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Abstract Wave decay over a muddy seabed has been widely
reported. In previous studies, the fluid-mud layer is usually
treated as a homogeneous layer with a certain thickness lying
on the rigid bottom. However, the muddy seabed beneath a
fluid-mud layer is usually movable in practice. This study
aims to find out the influence of the movable seabed beneath
a fluid-mud layer. For this purpose, a numerical model for
wave propagation over a multilayered muddy seabed is de-
veloped, in which water is treated as a Newtonian fluid, and
the rheology of mud is described by a visco-elastic–plastic
model. The laboratory experiments of Sakakiyama and Bijker
(J Waterw Port Coast Ocean Eng 115(5):614–633, 1989) are
chosen to validate the numerical model. The model is then
employed to investigate the movement of a fluid-mud layer
with different conditions of the underlying mud layer and its
influence on wave decay. It is found that the underlying mud
layer plays a very important role in the wave–mud interaction
and greatly affects the wave decay rate.

Keyword Wave–mudinteraction .Wavedecay .Multilayered
muddy seabed . Numerical model

1 Introduction

Muddy coasts are widely distributed in the world. At a muddy
coast, fine sediments can be easily entrained into water during

storms. The newly settled fine sediments on the seabed usu-
ally form high concentration slurry, i.e., the fluid-mud, in
which further settlement of fine sediments is substantially
hindered. Fluid-mud can be easily transported by gravity
and by wave motion and deposits in deep areas such as
navigation channels. After a storm, fluid-mud can exist for
quite a long time and be dewatered gradually. Mehta et al.
(1994) provided a schematic diagram showing the vertical
variation of the mud density in the coastal environment, in
which the muddy seabed was divided into three layers, i.e., a
fluid-mud layer, a denser deforming bed, and a stationary bed.
The seabed beneath the newly formed fluid-mud layer could
have been formed for days or even months, so it can be in
different conditions and behave differently as a consolidated
muddy bed, a mud layer with larger density, or a mud layer
with slightly larger density.

As waves pass over a muddy seabed, the oscillatory motion
of the movable mud layers usually causes significant dissipa-
tion of wave energy. This important phenomenon has been
studied by a number of researchers over the past decades.
Usually, the muddy seabed is simplified as a homogeneous
movable mud layer lying on a stationary horizontal bottom.
Gade (1958) developed a two-layer model and studied the
attenuation of linear water waves. In Gade’s model, the upper
layer, or the water, is treated as an inviscid fluid and the lower
layer, or the mud, is assumed to be a viscous fluid. The
analytical studies of the two-layer fluid model have been
improved to make the model more realistic in the last decades,
and a number of progresses have been achieved. Dalrymple
and Liu (1978) improved the two-layer model by considering
the viscosity of water. Owing to the complexity of the rheo-
logical property of the real mud, a number of advanced
rheology models have been introduced to describe the behav-
ior of the lower mud layer, including the visco-elastic model
(Macpherson 1980; Maa and Mehta 1988), the Bingham fluid
model (Mei and Liu 1987; Zhao and Lian 1994), the power-
law pseudo plastic model (Huang et al. 2006), and the visco-
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elastic–plastic model (Shibayama et al. 1990). There are also
studies considering different wave conditions. For instance,
the attenuation of solitary waves was studied by Jiang and
Zhao (1989), and that of cnoidal waves was studied by Jiang
et al. (1990). All these studies are analytical and are limited to
the horizontal bed and the regular wave theories. Therefore, it
may be of great importance to develop a numerical method for
the interaction between waves and muddy bed, which can be
used to simulate complicated seabed topography and various
wave conditions.

Recently, analytical solutions of wave energy dissipation
based on existing wave mud interaction models have also
been used to extend the phase averaged wave models to deal
with muddy coasts (Hall and Oveisy 2007; Winterwerp et al.
2007; Niu and Yu 2008a; Rogers and Holland 2009). This
kind of models is useful in practice. However, it is necessary
to point out that the wave energy dissipation is largely affected
by the thickness of the fluid-mud layer. A small difference in
mud thickness may lead to a significant difference in wave
height distribution (Niu and Yu 2008a). Besides the thickness
of the upper fluid-mud layer, the property of the muddy bed
beneath the fluid-mud layer cannot be ignored either.

In this study, a numerical model for wave propagation over
a muddy seabed is developed to study the influence of the
underlying mud layer on the wave induced movement of the
fluid-mud layer and the water surface wave decay. In the
following sections, the numerical model is first described.
Then, the model is validated by the laboratory experiments

of Sakakiyama and Bijker (1989). Finally, three hypothetical
muddy seabed cases considering a fluid-mud layer with dif-
ferent bottom conditions are studied, and the influence of the
underlying muddy seabed on the wave decay rate are
discussed based on the numerical results.

2 Mathematical model

2.1 Governing equations

The movement of water and mud are governed by the conti-
nuity equation and the equations of motion for incompressible
continuum.

∂uj

∂x j
¼ 0 ð1Þ

ρ
∂uj

∂t
þ ρui

∂uj

∂xi
¼ ρ f j −

∂p
∂x j

þ ∂τ ij
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where the indices i,j=1,2, follow the summation convention;
xi are the Cartesian coordinates, and t is time; ui are the velocity
components, and fi are the body forces; ρ is the density; p is the
pressure; τji are the deviatoric stresses. The Newtonian fluid
model is adopted for water.

τ ij ¼ 2μ0eij ð3Þ

where μ0 is the viscosity;

eij ¼ 1
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∂ui
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is the rate-of-strain tensor.
The rheology of mud is complex and varies with its density

and many other factors. In this study, the visco-elastic–plastic
model introduced by Niu and Yu (2008b) is used to describe
the rheological behavior of the mud. The visco-elastic–plastic
model, as shown in Fig. 1, represents a material that is essen-
tially elastic before yield and becomes visco-elastic after yield.

G

Fig. 1 Schematic description of
the visco-elastic–plastic model
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The relevant constitutive equation can be written as
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where μB is the viscosity in the visco-elastic–plastic model, τy
is the yield stress of the mud, G is the elastic modulus of the
mud, and J2 is the second invariant of the deviatoric stress
tensor. This rheological model can be reduced to a viscous
model as G→∞ and τy=0.

2.2 Surface and interface tracking

The problem of interest in the present study is shown in Fig. 2.
All the subdomains, i.e., the water layer, the fluid-mud layer,
and the underlying mud layer, are governed by Eqs. (1) and
(2). In the subdomain occupied by water, the stresses are
determined by Eq. (3), while in the subdomains occupied by
mud, the stresses are determined by Eq. (5). Since the stresses
and velocity components are all continuous in the entire
domain, there is no need to exert a dynamic boundary condi-
tion at the interface between the water and the mud, beyond a
unified treatment of Eqs. (1) and (2).

In this study, the free water surface is described by the VOF
function. In the present case, the VOF function F(x,z,t) is
defined so that F=1 implies a position occupied by fluid,
and F=0 implies a position occupied by air. The VOF function
satisfies

∂F
∂t

þ ∂ uFð Þ
∂x

þ ∂ wFð Þ
∂z

¼ 0 ð6Þ

where x and z are the horizontal and the vertical coordinates; u
and w are the horizontal and vertical velocity components.
Equation (6) is solved with the donor–acceptor method (Hirt
and Nichols 1981).

The water–mud interface and the interfaces between dif-
ferent mud layers are indicated by the volumetric sediment
concentration. The volumetric sediment concentration Sv is
also governed by the convection equation.

∂Sv
∂t

þ ∂ uSvð Þ
∂x

þ ∂ wSvð Þ
∂z

¼ 0: ð7Þ

In order to handle both the mild variation of sediment
concentration inside a mud layer and the sharp variation at
the interface between mud layers, a unique numerical method
for the convection equation of sediment concentration is de-
veloped, which combines the Essentially Non-oscillatory
Scheme (ENO) and Youngs’ reconstruction scheme. Detailed
information can be found in Niu (2008).

2.3 Boundary conditions and numerical methods

The computational domain is shown in Fig. 2. At the incident
wave boundary, the instantaneous water depth and velocity
are given based on the fifth-order Stokes wave theory. The
right boundary is assumed to be non-reflective, and the
Sommerfeld radiation condition is specified. Since the wave
is not necessarily regular at the boundary due to the compli-
cated response of the seabed, and also because of the difficul-
ties in wave celerity estimation, a subregion with artificial
dissipation is added in front of the right boundary to enhance
the non-reflective boundary condition. The slip condition is
applied to the fixed bed contacted with water, and the no-slip
condition is applied to the fixed bed contacted with mud.

The main computational efforts of the numerical model are
to solve the velocity and pressure. The numerical method is
the same as that adopted in the study of Niu and Yu (2010). It
is based on the well-known SMAC method, but the
discretization of the momentum equations is replaced by a
weighted implicit scheme to achieve a better stability, which is
definitely necessary when mud with very large viscosity is
involved. Spatial discretization is carried out over a staggered
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Fig. 3 Experimental setup of Sakakiyama and Bijker (1989)

Table 1 Selected cases of
Sakakiyama and Bijker’s (1989)
experiments

Case Density of
mud ρm
(kg/m3)

Water
depth
h (m)

Thickness
of mud layer
d (m)

Wave
period T (s)

Incident
wave height
H0 (m)

Kinematic
viscosity of
mud ν (m2/s)

A7 1,370 0.30 0.09 0.7∼2.0 0.010∼0.040 0.015

B2 1,300 0.30 0.09 0.6∼2.0 0.010∼0.037 0.010

C4 1,240 0.30 0.09 0.6∼2.0 0.010∼0.034 0.004

D4 1,150 0.30 0.09 0.6∼2.0 0.010∼0.034 0.001
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mesh. The advection–diffusion equations are solved with a
hybrid method combining the upwind scheme and the second-
order central scheme. The Poisson equation is discretized with
the classical five-point difference scheme.

3 Model validation

The laboratory experiments carried out by Sakakiyama and
Bijker (1989) in a wave flume, as shown in Fig. 3, are used for
the verification of the present model. Available cases of
Sakakiyama and Bijker’s experiments with a variety of prop-
erties of mud and wave conditions are summarized in Table 1.
The cases were originally named as CASE A7, CASE B2,
CASE C4, and CASE D4 by Sakakiyama and Bijker (1989)
according to the physical properties of the mud and the items
measured. All the original notations are retained here in order
to avoid confusion. It may be worthwhile to mention that the

Table 2 Parameters in the viscous fluid model

Case Wave Mud

Incident wave
height H0 (m)

Wave
period T (s)

Density ρm
(kg/m3)

Kinematic
viscosity ν (m2/s)

A7 0.04 1.0 1,370 0.015
0.01

B2 0.035 1,300 0.010
0.020

0.010

C4 0.03 1,240 0.004
0.019

0.01

D4 0.032 1,150 0.001
0.020
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Fig. 4 Computed wave height along x axis by the Newtonian mud model
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values of the apparent kinematic viscosity listed in Table 1
were measured under a shear rate of 1 s−1.

First, mud is treated as a viscous fluid. The computational
conditions are shown in Table 2. The measured apparent
viscosity of mud, μ0=ρmν, is used in the numerical model.
Figure 4 shows the numerical results of wave attenuation
using the viscous fluid model to describe the mud, in compar-
ison with Sakakiyama and Bijker’s (1989) experimental data.
The numerical results are in fairly good agreement with the
experimental data when the mud is of low density (ρm=
1,300 kg/m3, 1,240 kg/m3, 1,150 kg/m3) or small viscosity
(ν=0.010 m2/s, 0.004 m2/s, 0.001 m2/s). However, the differ-
ence between the numerical results and the experimental data
becomes intolerable when the density and viscosity of the
mud take relatively large values (CASE A7, ρm=1,370 kg/
m3, ν=0.015 m2/s), no matter whether the wave height is large
or small. In CASE A7, no significant attenuation is observed
in the experiment when the wave height is small, i.e., the
observed wave decay rate is much smaller than that predicted
by the viscous fluid model. However, when the wave height is
large, the observed wave attenuation is much more rapid than
that predicted by the viscous fluid model.

To improve the performance of the numerical model, it is
worthwhile to note that the mud barely moves in the experi-
ment when the surface wave height is smaller than about
0.01 m in CASE A7. It is then reasonable to speculate that
there is a significant change in mud properties under different
wave height, especially for mud with relatively large density.
The viscous fluid model is not applicable to this type of mud,
and a visco-elastic–plastic model becomes necessary. In this
study, the visco-elastic–plastic model shown in Fig. 1 is
adopted. Table 3 shows the parameters in the visco-elastic–
plastic model used in the computations. The parameters can-
not be directly obtained from Sakakiyama and Bijker (1989).
An (1993) compared the Bingham viscosity and the yield
stress of the mud with the same density obtained by different
investigators and found that a very big difference could rea-
sonably exist. An (1993) pointed out that scattering of the
experimental data may be caused by the difference in mineral
components of the mud and also by the measuring method.
The yield stress may also be very sensitive to the variation in
water content of the mud. So the parameters in the visco-
elastic–plastic model are guessed based on the existing exper-
imental data. The visco-elastic–plastic model used in the
present study represents that the mud is essentially elastic
before yield and visco-elastic after yield. So the mud would
behave as an elastic material without energy loss when the
local wave height is small or the yield stress of the mud is
large. In general, denser mud should have larger yield stress
and elastic modulus. The apparent kinematic viscosity under a
shear rate of 1 s−1 calculated using guessed parameters for
each kind of mud should be consistent with the values pro-
vided by Sakakiyama and Bijker (1989). For CASE A7, the
parameters are τy=12 Pa, μB=8 Pa·s, andG=500 Pa. For Case
C4, the parameters are τy=1 Pa, μB=4 Pa·s, and G=30 Pa.

Presented in Fig. 5 are the numerical results of wave
attenuation computed using the visco-elastic–plastic model

Table 3 Parameters in the visco-elastic–plastic model

Case Wave Mud

Incident
wave
height (m)

Wave
period
(s)

Density
(kg/m3)

Yield
stress
τy (pa)

Bingham
viscosity
μB (Pa·s)

Elastic
modulus
G (pa)

A7 0.04 1.0 1,370 12 8 500
0.01

C4 0.03 1,240 1 4 30
0.02

0.01
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Fig. 5 Computed wave height along x axis by the visco-elastic–plastic model
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for the mud, in comparison with the experimental measure-
ments. The agreement is now very satisfactory. It is necessary
to point out that the good agreement for CASE A7 cannot be
achieved by using the viscous mud model, no matter how the
viscosity is adjusted.

4 Results and discussion

To investigate the influence of the underlying muddy seabed
to the wave decay rate, three hypothetical cases were adopted.
The computational domain is shown in Fig. 2, which is similar
to the cases of Sakakiyama and Bijker (1989). Except for one
additional layer beneath the fluid-mud layer, other geometrical
parameters of the computational domain remain the same as
the experimental cases of Sakakiyama and Bijker (1989).Mud
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in both layers is described by the visco-elastic–plastic model.
The mud density in the upper layer is 1,240 kg/m3. Three
different cases for the lower layer are considered: (1) rigid
bottom, which represents that the underlying mud layer is of
high degree of consolidation, i.e., of large density and hard to
move; (2) a hard mud layer with relative larger density ρm=
1,370 kg/m3 and thickness d2=0.10 m; (3) a soft mud layer
with density equal to that of the upper layer ρm=1,240 kg/m

3,
and the thickness is d2=0.10 m. Actually, there is only one
mud layer in the rigid bed case and the soft bed case. The
rheological parameters of the mud take the same values as in
Table 3. The incident wave height isH=0.03 m, and the wave
period is T=1.0 s.

Figure 6 shows the computed instantaneous velocity dis-
tribution within one wave length in the three different cases.
The solid lines indicate the interfaces between water and mud
layers. Comparing the instantaneous velocity distributions of
the three cases, it can be seen that the gradient of velocity in
the upper layer decreases as the lower layer becomes softer.
Obviously, wave energy dissipation is caused by the viscosity
and plasticity of the mud layers. It is found that the underlying
layer plays a more important role in the two mud layer cases.
Figure 7 shows the relative wave height distribution along the
direction of wave propagation for the three different cases, in
which the solid line shows the result in the case of rigid
bottom, the dashed line shows the result in the case of an
underlying layer of hard mud, and the dash dot line shows the
result in the case of an underlying layer of soft mud. It is clear
that the underlying layer significantly affects the wave height
attenuation.

It is well known that the thickness of the mud layer is one of
the important parameters for wave attenuation. It has been
found that the wave damping rate first increases with the
increase of mud layer thickness and then decreases when the
mud layer thickness passes over a certain value. The maxi-
mum wave damping rate occurs when the mud thickness is
around 1.25 times of the boundary layer thickness (Gade
1958; Dalrymple and Liu 1978; Ng 2000; Niu and Yu
2011). The boundary layer thickness is defined as
δb ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ν=ω

p
, in which ω is the angular frequency of wave,

and ν is the kinematic viscosity of the fluid near the bed.
Apparent kinematic viscosity is used for non-Newtonian fluid
to estimate the boundary layer thickness. In this study, the
boundary layer thickness is about 0.036 m corresponding to
the soft mud and is 0.069 m corresponding to the hard mud. In
the case of rigid bottom, the mud layer thickness is about 2.5
times of boundary layer thickness. In the case of soft mud, the
mud layer thickness is obviously larger than that in the case of
rigid bottom, so the wave damping rate is relatively small.

In the case of a movable hard mud layer beneath the fluid-
mud layer, the viscosity and plasticity of the underlying hard
mud layer are much larger than those of the upper mud layer,
and most energy is dissipated in this layer. It can be seen that

the ratio of the hard mud layer thickness to the boundary layer
thickness in this case is about 1.3, which is near the value
corresponding to the maximum wave damping rate. So the
case with a hard underlying mud layer results in remarkable
wave decay, compared to the case with a soft underly-
ing mud layer, as shown in Fig. 7. The results are con-
sistent with the results of the one mud layer cases shown in
Fig. 5a and b.

5 Conclusions

A numerical model for wave propagation over a multilayered
muddy seabed was developed, based on the governing equa-
tions of incompressible flows. The numerical scheme was
directly extended from the SMAC method and is extendable
to a variety of mud rheologymodels. Themodel was validated
with the experiments carried out by Sakakiyama and Bijker
(1989), and the numerical results were in good agreement with
the experimental data. The comparison of the results from the
viscous mud model and from the visco-elastic–plastic mud
model shows that the visco-elastic–plastic model is more
suitable than the viscous model, especially for the mud of
relatively large density. Then, the numerical model is used to
investigate the wave induced movement of a fluid-mud layer
with different bottom conditions and its influence on wave
decay. It is found that the underlying mud layer also plays an
important role in the wave–mud interaction and greatly affects
the wave decay rate. Therefore, in order to predict wave decay
on muddy seabed with satisfactory accuracy, not only the
thickness and the rheological parameters of the upper fluid-
mud layer, but also the properties of the lower movable mud
layer, should be determined accurately.

Acknowledgments The authors would like to acknowledge the support
by the National Natural Science Foundation of China under the grant No.
51109119 and the Specialized Research Fund for the Doctoral Program of
Higher Education of China under the grant No. 20110002120019.

References

An NN (1993) Mud mass transport under wave and current. PhD Thesis,
Department of Civil Engineering, Yokohama National University,
Yokohama, Japan

Dalrymple RA, Liu PL-F (1978) Waves over soft muds: a two-layer fluid
model. J Phys Oceanogr 8:1121–1131

Gade HG (1958) Effects of a nonrigid, impermeable bottom on plane
surface waves in shallow water. J Mar Res 16(2):61–82

Hall K, Oveisy A (2007). Wave evolution on fluid mud bottom. Coastal
Sediments’07—Proceedings of 6th International Symposium on
Coastal Engineering and Science of Coastal Sediment Processes,
New Orleans, LA, United States.

Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the
dynamics of free boundaries. J Comput Phys 39:201–225

Ocean Dynamics (2014) 64:293–300 299



Huang L, Ng C-O, Chwang AT (2006) A Fourier–Chebyshev collocation
method for the mass transport in a layer of power-law fluid mud.
Comput Methods Appl Mech Eng 195:1136–1153

Jiang L, Zhao Z (1989) Viscous damping of solitary waves over fluid-
mud seabeds. J Waterw Port Coast Ocean Eng 115(3):345–362

Jiang L, KiokaW, Ishida A (1990) Viscous damping of cnoidal waves over
fluid-mud seabed. J Waterw Port Coast Ocean Eng 116(4):470–491

Maa JPY, Mehta AJ (1988) Soft mud properties: Voigt model. J Waterw
Port Coast Ocean Eng 114(6):765–770

Macpherson H (1980) The attenuation of water waves over a non-rigid
bed. J Fluid Mech 97(4):721–742

Mehta AJ, Lee S-C, Li Y (1994) Fluid mud and water waves: a brief
review of interactive processes and simple modeling approaches.
Florida

Mei CC, Liu K-F (1987) A Bingham-plastic model for a muddy seabed
under long waves. J Geophys Res 92(C13):14581–14594

Ng C-O (2000) Water waves over a muddy bed: a two-layer Stokes’
boundary layer model. Coast Eng 40:221–242

Niu X (2008) Dynamic interaction between surface water waves and
muddy seabed. PhD Thesis, Tsinghua University, Beijing, China
(in Chinese)

Niu X, Yu X (2008a) A practical model for the decay of randomwaves on
muddy beaches. J Hydrodyn 20(3):288–292

Niu X, Yu X (2008b) Visco-elastic–plastic model for muddy seabeds. J
Tsinghua Univ (Sci & Tech) 48(9):37–41 (in Chinese)

Niu X, Yu X (2010) A numerical model for wave propagation over
muddy slope. 32nd International Conference on Coastal
Engineering (ICCE 2010), Shanghai, China.

Niu X, Yu X (2011) Numerical study on the movement of muddy seabed
under waves. Proceedings of the Sixth International Conference on
Asian and Pacific Coasts (APAC 2011), Hong Kong, China.

RogersWE, Holland KT (2009) A study of dissipation of wind-waves by
mud at Cassino Beach, Brazil: prediction and inversion. Cont Shelf
Res 29:676–690

Sakakiyama T, Bijker EW (1989) Mass transport velocity in mud layer
due to progressive waves. J Waterw Port Coast Ocean Eng 115(5):
614–633

Shibayama T, Okuno M, Sato S (1990) Mud transport rate in mud layer
due to wave action. Proceeding 22nd International Conference on
Coatal Engineering, 3037–3049

Winterwerp JC, Graaff RFd, Groeneweg J, Luijendijk AP (2007)
Modelling of wave damping at Guyana mud coast. Coast Eng
54(3):249–261

Zhao ZD, Lian JJ (1994) On the change of wave parameters for water
waves propagating over a muddy bottom. J Tianjin Univ 27(5):521–
528 (in Chinese)

300 Ocean Dynamics (2014) 64:293–300


	Numerical study on wave propagation over a fluid-mud layer with different bottom conditions
	Abstract
	Introduction
	Mathematical model
	Governing equations
	Surface and interface tracking
	Boundary conditions and numerical methods

	Model validation
	Results and discussion
	Conclusions
	References


