of
about 120–140 μm in diameter and density 2650 kg/m3

settling in water), the flow induced by the falling parti-
cle is laminar, the strength of viscous forces at the sur-
face of the particle dominates providing the vast major-
ity of the retarding force, and the terminal settling ve-
locity is given by Stokes law (e.g. Smith and Friedrichs
2011):

ws;0 ¼ ρs−ρwð Þgd2
18μ

¼ νD3
*

18d
ð1Þ

where ws , 0 is the settling velocity of a single grain
without the influence of hindered settling, ρ is density
(the subscripts s and w indicate sediment particle and
fluid, respectively), g is the acceleration due to gravity,
d is the diameter of the sediment particle and μ and ν
are the dynamic and kinematic viscosities of the fluid,

respectively; D* ¼ g s−1ð Þ
ν2

h i1=3
d and s = ρS/ρw .

For Rep > around 100 (round sediment particles of around
600–700 μm in diameter and density 2650 kg/m3 settling in
water), the flow induced by the falling particle is fully turbu-
lent, and the terminal settling velocity is given by

FD ¼ 1

2
ρww

2
s;0CDA ð2Þ

where FD is the drag force, ws , 0 is the terminal particle
velocity of a single particle in still water, A is the cross-
sectional area of the sediment particle and CD is the
(dimensionless) drag coefficient which depends on the
shape of the object and on the Reynolds number. In this
regime, often referred to as the inertial regime, the set-
tling velocity (for spherical grains) is given by (Leng
et al. 2009)

ws;0 ¼ 1:73 s−1ð Þdg½ �12 ð3Þ

A number of researchers have developed formulae which
predict (non-cohesive) settling velocity for the whole range of
the viscous drag, intermediate and inertial regimes. Two ex-
amples are the formula of Soulsby (1997),

ws;0 ¼ ν
d

10:362 þ 1:049D3
*

� �
−10:36

� �
where D*

¼ g s−1ð Þ
ν2

� �
d and s ¼ ρS

.
ρw ð4Þ
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and the modification of Stokes law using the Schiller
and Naumann (1933) drag correction (Coulson and
Richardson 1955)

ws;0 ¼ ρs−ρwð Þgd2
18μ

1

1þ 0:15Re0:687p

ð5Þ

In practice, these equations predict very similar settling
velocities (Smith and Freidrichs 2011).

Whilst Eqs. 1 and 3 are derived on the basis of spherical
particles, Soulsby’s equation is derived from observations of
the settling velocity of natural sands. The angular surfaces and
differences in shape between natural sand grains can cause
departures from the relations for spherical particles (Wu and
Wang 2006). Within this paper, Eq. 4 will be used to deter-
mine the settling velocity of sediment grains. The topic of the
effect of particle shape is, however, outside the scope of this
paper.

At low sediment concentrations, of a few percent (Amy
et al. 2006), individual particles settle separately. The distance
between particles is such that they do not interact. The settling
velocity of individual particles increases with their size and
particle density (e.g. Soulsby 1997; Van Rijn 1993), and there-
fore, in mixed or polydisperse suspensions, the largest and
heaviest particles settle quickest and will settle onto the bed
first. As sediment concentrations increase, the movement of
grains downwards causes an equal volume of interstitial fluid
to be displaced upwards. The return currents induced can be
strong enough to carry smaller or lighter grains upwards. At
high concentrations, segregation of grains is increasingly sup-
pressed. This has attributed to different processes by different
authors, e.g. particle interlocking (Davies 1968; Davies and
Kaye 1971), hydrodynamic processes (Lockett and Al-
Habbooby 1974) and high rates of bed aggradation (Amy
et al. 2006). Amy et al. (2006) found that this suppression
begins to occur for volume concentrations of ϕ ≈ 0.2 and is
completely suppressed for concentrations of ϕ ≈ 0.6.

2.1.2 Cohesive particles

Cohesive particles such as clays possess strong, molecular-
scale, electrostatic forces that modify their settling behaviour
(van Olphen 1977). In natural environments, cohesiveness is
enhanced by biogenic long-chain polymer molecules. These
are typically sticky mucopolysaccharides, known as extracel-
lular polymeric substances (EPS; Tolhurst et al. 2002), and
can be secreted from epipelic diatoms as they move within
the sedimentary layers (Paterson and Hagerthey 2001) and
subsequently adhere to individual particle surfaces (Manning
et al. 2011a,b). This biological cohesion is considered to dom-
inate its electrostatic counterpart (e.g. Kranck 1984; Gratiot
and Manning 2007). Cohesive individual particles in suspen-
sion are attracted to one another to form flocculi, which

themselves can join together to form microflocs which join
to form macroflocs; this is the basis of Krone’s (1963) classic
hierarchical order of aggregation theory. Biogenic cohesion
allows silt and even fine sand particles to form flocs with these
cohesive flocs (Manning et al. 2010, Manning et al. 2011a,b;
Spearman et al. 2011). For example, epipsammic diatoms can
attach to sand grains using their mucilage stalks (Harper and
Harper 1967), and Little (2000) found that sticky EPS can
efficiently bind to fine sand grains.

The settling velocity of flocs does not follow Stokes law
because the structure of flocs is different to that of solid grains.
The settling velocity of flocs is a function of their size Dfloc

and their excess density relative to water. Winterwerp (1999)
derived a formula for the settling velocity of single mud flocs
in still water (based on the Stokes formula with the Schiller
and Naumann correction, but accounting for the changes in
floc density with floc size),

ws;0 ¼ α
18β

ρs−ρwð Þg
μ

d3−D f
p

dD f −1
f

1þ 0:15Re0:687p

ð6Þ

where α and β are shape factors of the flocs, dp is the diameter
of primarymud particles, df is the diameter of the floc,Df is the
fractal dimension of the mud floc and Rep is the particle
Reynolds number (which itself is a function of ws , 0).
Typically, many of these values are not known. To overcome
this problem, some researchers have derived physically based,
but empirical, formulations of settling velocity based from the
field. One of the most sophisticated of these (Soulsby et al.
2013) is based evaluation of the settling velocity of
macroflocs (specified as flocs larger than 160 μm in diameter)
and microflocs (less than 160 μm in diameter) separately,

wsM ¼ 0:095
u3*ξd

4

m

ν3z

0
@

1
A

0:166

gc0:22044
νz
u3*ξ

� 	1

.
2

exp −
u*sM

u*ξ
1

.
2

0
B@

1
CA

0:4632
64

3
75

ð7Þ

wsμ ¼ 0:5372
u3*ξd

4
μ

ν3z

 !0:39

g
νz
u3*ξ

� 	1

.
2

exp −
u*sμ

u*ξ
1

.
2

0
B@

1
CA

0:662
64

3
75
ð8Þ

r ¼ 0:1 X < 0 where X is given by X ¼ log10 ϕmð Þ þ 6
r ¼ 0:1 þ 0:221X 0 ≤ X < 4:07
r¼ 1 X ≥ 4:07

ð9Þ

ws;av;0 ¼ max r:wsM þ 1−rð Þ:wsμ
� � ð10Þ

In these equations, wsM and wsμ are the average settling
velocities of the macrofloc and microfloc populations,
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respectively, u∗ is the friction velocity, ξ = 1 − z/h where h is
the water depth, ν is the viscosity of water, g is the acceleration
due to gravity, dm and dμ are representative length scales and
u∗sM and u∗sμ are empirical coefficients. These equations have
been derived from data from several NW European estuaries
and therefore are representative of natural estuarine conditions
in this geographic location, but they are not likely to be rep-
resentative of the laboratory tests described later in this paper.

As turbidity levels rise above a few kg/m3, cohesive parti-
cles experience hindered settling effects for concentrations
(e.g. Maude and Whitmore 1958; Ross 1988; Mehta et al.
2009; Manning et al. 2012). The hindered settling process is
important for creating highly concentrated benthic suspen-
sions (sometimes referred to as fluid mud) which can rheolog-
ically behave in a non-Newtonian manner, with a viscosity
varying up to several hundred times larger than that of clear
water (Faas 1984; Wallingford 1990). Their flow is usually
laminar and is often characterised by flow downslope under
the force of gravity.

Suspensions can display different settling behaviours de-
pending on the initial condition. For volume concentrations
above a value, ϕcrit (see Fig. 1), analysis of settling behaviour
in settling columns shows that only one interface (between
clear water and the settled bed) will be created. Above this
value, two interfaces are created—one between overlying
clearer water and the settling suspension and the second be-
tween the suspension and the bed (Dankers 2006).

When the average distance between flocs becomes suffi-
ciently small, they join together to form a volume-filling net-
work. This point, known as the gel point (with a volume
concentration of ϕgel), marks the transition between hindered
settling and the permeability phase of consolidation, where the
settling velocity function is mainly driven by the compression
of flocs and expulsion of pore water (where effective stresses
are zero) as shown in Fig. 1. This gelling process can result in
measurable strength building up which resists re-entrainment,
although this is a thixotropic process (Toorman 1997). The gel

concentration is a function of the mineralogy, water chemistry
and organic content but typically occurs at clay concentrations
between 30 and 180 kg/m3 (Whitehouse et al. 2000;
Merckelbach and Kranenburg 2004; Camenen and Pham
Van Bang 2011).

Following the permeability phase of consolidation, there is
a phase of consolidation where the build-up of effective stress
within the consolidating soil becomes the dominant process
(Fig. 1). Over time, further consolidation occurs, and the vol-
ume concentration will tend to a maximum value, ϕmax.

2.2 The hindered settling of non-cohesive monodisperse
suspensions

2.2.1 Approaches for non-cohesive hindered settling
in the literature

The Richardson and Zaki equation for the settling of spherical
spheres (1954) was given as

ws ¼ ws;0 1−ϕð Þn ð11Þ

where n is a function of the particle Reynolds number and is
given by

n ¼ 4:65þ 19:5d=Dð Þ for Rep < 0:2
n ¼ 4:35þ 17:5d=Dð Þ Rep−0:03 for 0:2 < Rep < 1:0
n ¼ 4:45þ 18d=Dð Þ Rep−0:1 for 1:0 < Rep < 200
n ¼ 4:45 Rep−0:1 f or 200 < Rep < 500
n ¼ 2:39 f or Rep > 500

ð12Þ

where d is the particle diameter, D is the diameter of the
container vessel, Rep is the Reynolds particle number, ws , 0

is the terminal particle velocity of a single particle in an still
water and ν is the kinematic fluid viscosity. This formula
represents the starting point for this paper.

Rowe (1987) derived the convenient approximation for n
given by,

n ¼ 4:7þ 0:41R0:75

1þ 0:175R0:75 ð13Þ

though it is noted that a number of similar, but slightly differ-
ent, formulae exist. Several are presented in Siwiec (2007). Of
note is the formula by Garside and Al-Dibouni (1977), which
was found to be more accurate than the Richardson–Zaki for-
mula for the settling of bidisperse and tridisperse spherical
particle suspensions (Al-Naafa and Selim 1989),

5:1−n
n−2:7

¼ 0:1Rep0:9 or n ¼ 5:1þ 0:27Re0:9p

1þ 0:1Re0:9p

ð14Þ

Fig. 1 Schematic figure of the variation of the settling flux with the
concentration volume, ϕp, showing the hindered settling, and
permeability-dominated and effective stress-dominated phases of
consolidation. Figure reproduced from Dankers (2006) with parameters
renamed for the present paper. The meanings of ϕ, ϕcrit , ϕgel and ϕmax are
explained in the text
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The variation in the exponent n in the Richardson and Zaki
equation (and other similar equations) accounts for the change
in the influence of sediment concentration on particle drag as
the Reynolds particle number increases, i.e. it accounts for the
transition between hindered settling in the Stokes and inertial
regimes.

2.2.2 Deconstruction of the Richardson–Zaki equation
and re-consideration of the effect of viscosity

Winterwerp (1999) argued that hindered settling can be bro-
ken down into terms involving viscosity (the form of this term

is discussed further below), return currents (scaling as 1–ϕ)
and buoyancy (scaling as 1–ϕ). The viscosity term (which has
varying importance depending on the Reynolds particle num-
ber) reflects the drag exerted on settling particles in a viscous
fluid. The return current term represents the reduction in set-
tling velocity caused by the upward directed flow resulting
from continuity effects of those same particles settling through
the fluid. The buoyancy term reflects the change in fluid den-
sity (and hence the difference in the densities of fluid and
particle) caused by the presence of the sediment. Breaking
the Richardson–Zaki equation into these three terms gives
the following deconstruction:

= , (1 − ) (1 − ) (1 − )

Buoyancy term

Return current term

Viscosity term

In this deconstruction, n is the Richardson–Zaki exponent,
whilst the exponent m accounts for the contribution to hinder-
ing of the non-viscosity terms. Using the Rowe approximation
of the Richardson and Zaki (1954) formulation, m varies be-
tween 1 in the Stokes regime to 2.35 in the inertial regime.m is
therefore given by,

m ¼ 2:35−0:35
n−2:35
4:7−2:35

¼ 2:5−0:15n ð16Þ

The exponent p accounts for the contribution to hindering
of the buoyancy terms, and we assume that p = 1 (Winterwerp
and Van Kesteren 2004).

The value n −m accounts for the viscosity terms, but the
form of these terms in Eq. 15, (1 − ϕ)n −m, differs from the
characterisation of the viscosity of suspensions in the literature.
The viscosity of sediment suspensions varies as (1 − ϕ/ϕmax)−2

(Quemada 1977) or 1−ϕ=ϕmaxð Þ−2:5:ϕmax (Krieger and
Dougherty 1959). Therefore, the (1 − ϕ)n −m term in Eq. 15

needs to be equivalent to 1−ϕ=ϕmaxð Þn
0
where n' is an empirical

constant related to n andm. The (1 − ϕ)n−m term of Eq. 15 is of
a different form to that of the Quesada or Krieger–Dougherty
equations since 1 − ϕ/ϕmax approaches zero as the sediment
concentration approaches ϕmax (when the sediment suspension
becomes a solid) whereas 1–ϕ does not. Their equivalence can
be reconciled, however, if the viscosity term from Eq. 15 rep-
resents the viscosity for ϕ ≪ ϕmax This is indeed true since the
value of the exponent n of the Richardson–Zaki equation was
derived for values of ϕ significantly less than .ϕmax It can be

seen from Richardson and Zaki (1954) that as ϕ approaches
ϕmax, the variation of settling speed with porosity ε = 1 − ϕ in-
creases dramatically. An example from Richardson and Zaki
(1954) of this change in behaviour is shown in Fig. 2.

For ϕ≪ϕmax 1−ϕð Þn−m≈ 1−ϕ=ϕmaxð Þ n−mð Þϕmax ¼ 1−ϕ=ϕmaxð Þn
0
It

can be seen that for n = 4.5 (and m = 2), the right-hand term
is equal to the reciprocal of the Krieger–Dougherty viscosity,
whilst for ϕmax ≈ 0.6 (which is a typical value for sand grains)
and n = 5 (and m = 2), the right-hand term is equal to the
reciprocal of the Quesada viscosity. These limits correspond
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Fig. 2 Example of one of Richardson and Zaki’s (1954) experiments
(fluidisation of glass ballotini particles of diameter 1.03 mm) showing
the change in behaviour of the hindered settling behaviour with changes
in porosity ε. The units of ws used in the figure are centimetre per second
as in the figure from the original paper. The two different groups of data
points result from two different experiments with different initial masses
of sediment: 250 g and 500 g, n = 2.7 , wS , 0 = 115 mm/s
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to hindered settling in the Stokes regime. For n =2.39, there is
no influence of viscosity (n = m) and settling is in the purely
inertial regime.

In addition, n' must be adjusted to take account of the fact
that Richardson and Zaki’s formula is a best-fit line through a

data set which is really scaling as 1−ϕ=ϕmaxð Þn
0
To do this, we

re-write Eqs. 1 and 11 in logarithmic form, integrate the
second-order Taylor expansion of the difference between
these equations over the range ϕ = 0 to 0.5 and equate this
difference to 0 (by analogy with the identification of the best
fit undertaken by Richardson and Zaki). Δn' is that amount
that n'must be reduced by for this integral to equate to 0. It
turns out that

Δn
0
≈
1

6
n−mð Þ ϕmax−1½ �≈−0:06 n−mð Þ ð17Þ

These considerations lead to an improved description of
hindered settling for non-cohesive sediments, based on the
Richardson–Zaki equation, but now corrected to account more
properly for changes in viscosity as ϕ→ϕmax . We conclude
that the Richardson–Zaki experiments result in the following
equation which holds for all ϕmax,

ws ¼ ws;0 1−ϕð Þm 1−ϕ
.
ϕmax


 �n0
ð18Þ

where n′ = 0.62n − 1.46 and m = 2.7 − 0.15n and n′ = 0 in the
inertial regime and n′ ≈ 1.5 in the Stokes regime which corrob-
orates with the Krieger–Dougherty viscosity law.

2.2.3 Application of the corrected Richardson–Zaki equation
for non-cohesive sediments

Figures 3 and 4 apply the corrected Richardson–Zaki equation
(Eq. 18) to examples of the data from the original Richardson

and Zaki (1954) experiments, including the example shown in
Fig. 2. The corrected equation (Eq. 18) is shown to be an
improvement on the original Richardson and Zaki formula
(Eq. 11) as can be seen from a comparison of Figs. 2 and 4.

A comparison of Eq. 18 and measured hindered settling
data for concentrated sediment concentrations from Baldock
et al. (2004) is shown in Fig. 5. The model prediction is gen-
erated using Eq. 12 to generate the Richardson–Zaki exponent
n, Eq. 18 to derive the hindered settling effect and Soulsby’s
(1997) equation for the settling of non-cohesive particles
(Fig. 5a). The equivalent figure comparing the Richardson–
Zaki formula with the same data is shown in Fig. 5b. It can be
seen that the data shows significant departure from the
Richardson–Zaki formula which is captured (although not
perfectly) by Eq. 18. A comparison of the mean prediction
errors (RMSE) of the two formula for this data shows that
the error resulting from the application of Eq. 18 is approxi-
mately two thirds that of the application of the Richardson–
Zaki formula.

2.3 Hindered settling of cohesive suspensions

As we have seen in Sect. 2.2, the introduction of the (1 − ϕ/
ϕmax) term into the hindered settling equation in Eq. 18 results
in a better description of the settling of non-cohesive material.
Equation 18 is of a similar form to hindered settling formulae
for cohesive sediment (e.g. Toorman 1999; Winterwerp and
Van Kesteren 2004; Camenen 2008; Camenen and Pham Van
Bang 2011), with ϕmax now replaced by the gelling point of
the concentrated suspension, ϕgel, (the point when flocs form a
space filling network), in order to account for the fact that
flocs take up much more volume than a similar mass of non-
cohesive sediment. An additional adjustment is needed to ad-
just the term catering for the return current. This term changes

from (1–ϕ) for non-cohesive sediment to 1−ϕmax
ϕgel

ϕ

 �

for co-

hesive sediment. This is because the return current is now a
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Fig. 3 Comparison of Eq. 18 with data from fluidisation tests by
Richardson and Zaki (1954) using 0.51 mm ballotini. The units of ws

used in the figure are in centrimetre per second as in the figure from the
original paper. The figures show the change in behaviour of the hindered
settling behaviour with changes in porosity ε. The tests using 250 g and
500 g of ballotini. n = 2.96, n′ = 0.37, m = 2.26, ϕmax = 0.66,
ws , 0 = 61 mm/s
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Fig. 4 Comparison of Eq. 18 with Richardson and Zaki’s data from
Fig. 2. n = 2.7, n′ = 0.14, m = 2.30, ϕmax = 0.655 (250 g) and 0.67
(500 g), ws , 0 = 115 mm/s
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function of the volume taken by flocs (which have water

trapped inside them) rather than just the volume of particles.

ϕmax
ϕgel

represents a simple but approximate scaling factor for the

increased volume taken up by these flocs.

Fig. 5 Comparison of the Richardson–Zaki equation with data from Baldock et al. (2004). Equation 18 (top). Richardson–Zaki equation (bottom)
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Assuming that cohesive settling is in the Stokes regime,
then the cohesive version of Eq. 18 becomes

ws ¼ ws;0 1−ϕð Þ 1−
ϕmax

ϕgel
ϕ

 !
1−ϕ

.
ϕgel


 �1:5
ð19Þ

It is worth mentioning that the form of Eq. 19 is similar to
that proposed by Camenen and Pham Van Bang (2011)

ws ¼ ws;0 1−ϕð Þn
.

2
1−ϕflocð Þn2−1 1−ϕfloc

.
ϕfloc;max


 �ϕfloc;max

ð20Þ
where ϕfloc , max is the maximum volume concentration of
flocs. The three terms are similar in form, but the exponents
of each term are different.

2.4 Hindered settling for ϕ close to ϕmax or ϕgel

2.4.1 Non-cohesive sediment suspensions

Unlike the original Richardson–Zaki equation, the introduc-
tion of the (1–ϕ/ϕmax) or (1–ϕ/ϕgel) term into the hindered
settling equation in Eq. 10 results in settling velocities which
become smaller and smaller as ϕ→ϕmax and result in settling
which never achieves the concentration ϕmax (or ϕgel)
(Kranenburg 1992; Dorrell and Hogg 2010). Kranenburg
(1992) showed that for hindered settling formulae of the form
ws =ws , 0(1 − ϕ/ϕmax)

n , for initial concentrations ofϕ > 2/(n +
1) , sediment never settles to the bed. This analysis, however,
does not take into consideration that other factors come into
play as →ϕmax . In particular, experiments investigating the
fluidisation of sediments (i.e. at or near the limit as →ϕmax )
have demonstrated that the settling velocity at ϕ = ϕmax has a
non-zero value given (in the laminar fine sediment regime) by
Darcy’s law (Baldock et al. 2004),

wf ¼ ki ð21Þ

where wf is the settling velocity associated with the point of
fluidisation, k is the permeability given by the Kozeny–
Carman equation and i is the hydraulic conductivity given in
this case by i = (s − 1)/(1 + e) = (s − 1)ϕmaxwhere s = ρs/ρw and
e is the void ratio. It can be shown (Baldock et al. 2004) that
this results in the hindered settling velocity being no smaller
than 0.018 ϕmax ws , 0, where ϕmax is the maximum packing
volume concentration of the non-cohesive sediment particles.
Assuming ϕmax ≈ 0.6 (as did Baldock et al. 2004), this gives a
lower limit for the reduction in sediment velocity of a factor of
0.011 for non-cohesive sediment. Obviously, as soon as sand
particles reach the bed, their velocity becomes zero as the bed
is rigid. However, just before this point or where due to
fluidisation the sand skeleton is just supported by the upward
flow, the settling velocity is given by Eq. 21.

2.4.2 Cohesive sediment suspensions

In the case of cohesive sediment, permeability again ensures
that the settling velocity never reaches zero for values of ϕ less
than ϕgel . In cohesive sediments, however, the settling parti-
cles (flocs) deform as water is squeezed out of them and an
approach is required which takes account of this. By assuming
a constant fractal dimension in the consolidating bed, and for
the initial consolidation phase where the effective stresses are
negligible, the settling velocity due to permeability can be
approximated as (Merkelbach 2000; Merckelbach and
Kranenburg 2004)

wf ¼ ρs−ρw
ρw

ϕm þ ϕsð ÞKk
ϕm

1−ϕs

� 	− 2
3−D f ð22Þ

where Kk (with units of metre per second) is a function of the
shape and size of the constituent sediment particles, the fractal
dimension and the sediment concentration (Merckelbach
2000). In practice, Kk is taken as an empirical constant deter-
mined from consolidation experiments (e.g. Merckelbach
2000). Df is the fractal dimension of flocs in the bed, and ϕm
and ϕs are the volumetric concentrations of mud and sand.

Camenen and Pham Van Bang (2011) proposed a meth-
od for establishing a smooth transition from the hindered
settling phase to the permeability phase of consolidation.
This essentially involves identifying the value of ϕ where
the derivative of wf in Eq. 22 with respect to ϕ matches
the corresponding derivative of Eq. 20 and then setting Kk

so that wf = ws. In this paper, we propose a simple method
whereby the settling velocity is taken to be the maximum
of either Eq. 19 or 22.

Figure 6 shows a plot of ws
ws;0

against ϕ/ϕgel using data of

settling cohesive sediment from Dankers (2006). The plot
shows the results of settling experiments using kaolinite in set-
tling columns 40 cm high and diameter 7 cm (Dankers 2006).
The value of Df varies for each experiment but for the average
value of f, Df ≈ 2.41 . Dankers’ data suggests Kk ≈ 10−9.

2.5 Approaches to polydisperse sedimentation

2.5.1 Theoretical approaches based on original work
by Batchelor

Davis and Gecol (1994), based on work by Batchelor (1982)
and Batchelor and Wen (1982), developed the following for-
mula for the settling velocity of fraction i in a polydisperse
suspension

Wi
s ¼ wi

s;0 1−ϕð Þ−Sii 1þ ∑m
j≠1 Sij−Sii
� �

ϕ j


 �
ð23Þ

whereWi
s is the polydisperse hindered settling velocity and Sii

is −5.6 for non-colloidal particles and −6.5 for colloidal
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particles, and Davis andGecol (1994) correlated the numerical
solutions of Batchelor and Wen (1982) to give

Sij = − 3.5 − 1.1λij − 1.02λ2 − 0.002λ3 for non-colloidal
particles

Sij = − 3.42 − 1.96λ − 1.21λ2 − 0.013λ3 for colloidal
particleswhere λij = dj/di.

The strengths of the Davis and Gecol formula were that it
extended the work by Batchelor to higher concentrations and
that, within the Stokes regime, it provided satisfactory estimates
of the settling of polydisperse suspensions without recourse to
empiricism in the selection of n. However, this equation does
not adequately account for the differences in the return flow of
fluid caused by downward movement of different sediment
fractions because it does not account for the difference in den-
sity between particle fractions (Berres et al. 2005; Ha and Liu
2002). In addition, Berres et al. (2005) and Burger et al. (2002)
identified that the Davis and Gecol formula is unstable (that is,
they result in non-hyperbolic solutions which show oscillating
behaviour) for some bidisperse systems.

Ha and Liu (2002) attempted to improve some of the defi-
ciencies of the Davis and Gecol formula by using correlations
for Sij developed by Liu (2000) which accounted for both size
and density differences between particle fractions. The values
of Sij were derived to be

Sij ¼ −2:5− λij þ 3λij þ 1−
1:87λij

1þ 0:0024λ2
ij

 !
γij ð24Þ

where λij = dj/di and γij = (ρj − ρw)/(ρi − ρw) are the ratios of the
particle diameters and particle densities, respectively.

For generalised polydisperse, the formula has limit-
ed use since its validity is restricted to the Stokes
regime. Moreover, Van and Pham Van Bang (2013)
identified instability issues with the Ha and Liu
approach which are similar to those for the Davis and
Gecol formula.

2.5.2 Winterwerps approach

Winterwerp (1999, 2002) developed an equation for the hin-
dered settling of cohesive sediment flocs

ws ¼ ws;0

1−ϕm

.
ϕgel


 �k
1−ϕmð Þ

1þ 2:5ϕm

.
ϕgel

ð25Þ

This equation was further developed by Winterwerp and van
Kesteren (2004) for suspensions of sand andmudwhereϕs≪ϕm ,

Wm
s ¼ wm

s;0

1−ϕm

.
ϕgel−ϕs


 �k
1−ϕm−ϕsð Þ

1þ 2:5ϕm

.
ϕgel

ð26aÞ

Ws
s ¼ ws

s;0−ϕ
mwm

s;0


 � 1−ϕm

.
ϕgel−ϕs


 �k
1−ϕmð Þ

1−ϕm−ϕsð Þ
1þ 2:5ϕm

.
ϕgel


 � ð26bÞ

k is an undefined parameter, but Dankers (2006) provided
evidence that k ≈2, based on analysis of Kynch theory and
settling fronts.

This equation is really only valid for relatively low concen-
trations because the viscosity term (1 + 2.5ϕ/ϕgel)

−1 is only valid
for dilute suspensions. In reality, the viscosity varies as (1 −ϕ/
ϕmax)

−2 (Quemada 1977) or 1−ϕ=ϕmaxð Þ−2:5ϕmax (Krieger and
Dougherty 1959). The equation perhaps has the flexibility to
cater for scenarios outside the Stokes regime (e.g. through vari-
ation in k), but there is no systematic determination of k for
different particle Reynolds numbers, and such an exercise may
be compromised to some extent by the (inherent) assumption of
dilute concentration. The validation of Eq. 26a, b (Dankers
2006), based on settling column measurements, is unsatisfactory
because the turning on of the camera was not systematically
timed relative to the release of the clay and sand. The
measurement data therefore can only be used qualitatively.
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measured

Eq.19

Eq.22

Indica�ve best fit

Fig. 6 Comparison of Eqs. 19
and 22 with data from Dankers
(2006). The data and model
results in circles are indicative
only as the gelling concentration
for these experiments was not
measured. The grey line indicates
a broad brush typical trend in the
data
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Te Slaa et al. (2013) improved Eq. 25 by replacing the
Einstein viscosity term (1 + 2.5ϕ/ϕgel)

−1by the Krieger and

Dougherty term 1−ϕ=ϕmaxð Þ−2:5ϕmax , but as yet, there has been
no formal validation of this equation through modelling and
comparison with observations.

2.5.3 Wang et al.’s approach

Wang et al. (1995) attempted to formulate an expression to
describe the settling velocity of non-cohesive sand particles
within clay suspensions, proposing a purely empirical equa-
tion based on the and Maude and Whitmore (1958) formulae
(similar to that of Richardson and Zaki) and a formula for
viscosity of clay suspensions by Wang et al. (1994)

Ws

ws;0
¼ 1−ϕsð Þn 1−Kϕclay

� �2:5 ð27Þ

whereK is an empirical coefficient to be determined. Equation
27 is essentially the application of the Richardson–Zaki for-
mula twice—once for the mud (clay) content and once for the
sand content—but there is little guidance as to the values of n
and K, and these are empirical values to be fitted.

2.5.4 Masliyah Lockett and Bassoon equation

TheMLB formula represents a fully generalised version of the
Richardson–Zaki equation and is given by

Wi
s ¼ 1−ϕð Þn−2 wi

s;0

ρi−ρsusp
ρi−ρw

− ∑
N

j¼1

ρ j−ρsusp
ρi−ρw

ϕ jw
j
s;0

 !
ð28Þ

where ρsusp ¼ 1−ϕð Þρw þ ∑N
j ϕiρi , ρi is the density of the ith

sediment fraction, ρw is the density of water and n is the ex-
ponent of the Richardson and Zaki equation. In this form, the
MLB is valid beyond the Stokes regime. The second term in
the MLB formula includes the effect of buoyancy and return
currents. This becomes immediately obvious if ρi becomes
uniform for all particles when Eq. 27 becomes

wi
s ¼ 1−ϕð Þ 1−ϕð Þn−2 wi

s;0− ∑
N

j¼1
ϕ jw

j
s;0

 !
ð29Þ

3 Numerical model application

3.1 Numerical model

3.1.1 Modified MLB equation

In this study, we use the modified Richardson and Zaki
equations (Eqs. 18 and 19, as discussed in Sects. 2.2

and 2.3) in polydisperse MLB form. It will be shown
that this modification results in the reduction in the
extent of the empiricism observed by many researchers
of polydisperse settling (e.g. Wang et al. 1995; Van and
Pham Van Bang 2013). The modified MLB equation
(henceforth referred to as mMLB) is used because it
can be used for real mixtures of sand and silt and clay
with varying particle size distribution; it is valid for the
Stokes and inertial regimes and the transition between
them. The set of equations used for the polydisperse
hindered settling is summarised below in Eqs. 30–36.
We will use an upper case W to denote the settling
velocity including all the polydisperse hindered settling
effects and a lower case ws otherwise.

Wi
s ¼ wi

s−∑
N
j¼1ϕ jw

j
s ð30Þ

where for the cohesive fraction (i = 1)

wi
s ¼ max w1is;w2

i
s

� � ð31Þ

where

w1is ¼ wi
s;0 1−ϕð Þ 1−

ϕmax

ϕgel
ϕ

 !
1−ϕ

.
ϕgel


 �1:5
ð32Þ

and

w2is ¼
ρs−ρw
ρw

ϕm þ ϕsð ÞKk
ϕm

1−ϕs

� 	− 2
3−D f ð33Þ

and for the non-cohesive fractions (i = 2,...,N)

wi
s ¼ max w1is;w2

i
s

� � ð34Þ

where

w1is ¼ wi
s;0 1−ϕð Þm 1−ϕ

.
ϕmax


 �n0
with n

0

¼ 0:62n−1:46 and m ¼ 2:7−0:15n ð35Þ

and

w2is ¼ 0:018 ϕmaxw
i
s;0 ð36Þ

The unhindered settling velocity wi
s;0 for cohesive

sediment (i = 1) used in the case studies below was
calculated based on data given in the experiment (e.g.
the rate of change in height of the water–sediment in-
terface and the initial concentration) or through
calibration.

The non-hindered settling velocity wi
s;0 for non-cohesive

sediment grains (i = 2,...,N) was derived using Eq. 4.
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3.1.2 Numerical approach

In the remainder of this paper, we use the considerations above
to solve the Kynch-like equation (Toorman 1996, 1999;
Winterwerp and Van Kesteren 2004; Camenen and Pham
Van Bang 2011)

∂ϕ
∂t

þ ∂S
∂z

¼ ∂
∂z

Ds þ DH þ ΓT þ Γcð Þ ∂ϕ
∂z

� �
ð37Þ

w h e r e S = W s ϕ i s t h e s e d i m e n t f l u x a n d
Ws =Ws(ws , 0 , ϕ1, ϕ2, … , ϕN) . Ws is positive when settling
is downwards. The model solves the settling of sediment frac-
tion i at zkwhere k = 1,M and i = 1,N. The sediment flux for the
ith fraction at the kth layer is given by (Scheme 2, Burger et al.
2008)

Sik ¼ ϕi
kmax 0;Wi

s kþ1

� �þ ϕi
kþ1min 0;Wi

s kþ1

� � ð38Þ

The diffusion term on the right-hand side of Eq. 36 ac-
counts for a number of different diffusion mechanisms. The
first, Ds , represents the molecular diffusion (for instance
which contributes to Brownian motion). This diffusion is neg-
ligible except for sediment particles of very small size (less
than a micron or so in diameter). The second term, DH , rep-
resents the diffusion caused by the randomly fluctuating mo-
tion induced by the surrounding particles (Koch and Shaqfeh
1991; Yin and Koch 2008; Mucha and Brenner 2003). This
term is usually small but (in the absence of eddy diffusivity)
not necessarily negligible. This term contributes to the broad-
ening of fronts of settling fractions in settling columns al-
though the effect of polydispersivity is likely to be more
significant (Bergougnoux et al. 2002; Nguyen and Ladd
2005). ΓT is the eddy diffusivity. In sedimenting coastal sys-
tems, this eddy diffusivity term will dominate, but in settling
columns (which are the data sets used to test hindered settling
in this paper), this source of diffusion is negligible. Γc is a
diffusion coefficient which dominates in the final stages of
consolidation when there are effective stresses in the soil.
This paper does not consider this final phase of consolidation
as it concentrates on the hindered settling phase, and so, Γc

can be considered to be negligible. Thus, the diffusion in
Eq. 37 is equal to DH for the laboratory tests considered in
this paper and is small.

Equation 37 is solved using a first-order upwind scheme,
with a central difference scheme for the diffusion operator as
described below. The equation is solved using the method of
substitution. Themethod uses explicit Euler time stepping. An
additional corrector step is included in the model to ensure
monotonicity of the concentration profile. This ensures that
if there is a positive (total) concentration gradient with eleva-
tion, sufficient mass is transferred between model layers to
correct this anomaly. This step prevents instabilities arising
near interfaces. Except where this correction is applied, there

is no numerical diffusion in the model. Time steps used varied
between 5 × 10−4 and 10−1 s. The model is only suitable to
describe hindered settling for concentrations in the hindered
settling regime and the (start of the) permeability settling re-
gime. Consolidation is not represented in the model except
near to the gelling point where settling due to permeability
may exceed that of hindered settling.

The distribution of suspended sediment in the vertical is
modelled as Eq. 37, but in terms of mass, rather than volume,
concentration,

∂cik
∂t

þ ∂sik
∂z

−
∂
∂z

DH ;k
∂cik
∂z

� �
¼ 0 ð39Þ

where cik is the suspended sediment concentration of the ith
sediment fraction at the kth vertical layer, DH,kis the hydro-
dynamic diffusivity at the kth vertical layer and sik is the set-
tling flux of the ith sediment fraction at the kth vertical layer
given by Sik ¼ cikmax 0;Wi

s kþ1

� � þcikþ1min 0;Wi
s kþ1

� �
and

Wi
s;k is the settling velocity of the ith sediment fraction at the

kth vertical layer. For each of the sediment fractions, Eq. 39 is
solved in matrix form,

FCk ¼ G ð40Þ
where F is a tridiagonal matrix with components which are
given as follows (41):

k ¼ 1
Fk−1;k ¼ 0

Fkþ1;k ¼ −DH ;kdt
.

zkð Þ zkþ1ð Þ
.
2

h i
Fk;k ¼ 1þ DH ;kdt

.
zkð Þ zkþ1ð Þ

.
2

h i
k ¼ 2

Fk−1;i ¼ −DH ;k−1dt
.

zk−zk−1ð Þ zkð Þ
.
2

h i
Fkþ1;k ¼ −DH ;kdt

.
zk−zk−1ð Þ zkþ1−zk−1ð Þ

.
2

h i
Fk;k ¼ 1þ DH ;k−1dt

.
zk−zk−1ð Þ zkð Þ

.
2

h i
þ DH ;kdt

.
zk−zk−1ð Þ zkþ1−zk−1ð Þ

.
2

h i
k ¼ 3;m−1

Fk−1;i ¼ −DH ;k−1dt
.

zk−zk−1ð Þ zk−zk−2ð Þ
.
2

h i
Fkþ1;k ¼ −DH ;kdt

.
zk−zk−1ð Þ zkþ1−zk−1ð Þ

.
2

h i
Fk;k ¼ 1þ DH ;k−1dt

.
zk−zk−1ð Þ zk−zk−2ð Þ

.
2

h i
þ DH ;kdt

.
zk−zk−1ð Þ zkþ1−zk−1ð Þ

.
2

h i
k ¼ m

Fk−1;k ¼ −DH ;k−1dt
.

zk−zk−1ð Þ zk−zk−2ð Þ
.
2

h i
Fkþ1;k ¼ 0

Fk;k ¼ 1þ DH ;k−1dt
.

zk−zk−1ð Þ zk−zk−2ð Þ
.
2

h i
ð41Þ
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and G is the single column matrix given by

k ¼ 1 Gk ¼ cik þ sikdt
� �.

z1ð Þ
k ¼ 2;m−1 Gk ¼ cik þ sikdt

� �.
zk−zk−1ð Þ− sik−1

� �.
zk−zk−1ð Þ

k ¼ m Gk ¼ cik− sik−1dt
� �.

zk−zk−1ð Þ
ð42Þ

3.1.3 Data used for application of the model

Although there are a number of laboratory measurements of
non-cohesive polydisperse laboratory studies (e.g. Mirza and
Richardson 1979; Kothari 1981; Al-Naafa and Selim
1989; Amy et al. 2006), the number of studies involving
polydisperse suspensions with non-cohesive and cohesive
fractions are much more restricted. Initially, results from
Amy et al. (2006) are used to show the performance of the
model for non-cohesive polydisperse settling. The results
of Van and Pham Van Bang (2013) and Te Slaa et al. (2013)
are used to investigate the model behaviour for mixed
sediments.

3.2 Amy et al. (2006) non-cohesive settling column
experiments

Amy et al. (2006) undertook a series of settling column ex-
periments to investigate the settling behaviour of particulate
suspensions. A range of suspensions was tested comprising
saline solution and non-cohesive glass-ballotini sand of parti-
cle size 35.5–250μm (median 100μm) and cohesive kaolinite
clay of particle size 0.3–35.5 μm (median 8.2 μm). The vol-
umetric concentration of sand in these solutions varied up to
0.6 and that of the clay up to 0.15. The tubes used were 7.2 cm
in diameter and were filled to a height of 22.7 cm. All exper-
iments were left for 12 h to settle and then were frozen at
−25 °C for a further 25 h. Samples of the frozen tube deposit
were then analysed along the centre of the tube. Observations
of the variation in the d10, d50 and d90 percentiles of particle
diameter were undertaken. Figure 7 shows comparison of the
deposits resulting from experiments with initial non-cohesive
sand concentrations of (ϕs=) 0.1, 0.2 and 0.4 with the results
of the mMLB model. The mMLB was run 28 fractions with
the particle size distribution shown in Fig. 8 and DH = 0.
Figure 7 shows that the model performs well in predicting
the d10, d50 and d90 percentiles of the particle size through
the deposit although the d90 is under-predicted near the sur-
face for the higher initial concentrations. The cause for this is
considered to be associated with the relatively simple first-
order model struggling with the high concentration gradients
found close to the sand bed (see Sect. 3.4) but may also be due
to the particle size distribution being less well resolved in the
surface deposits.

3.3 Te Slaa et al. (2013) experiments

Te Slaa et al. (2013) undertook settling column experi-
ments on natural (mixed) sediments from the Yangtze
and Yellow rivers. The columns used were 1.3 m in
he i gh t w i t h an i n t e r n a l d i ame t e r o f 0 . 1 m .
Measurements of concentration through depth were
made using electrical conductivity, and for some exper-
iment, the vertical sediment profile was analysed for
particle size. We show results here for experiments B8,
C5, J6 and M5 as set out in Table 1.
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Fig. 7 Predicted and measured variation in d10, d50 and d90 with
normalised height (Z/Zmax) of settled deposit (Amy et al. 2006). Five
repeated experiments with ϕs = 0.1, ϕm = 0.0 (top). Experiment with
ϕs = 0.2, ϕm = 0.0 (middle). Experiment with ϕs = 0.4, ϕm = 0.0
(bottom). Data from Amy et al. (2006); error bars in middle and
bottom figures are Dorrell et al. (2011)
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The results of Te Slaa et al. (2013) are presented in
the form of the measured volumetric concentration at
the time t2, when the granular (silt/sand) particles were
all deposited, time t3, when the gelling point is obtain-
ed, and tend at the end of the test. In addition, the
change in percentage of clay/silt/sand and in d50 with
height in the settled deposit is also presented.

The model predictions of volumetric concentration at
times tend and of the variation of percentage clay/silt/
sand and d50 with height are shown for tests B8, C5
and J6 in Figs. 9, 10 and 11. The model runs use a
simple engineering approach for the particle diffusion
with DH = 10−6(1 − ϕ) for ϕ < ϕmax and DH = 0 otherwise.
The mMLB model was run for 7 to 12 sediment frac-
tions (1 cohesive clay fraction; 4–6 silt fractions, 10–
60 μm; and 2–5 sand fractions 105–300 μm) depending
on the particle size distribution of the mud.

For the viscosity term, ϕmax for the granular fractions
was taken in the model as 1600 kg/m3 (ϕmax = 0.6).
The values of cgel recorded by Te Slaa et al. varied
over the range of 107–240 kg/m3 for the Yangtze
River mud and 81–184 kg/m3 for the Yellow River
mud depending on the method of calculation. The
values of settling velocity ws , 0 and of cgel for the co-
hesive fraction were derived from trial and error in the
model runs (B8 0.25 mm/s and 136 kg/m3; c5 0.23 mm/
s and 200 kg/m3; J6 0.2 mm/s and 150 kg/m3). The
effect of varying cgel can be complex, but typically
larger values tended to increase the depth of deposit
of silt and clay above the sandier deposits and to reduce
the variation of particle size in this deposit.

It can be seen from the results of Figs. 9, 10 and 11
that the bottom 10–30 cm of the deposit in tests B8, C5
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Table 1 Test data from Te Slaa et al. (2013) experiments

Test % Clay % Silt % Sand Total volume concentration (kg/m3)

B8 9 86 5 401

C5 8 62 30 367

J6 7 53 40 488
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Fig. 9 Predicted (top) and measured (bottom) variation in particle size
distribution and volumetric concentration, test B8. Data from Te Slaa
et al. (2013). Bottom figure shown with the kind permission of Springer
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and J6 forms a deposit of constant concentration (B8
ϕ ≈ 0.37, c5 ϕ ≈ 0.4, J6 ϕ ≈ 0.5) which contrasts with the
gel point of the cohesive fraction (B8, c5, J6 ϕgel ≈ 0.05 –
0.075) and the maximum packing of the granular fraction
(ϕmax ≈ 0.6 0.6). These deposit densities arise because of a
more complex volumetric interaction between clay, silt
and sand particles which is not a priori calculated by the
model. For the test runs, the density of deposited material
in each model run was limited to these observed values.

Figures 9, 10 and 11 show that the model performs well in
reproducing the observed settling behaviour for natural

sediments ranging from slightly sandy clayey silt to clayey
very sandy silt.

3.4 Van and Pham Van Bang (2013) experiments

Van and Pham Van Bang (2013) used a form of the MLB equa-
tion to model a variety of monodisperse and polydisperse sedi-
ments using a fourth-order weighted essentially non-oscillatory
(WENO) scheme developed byDumbser et al. (2008). The form
of the MLB equation they used was as follows (presented here
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for a bidisperse solution of flocculated mud, denoted by the
subscript f, and of sand, denoted by the subscript s):

Ws
s ¼ 1−ϕð Þn−2 1−ϕm−ϕsð Þ ws

s;0
μ0

μ

ρsand−ρsuspension
ρsand−ρw

� 	
1−ϕsð Þ−wm

s;0

ρmud−ρsuspension
ρmud−ρw

� 	
ϕm

� �

Wm
s ¼ 1−ϕð Þn−2 1−ϕm−ϕsð Þ wm

s;0

ρsand−ρsuspension
ρsand−ρw

� 	
1−ϕmð Þ−ws

s;0
μ0

μ

ρsand−ρsuspension
ρsand−ρw

� 	
ϕs

� � ð43Þ

where ϕm is the volume concentration of the mud sediment
particles, ρmud and ρsand are the densities of the mud and sand
particles, respectively, ρmixture is the bulk density of the mud/
sand/water mixture, μ0 is the viscosity of the suspension fluid
and μ is the viscosity of the mud-water mixture.

This equation has two modifications compared to the stan-
dard MLB formula (Eq. 28). The first is the addition of a
buoyancy term (1 − ϕm − ϕs) , which as we have seen is not
required as the buoyancy term is already inherent in the MLB
equation. The other addition was the μ0/μ viscosity term. This
termwas added to represent more fully the effect of suspended
sediment on the viscosity of the suspension and hence on
settling velocity (which is not well reproduced in the
Richardson–Zaki equation for mixed mud/sand sediments).
The term added by Van and Pham Van Bang (2013) contrib-
utes the change in viscosity from the mud only to the settling
of sand. The mMLB method in this paper presents an alterna-
tive solution to the same issue but retaining the contribution to
viscosity of the sand and colloidal fractions.

Van and Pham Van Bang (2013) obtained good results for
their model predictions when compared against data.
However, the results were obtained by fitting the value of
the Richardson and Zaki exponent n empirically with numbers
as high as n = 23. This is a drawback to the version of the
MLB equation (Eq. 42) proposed byVan and PhamVanBang.
The alternative form of the MLB equation proposed in this
paper is applied to the data of Van and Pham Van Bang and is
successful at reducing the extent of this empiricism.

In their paper, Van and PhamVan Bang use the results of an
experiment undertaken by Nguyen (2008) using kaolin and
sand from Fontainebleau (France) which is a narrowly uni-
formly graded mixture with a d50 of 199 μm. The settling
column used for the laboratory experiments was 1.5 m in
height and instrumented by gamma ray probe to measure the
density profiles at different times.

Firstly, the kaolin-only case is modelled to allow calibra-
tion of the cohesive sediment settling velocity (wm

s;0 ) before

attempting to reproduce settling of the sand-kaolin mixture.
This test involved an initial concentration of 100 kg/m3

( ϕ= 0.037). Nguyen (2008) estimated the gelling

concentration of the kaolin to be 530 kg/m3 (ϕgel = 0.2).
This is a high value compared to the results of other re-
searchers working with kaolin in settling columns and with
reported gelling concentrations in general (e.g. Dankers 2006,
70–130 kg/m3, ϕgel = 0.026–0.049; Whitehouse et al. 2000
and Winterwerp 2002, 80–180 kg/m3, ϕgel = 0.03–0.07). For
this reason, implementation of the mMLB model included
calibration of a (lower) value of ϕgel . Van and Pham Van
Bang estimated the ws,0 value to be 0.164 m/s and found the
best-fit value of n to be 12.5. The present model results are
derived withws,0 = 0.08 mm/s and with ϕgel = 0.09. The value
of DH for this model application was the same as the Te Slaa
application in Sect. 3.3 above.

Figure 12 shows the results of the mMLB model of the
present study, together with the observations of Nguyen
(2008). It can be seen that the mMLB of this paper performs
reasonably well.

The observations display more dispersion around the low-
ering interface than the mMLBmodel. This is likely to be due
to small variations in the settling velocity of the flocs of the
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settling fluid rather than any hydrodynamic diffusion (Nguyen
and Ladd 2005).

The case with sand and kaolin is shown in Fig. 13. This is
cited in Van and Pham Van Bang (2013) as being a solution
with initial concentrations of sand/mud of 20/80 kg/m3 (ϕ=
0.007/0.03) though the results in Fig. 13 indicate that the ini-
tial concentrations are more like 25/75 kg/m3 which were the
values used for the mMLB prediction here. Van and PhamVan
Bang (2013) achieve a good fit to the observed behaviour
through setting the Richardson–Zaki exponent n to the high
value of 23. The mMLB model used a (calibrated) value of
ϕgel = 0.10, which is very slightly higher than for the kaolin-
only experiment, together with a value of ϕmax = 0.37. In order
to ensure that any effects of polydispersivity of the sand frac-
tion were captured, the mMLB model was run with seven
fractions (of which six were sand—75, 100, 150, 200, 250
and 300 μm—and the other the cohesive clay fraction).

In general, the mMLB is good at capturing the settling
behaviour of the mud fraction, but the model is less good at
reproducing the relatively steep gradation sediment near the
sand-kaolin interface where the concentration gradients are
highest. This gradation would be improved through a higher
order solver (as for instance used in Van and Pham Van Bang
2013) though this subject is outside of the focus of this paper.
In addition, in contrast to the kaolin-only result, there is no-
ticeable broadening of the front of clay suspension/water in-
terface in the measured data. The reason for this is not clear. It
is noted that this broadening of the settling front is captured by
the Van and Pham Van Bang (2013) model, but the authors do
not discuss this feature.

4 Discussion and conclusions

The hindered settling of monodisperse particles has been well
discussed in the literature, but the various approaches applied
to describing hindered settling tend to underestimate the hin-
dered settling effect as the sediment concentration approaches
the gelling concentration (cohesive) or maximum packing
concentration (non-cohesive). A modified form of the
Richardson and Zaki (1954) formula is proposed which sig-
nificantly improves the original form of the Richardson and
Zaki equation and which also incorporates the permeability of
suspensions as they approach the maximum packing/gelling
point.

For polydisperse non-cohesive suspensions, the
Richardson and Zaki formula has been generalised and the
MLB formula developed by Masliyah (1979) and Lockett
and Bassoon (1979) is commonly recognised as being the
most successful of these polydisperse formulae. For mixed
suspensions of cohesive and non-cohesive material, the evi-
dence of researchers (e.g. Van and Pham Van Bang 2013) is
that the hindering effect in settling mixed and cohesive sus-
pensions can be much more than implied by the Richardson–
Zaki and MLB formulae. It is postulated in this paper that a
modified form of the MLB formula, taking into account the
modifications to monodisperse hindered settling discussed in
the paragraph above, improves the usefulness and perfor-
mance of the MLB formula for non-cohesive, cohesive and
mixed suspensions.

ThemMLBmethod presented in this paper has been shown
to reproduce the observed hindered settling for kaolin, for
polydisperse non-cohesive sediments and for a range of
mixtures of sand and mud. The success of the method is
utilised without recourse to empirical fitting the value of n.
On this basis, the mMLB method is proposed as an
improvement to the method of Masliyah (1979) and Lockett
and Bassoon (1979) for mixed sediments. The exponents n′
(which incorporates the effective sediment volume concentra-
tion, ϕ/ϕmax , in the viscosity term) and m (which incorporates
the effective sediment volume in the return current term) as
used in this study are together subtly different to the exponent
of n used byRichardson and Zaki for hard spheres (which uses
standard sediment volume concentration, ϕ , in the viscosity
term). This difference can be physically justified on the basis
of settling velocity experiments (e.g. Baldock et al. 2004) and
of experiments of the effect of changing sediment concentra-
tion on the viscosity of sediment suspensions (e.g. Quemada
1977).

Comparison of the predictions of the mMLB model with
experimental data showed that, in general, the observed den-
sities of deposited beds could only be correctly predicted
through the empirical setting of sediment packing parameters
and/or gelling concentrations of the flocculating fractions.
Whilst the new method has not removed all of the empiricism
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and uncertainty considered with predicting hindered settling,
the new model moves the focus of attention from empirical
assessment of the Richardson–Zaki exponent n, which cannot
be satisfactorily defined in terms of rheological and structural
properties of polydisperse fractions, to the rheological and
structural properties themselves, and particularly the effective
volume concentrations of floc-grain mixtures. This can only
lead to improvement in the representation of polydisperse set-
tling as the understanding of the packing of mixed sediments
improves.

The first-order scheme used in this paper to illustrate the
mMLB model was found to give reasonable results for poly-
disperse hindered settling of mud and sand—but the first-
order model struggled to predict the gradation of the clay-
silt-sand deposit accurately owing to the high concentration
gradients near the sand interface. For coastal modelling, it is
considered that a practical but higher order scheme is required
rather than the one used in this report. Nevertheless, the model
used in the study was sufficiently accurate to exhibit the
strength of the proposed mMLB method.

A, cross-sectional area of sediment particle; cki , mass-
suspended sediment concentration of the kth sediment fraction
at the ith vertical layer of the model; CD, the (dimensionless)
drag coefficient which depends on the shape of the object and
on the Reynolds number; d, diameter of sediment particle; di,

the ith sediment fraction;D* ¼ g s−1ð Þ
ν2

h i1=3
, dimensionless par-

ticle size; D, diameter of the container vessel; Df, fractal di-
mension of flocs; DH, diffusion caused by the randomly fluc-
tuating motion; Ds , molecular diffusion coefficient; FD, drag
force; F, tridiagonal matrix with component, Fi,j; G, single
column matrix with component Gi; g, gravitational accelera-
tion; i, hydraulic conductivity; k, permeability given by the
Kozeny–Carman equation; Kk, empirical parameter;
n , n ' ’ ,m , exponents in the Richardson–Zaki and modified
Richardson–Zaki equations;Δn ′ ′, correction required for the
Richardson–Zaki equation exponent n′ to reflect the linear fit
used by Richardson and Zaki; Rep, Reynolds particle number;
s, specific gravity; Sii , Sij, empirical parameters used in the

Davis and Gecol (1994) settling formula; S j
i , sediment flux for

the jth fraction at the ith model layer; wf, settling velocity
associated with the point of fluidisation of the bed; ws, slip
velocity of sediment including hindering effect before the ef-
fects of multiple sediment fractions are included; wk

s;i as ws,

but referring to the kth sediment fraction at the ith vertical
layer;Ws, slip velocity of sediment including the polydisperse

hindering effect; Wk
s;i, slip velocity (including polydisperse

hindered settling) of the kth sediment fraction at the ith vertical
layer; w1ks;i ;w2ks;i as wk

s;i, but specifically for hindered set-

tling (1) and fluidisation (permeability) (2), respectively;
ws;0;ws

s;0;w
m
s;0, terminal particle settling velocity of a single

particle in an still water, the s and m superscripts refer to sand

and mud particles; ΓT, eddy diffusivity; Γc, consolidation dif-
fusion coefficient; ε, porosity; λij = dj/di; ϕs , volume concen-
tration of sand particles; ϕm, volume concentration of mud
particles; ϕclay, volume concentration of clay particles;
ϕp , ϕ , volume concentration of sediment; ϕmax, maximum
packing volume; ϕgel, volume concentration at which gelling
occurs; ϕfloc , ϕfloc , max, floc volume concentration and the
maximum volume concentration of flocs; μ , ν, dynamic and
kinematic viscosities of the fluid; ρs , ρmud , ρsand, density of
sediment, sand particles and mud particles, respectively; ρi,
density of the ith sediment fraction; ρw, density of the fluid;
ρsuspension, density of the sediment suspension.
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