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Abstract Both the floc formation and floc breakup of
cohesive sediment are affected by turbulent shear which
is recognized as one of the most important parameters,
and thus, on the settling and transport of cohesive sediment.
In this study, the development of floc characteristics at early
stage and steady-state of flocculation were investigated
via a three-dimensional lattice Boltzmann numerical
model for turbulence-induced flocculation. Simulations
for collision and aggregation of various size particles,
floc growth, and breakup in isotropic and homogenous tur-
bulent flows with different shear stresses were conducted.
Model results for the temporal evolution of floc size
distribution show that the normalized floc size distribu-
tions is time-independent during early stage of floccula-
tion, and at steady-state, shear rate has no effect on the
shape of normalized floc size distribution. Furthermore,
the size, settling velocity, and effective density of flocs
at the non-equilibrium flocculation stage do not change sig-
nificantly for shear stresses in the range 0–0.4 N m−2.
The relationships between floc size and settling velocity
established during floc growth stages and that during steady-
states are different.

Keywords Flocculation . Turbulent shear stress . Floc size
distributions . Settling velocity . Collision frequency . Lattice
Boltzmannmethod

1 Introduction

Flocculation of cohesive sediments is closely related to many
phenomena, such as the estuarine turbidity maximum, channel
siltation, and contaminant transport and deposition, etc. In
estuaries and coastal areas, the flocculation is mainly driven
by turbulent shear force (Winterwerp 1998). It is suggested
that the particle collision, aggregation, and breakup frequency
depends largely on the turbulence intensity (Manning 2004;
Winterwerp et al. 2006).

To understand multi-particle aggregation under turbulent
shear stress, most studies have been carried out based on
theoretical analysis, laboratory experiments, and field obser-
vations (Amos and Droppo 1996; Spicer and Pratsinis 1996;
Manning and Dyer 1999; Manning 2004; Manning et al.
2007; Maggi 2005; Maggi et al. 2007; Winterwerp et al.
2006; Mietta et al. 2009; Ha and Maa 2010; Frappier et al.
2010). Researches on numerical simulations of flocculation
process in turbulent fluids are scarce. Previous works involv-
ing numerical model mainly contain two methods. The first
one is determining the particle collision frequency function
and estimating the sediment size distribution based on the
Smoluchowski framework with some assumptions (McCave
1984; Winterwerp 1998; Lee et al. 2000; Xu et al. 2008;
Maggi et al. 2007). Winterwerp (1998) proposed a
Lagrangian population balance equation to describe the time
evolution of the floc size distribution. Later, a modified meth-
od of changing the fractal dimension of flocs during floccula-
tion within a population balance equation was proposed by
Maggi et al. (2007). The second method is investigating floc
formation and breakup in shear flow by considering the inter-
actions between flocs and fluid through the use of a discrete
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element method that simulate the deformation and breakup of
large aggregates in two-dimensional or three-dimensional
(3D) flows (Higashitani and Iimura 1999; Higashitani et al.
2001). Zeidan et al. (2007) further combined continuum and
discrete model to improve the evolution of aggregation defor-
mation and breakup in a linearly increase simple shear flow.

It is generally acknowledged that the floc size (and thus,
settling velocity) will increase with shear rate at low shear
rate, whereas the opposite trend is known at larger shear rates
(Manning and Dyer 1999; Manning 2004; Winterwerp et al.
2006). However, many questions have not been resolved yet,
e.g., how the flocculation is promoted at low shear stress? And
how the flocs are disrupted at larger shear stress? Furthermore,
how to simulate turbulence-induced flocculation process, and
how to determine the collision frequency and efficiency of
particles due to turbulence? These questions require dealing
with an individual floc, or having a mesoscopic view in the
model,andthus,needfurtherresearch.Therefore,anumerical
model toaddress theabovequestions isof clear interest.

Lattice Boltzmann (LB) method is a kind of hydrodynamic
model based on mesoscopic kinetic equations, which has
successfully been developed to include solid particles in sus-
pensions. Ladd (1994) is the first one that introduced LB
method to simulate particles suspended in fluids. Cate et al.
(2004) presented fully resolved simulations to trace all parti-
cles suspended in an isotropic turbulent flow field through LB
method. Zhang and Zhang (2007) described the settling be-
havior of fractal floc in still water. Later, Zhang and Zhang
(2011) further used the LB method to explore the flocculation
due to differential settling in calm water. The effect of turbu-
lence, however, has not been addressed yet and that leads to
this study.

As a simple case of turbulent flows, homogeneous and
isotropic turbulence is widely used in the study of sediment
transport and pollutant dispersion. Turbulence has a strongly
nonlinear dissipative characteristic. In a decaying turbulent
flow, kinetic energy is produced at large scales, and dissipated
at the small scales. Therefore, some kind of energy (i.e., shear
forcing, or pressure gradient force) input has to be added to the
flow in order to keep the level of turbulence. Besides decaying
isotropic turbulence, forced isotropic turbulence is frequently
used to study statistically stationary turbulent flows, which
prevails for flow with higher Reynolds number than the
decaying isotropic turbulence (Lundgren 2003). A forced
homogeneous isotropic turbulence field is used as the turbu-
lent field to simulate the sediment flocculation.

The objectives of this paper are (1) to describe the floccu-
lation processes under different shear rates and explore the
turbulence-induced flocculation mechanism; (2) to indicate
the development of floc characteristics at early stage and
steady-state of flocculations; (3) to examine the interaction
forces and collision frequency between particles during floc-
culation. This paper is organized as follows: Model

description is discussed in Section 2. Specifically, Lattice
Boltzmann equation, boundary conditions, and hydrodynamic
forces are described in details. In Section 3, initial homoge-
nous isotropic turbulent flows and the corresponding param-
eter setting are described. Results and discussions are
presented in Section 4, and conclusions are drawn in
Section 5.

2 Model description

2.1 Lattice Boltzmann equation

The basic idea of LB method is to use a particle distribution
function, f (x , t), and a simplified set of particle velocities, e i,
at a lattice node to represent the fluid and its motion at that
node. Here the bold characters, e.g., x and e i are vectors or
tensors, and this style is used in this study. According to
boundary conditions and applied forces, at any discrete time
step, particles at a fluid node move to neighboring nodes with
these specified velocities e i, and meanwhile, it accepts parti-
cles from neighborhood fluid nodes, and thus, change the
properties of fluid and its motion at each node. The LB
equation describes the time evolution of f i(x , t), as:

f i xþ eiΔt; t þΔtð Þ ¼ f i x; tð Þ þ Ωi f x; tð Þ½ � ð1Þ

where e i is the i th velocity vector, pointing from a node,
located at x , to adjacent nodes. The subscript, i , in 3D flows
may be up to 19 for a D3Q19 topology (shown as Fig. 1), i.e.,
a three-dimensional cubic lattice with 19 velocity vectors e i
(i =0, 1, 2,…, 18), where i =0 corresponds to the zero vector,
i.e., e0=0. This means some particles will stay at their original
location. The collision operatorΩi(f ), depends on all the f i 's at
the node, denoted collectively by f (x,t). It can be constructed
by linearization about the local equilibrium f eq (Ladd 1994):

Ωi fð Þ ¼ Ωi f eqð Þ þ
X
j

ℓ ij f
neq
j ð2Þ

where the non-equilibrium particle distribution function, f j
neq,

defined as, f j−f jeq, and Ωi(f
eq)=0. : ij are the matrix elements

of the linearized collision operator, which must satisfy the
following eigen-equations (Ladd and Verberg 2001):X
i

ℓ ij ¼ 0;
X
i

ei ℓ ij ¼ 0;
X
i

eiei ℓ ij ¼ λe je j;
X
i

e2i ℓ ij ¼ λve
2
j

ð3Þ

where eiei is the traceless part of e ie j. The first two equations
follow from conservation of mass andmomentum, and the last
two equations describe the isotropic relaxation of the stress
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tensor; the eigenvalues λ and λv are related to the shear μ and
bulk viscosities μv and lie in the range −2<λ<0, in which μ ¼
−ρc2sΔt 1

λ þ 1
2

� �
and μv ¼ −ρc2sΔt 2

3λv
þ 1

3

� �
. cs ¼

ffiffiffiffiffiffiffiffiffi
c2=3

p
is

the speed of sound, where c is the particle speed, i.e. c=Δx /Δt ,
in whichΔx is the lattice spacing.

The collision operator can be simplified by taking a single
eigenvalue for both the viscous and kinetic modes. This
exponential relaxation time approximation Ωi=−f ineq/t, i.e.,
lattice Bhatnagar–Gross–Krook method (Chen et al. 1992),
has become the most popular form for the collision operator
because of its simplicity and computational efficiency, where
τ is the relaxation time. However, the absence of a clear time
scale separation between the kinetic and dynamic modes of
collision operator can sometimes cause significant errors at
solid–fluid boundaries. For this reason, Ladd and Verberg
(2001) suggested a 3-parameter collision operator, and that
was used in this study.

Determining a suitable equilibrium distribution function
plays an essential role in LB method. In particular, it will meet
the mass, momentum, and momentum flux:

ρ x; tð Þ ¼
X
i

f i
eq x; tð Þ ð4aÞ

j x; tð Þ ¼ ρ x; tð Þu x; tð Þ ¼
X
i

f eqi x; tð Þei ð4bÞ

Π x; tð Þ ¼
X
i

f eqi x; tð Þeiei ð4cÞ

where ρ is the mass density, j is the momentum density, andΠ
is the momentum flux.

The equilibrium distribution function f i
eq of the D3Q19

model that satisfies Eq. 3, can be defined as (Ladd and Verberg
2001):

f eqi ¼ wiρ 1þ ei⋅u
c2s

þ ei⋅uð Þ2
2c4s

−
u⋅uð Þ
2c2s

" #
ð5Þ

where the weighting factors wi equal to 1/3 (i =0) for the rest
particle, 1/18 (i =1, 2, …, 6) for the 6 coordinate directions
and 1/36 (i =7, 8, …, 18) for the 12 bi-diagonal directions,
respectively (Fig. 1).

The D3Q19model has the following set of discrete velocities:

ei ¼
0; 0; 0ð Þ

0;�1; 0ð Þc; �1; 0; 0;ð Þc; 0; 0;�1ð Þc
�1;�1; 0ð Þc; 0;�1;�1ð Þc; �1; 0;�1ð Þc

8<:
i ¼ 0

i ¼ 1; 2;…; 6
i ¼ 7; 8;…; 18

ð6Þ

The post-collision distribution f i
*=f i+Ωi is written as a

series of moments:

f *i ¼ wiρ 1þ ei⋅u
c2s

þ ei⋅uð Þ2 þ ei⋅ei⋅Πneq;�ð Þ
2c4s

−
u⋅uþΠneq;�ð Þ

2c2s

" #
ð7Þ

The non-equilibrium second moment Пneq is modified by
the collision process:

Πneq;� ¼ 1þ λð ÞΠneq þ 1

3
1þ λvð ÞΠneq þ 1

3
1þ λvð Þ ð8Þ

where Пneq=−Пeq, Πeq ¼ ∑
i
eiei f

eq
i ¼ ρc2s þ ρu⋅u .

In the presence of an externally imposed force density F,
for example, a pressure gradient, a gravitational field or inter-
action forces between particles, the time evolution of the LB
model includes an additional contribution in i direction,
Fi(x ,t ):

f i xþ eiΔt; t þΔtð Þ ¼ f �i x; tð Þ þ Fi x; tð Þ ð9Þ

This forcing term can also be expanded in a power series in
the velocity:

Fi ¼ wi
f ⋅ei
c2s

þ u⋅ f þ f ⋅uð Þ ei⋅ei−c2s
� �

2c4s

� �
Δt ð10Þ

The incompressible Navier–Stokes equations can be de-
rived from the lattice Boltzmann equation using the
Chapman–Enskog expansion (Chen et al. 1992).

Fig. 1 Sketch of the 19 velocity vectors (e i, i =0, 1, …, 18) for the
D3Q19 model
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2.2 Solid–fluid boundary condition

The LBmethod is well-suited for the problem of modeling solid
particle suspensions because of its ability to solve particles
movement with arbitrary shapes and complex geometries
(Chen and Doolen 1998). The boundary conditions at the sol-
id–fluid interface can be correctly and easily imposed. For a
stationary interface, a no-slip boundary condition is easily
implemented by using the bounce-back method. For a moving
interface, the modified bounce-back method, where the bound-
ary is always assumed to be located at the middle of the
boundary links (shown as Fig. 2), has been introduced to match
the velocity of the solid surface at the boundary node and to
account for the momentum transfer to the solid particle (Ladd
1994). To account for themomentum change, Nguyen and Ladd
(2002) proposed adding a term to the distribution function:

f i0 x; t þΔtð Þ ¼ f i x; tþð Þ−2Bi ub⋅eið Þ ð11Þ

where B is a coefficient proportional to the mass density of the
fluid and depends on the detailed lattice structure. x is the
position of the node adjacent to the solid-boundary with
velocity ub, t+ is the time immediately after the collision, i '
is the reflected direction, which is the opposite of the incident
direction i . ub is determined by the solid-particle translational
velocityU , angular velocityΩb, and the position vector of the
center of the solid particle X :

ub ¼ UþΩb � xb−Xð Þ ð12Þ

where xb ¼ xþ 1
2 eiΔt is the location of the boundary node.

Thus, the momentum is exchanged locally between the
fluid and the solid particle. To conserve the combined mo-
mentum of solid and fluid, the forces exerted at the boundary
nodes can be calculated from the momentum transferred in
Eq. (13):

Fb xþ 1

2
eiΔt; t þ 1

2
Δt

	 

¼ ei 2 f i x; tþð Þ−2Bi ub⋅eið Þ½ � ð13Þ

2.3 Aggregate formation

Consider a three-dimensional large aggregate of arbitrary shape
composed of N spherical solid particles of radius ai and mass
density ρ . The translational and rotational motions of a particle
i in an aggregate are expressed by the following equations:

m
dUpi

dt
¼ Fi ð14aÞ

I
dωpi

dt
¼ Mi ð14bÞ

where m and I are the mass and moment of inertia of a
particle, respectively,U ,ω, F andM are the velocity, angular
velocity, the total force, and total torque acting on the particle,
respectively, and the suffix i indicates the constitutive particle
i . Since the particle motion is determined by both the contri-
butions of the hydrodynamic drag and the interaction with
neighboring particles, excluding gravitational and buoyancy
force, the following should be used as the force and torque on
sediment particles, respectively (Higashitani et al. 2001):

Fi ¼ Fdi þ
X
j

Fmij ð15aÞ

Mi ¼ Mdi þ ai
X
j

Fmij � nij ð15bÞ

where Fdi and Mdi are the hydrodynamic drag force and
torque, respectively, Fmij is the mutual interaction force im-
posed on the particle i by the particle j , and n ij is the unit
vector defined by the following equation:

nij ¼ xij=xij ð16Þ

where x ij=x i−x j, x ij=|x ij| and x i is the position vector of the
center of particle i .

The hydrodynamic drag force on the solid particle is cal-
culated by summing impulses exerted on the particle by fluid
particles (Hill et al. 2001). The hydrodynamic drag force acts
on the outside particles is transmit to the inside particles
through the interactions between them. Two kinds of mecha-
nisms are considered. When particles are not contacting, par-
ticles interact with each other through the interaction forces
given by the Derjaguin–Landau–Verwey–Overbeek theory
(Verway and Overbeek 1948; Higashitani et al. 2001), such
as the van der Waals attractive force Faggr,ij and electrostatic
repulsive force F repu,ij. In this study, only spherical primary
particles are considered with the assumption that they all have
the same electronic charges, uniformly distributed on their
surface, and thus, there is no concern on the face-to-face
flocculation nor the face-to-edge flocculation. Only the elec-
tronic repulsive force is considered. When two spheres ap-
proach each other, the fluid between these two spheres has to
move away in order to allow these two particles to contact, this
causes some resistance. Nguyen and Ladd (2002) named this
as lubrication force Fcont,ij. Full details about the lubrication
force can be found in Kim and Karrila (1991).

After Russel et al. (1989), the van der Waals force between
spherical particles i and j is:

Faggr;ij ¼ A

6
−

ai þ aj

� �2
xij

x2ij− ai þ a j

� �2− ai þ aj

� �2
x3ij

þ 2xij

x2ij− ai þ aj

� �2− 2

xij

 !
ð17Þ
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where ai and aj are radii of two particles, A ≈10−20 J, is the
Hamaker constant, which depends on the geometry and ma-
terials of the solid surface (Hamaker 1937).

According to Stern’s theory of double layer (Hiemenz
1986), the electrostatic repulsive force between two particles
with diameters ai and aj can be written as:

Frepu;ij ¼ 4πεaкaia jφ2

ai þ aj
exp −кxij
� � ð18Þ

where εa=ε0ε r is the absolute dielectric constant of medium,
ε0 is the permittivity of vacuum (ε0=8.854×10

−12 F/m), ε r is
the dielectric constant of medium, which is 78.5 for water at
25 °C; к is the reciprocal Debye length; φ is the surface
electric potential of particles:

φ ¼ 2kBT

Zχ
ln
1þ exp −кthð Þ
1 − exp −кthð Þ sign φ0ð Þ ð19Þ

where kB is the Boltzmann constant, T is the absolute temper-
ature, Z is the valence of the positive ion in the solution, χ is
the electron charge; φ0 is the reference potential, sign(φ0)=1
whenφ0>0, sign(φ0)=−1 when φ0<0; th is the hydrate water

thickness when φ equals to zeta potential, and th becomes
infinity when if φ is not equal to zeta potential. The effect of
water salinity on flocculation processes (Liu et al. 2007) was
reflected by the electrostatic repulsive force (Eqs. 18 and 19).
When the salinity is s =5 ppt, these coefficients in Eq. (19) are
listed in Table 1.

Based on acting forces, sediment particles will move in the
water. When the gap between particles is less than 1.0 % of the
primary diameter, Zhang and Zhang (2011) considered a
successful aggregation. They introduced this idea ofminimum
separation gap into the LB modeling for simulating differen-
tial settling. Aggregates are composed of randomly packed
spherical particles, and all primary particles in this group will
move together as one aggregate. Pore water inside it also
follows with the aggregate movement (Zhang and Zhang
2009).

2.4 Aggregate breakup

The rate of breakup of flocs and the equilibrium size of flocs in
turbulent flow depend on their strength, F c. Winterwerp
(1998) suggested:

Fc ¼ π
4
d2f τB ð20Þ

where d f is the floc size and τB is the yield stress, which is
defined as (Tang et al. 2001):

τB ¼ 1:1
d f =d0
� �D F−3

1− d f =d0
� �D F−3

F

d20

 !
ð21Þ

where d0 is the primary particle diameter, d f is the floc size,
DF is the fractal dimension of the floc and F is the binding
forces between particles, including the van der Waals attrac-
tive force, F aggr,ij, electrostatic repulsive force, F repu,ij and
lubrication force, Fcont,ij. When the external force, F e, such
as the shear force of the fluid imposed on the floc is larger than
the floc strength Fc, it will break up.

3 Model implementation

A selected amount of sediment particles with different sizes
from 3 to 5 μm are placed in the turbulent flow randomly. The
information of turbulent flow field and sediment distribution

Fig. 2 Diagram of the lattice nodes with a moving particle (the large
circle with heavy solid line). The moving particle boundary is represented
by the hollow squares . The velocities along links cutting the boundary
surface are indicated by arrows . The hollow circle at X represents the
center of the moving particle, x is the position of the node adjacent to the
solid-boundary and e i is the i th velocity vector

Table 1 Coefficients in Eq. (19)
based on the salinity of 5 ppt kB T e к−1 th φ

1.38×10−23 J/K 298 K 1.6×10−19 C 0.98 nm 1.59 nm 19.9 mV
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is read into the numerical model as input conditions. Then
settling and flocculation processes are computed in the LB

model by considering the interaction forces between particles
and turbulent shears (Fig. 3).

3.1 Initial conditions

Initial homogeneous and isotropic turbulence flows were gen-
erated using pseudo-spectral method. In the model, the spec-
tral forcing scheme is used to generate forced isotropic turbu-
lence (Machiels 1997):

ef k; tð Þ ¼ f εeu k; tð Þ=½2E f tð Þ�; 0<k<kf

0; others
ð22Þ

where ε is the energy dissipation rate; eu k; tð Þ is the velocity in
Fourier space; k f is the largest wave number; E f tð Þ ¼
∫k f

0 E k; tð Þdk , E (k ,t ) is the energy spectra at the given time.
From Eq. 22, we can see that there is no preferred direction
and the turbulence will be homogenous and isotropic
(Machiels 1997).

In the forced homogenous turbulence, an initial energy
spectrum is given in Fourier space k . In the present work,
the following initial spectrum is used (Yan et al. 2010):

E0 kð Þ ¼ Bk4exp −0:14k2
� �

; k∈ ka; kb½ � ð23Þ

where the magnitude B and the range of the initial energy
spectrum [ka, kb] determine the initial total kinetic energy in
the simulation. We use B =1.4×10−4, ka=3 and kb=8. The
Taylor micro-scale Reynolds number is expressed as:

Reλ ¼ λTurms
ν

ð24Þ

where λT is the Taylor micro-scale length; u rms is the root-
mean-squared velocity; v is the kinematic viscosity. In the
model, the Taylor micro-scale Reynolds number is 17<Reλ<
156. The probability density function of turbulent velocity

Fig. 3 Simulation procedure

Fig. 4 Vorticity in the domain at
different shear rates and its
magnitude is larger than 0.005. a
G=8.8 s−1; b G=12.8 s−1;
c G =17.6 s−1
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fluctuations for x -, y - and z -directions appears a normal
distribution with a mean of zero, respectively. The generated
turbulence can be identified as isotropic.

By changing the value for ε , one will change the shear rate,
G , in the turbulent flow becauseG =(ε /ν )1/2 (Camp and Stein
1943). In this study, eight shear rates (G =3.1, 4.7, 6.4, 8.8,
12.8, 17.6, 22.0, and 29.3 s−1) are selected. The reasonable
uniform spatial distribution of the vortical structures (for
vorticity magnitude larger than 0.005) at three different shear
rates (Fig. 4) can be a proof that it is an isotropic turbulent
flow.

The turbulence shear stress (t ) is proportional to the turbu-
lence kinetic energy E , assuming the energy production
equals the energy dissipation and was calculated as t=0.19
E (Manning 2004). Thus, the corresponding shear stresses,
t 's, are 0.005, 0.01, 0.02, 0.04, 0.08, 0.2, 0.3, 0.4 N m−2,
respectively.

3.2 Parameter settings

Particles with diameters dp of 3–5 μm distribute randomly in a
fluid cell, and their densities are ρs=2650 kg m

−3. The following
parameters are selected: fluid density, ρw=1000 kg m−3, fluid
kinematic viscosity, ν=1.0×10−6 m2 s−1, gravity acceleration,
g=9.8 m s−2, the computation domain is 2.5 mm×2.5 mm×
2.5 mm, the volume concentration of particles is 7.55×10−4, the

corresponding weight suspended sediment concentration is cm=
2.0 kg m−3, water salinity is 5 ppt, the grid number,N=1280, (N
is defined as grid number in one direction) and the model is
running with a time step interval of 6.67×10−7 s.

4 Numerical results and discussions

LB method has been successfully applied to simulate the
settling process of fractal floc (Zhang and Zhang 2007) and
flocculation processes of cohesive sediment due to differential
settling (Zhang and Zhang 2011). Zhang and Zhang (2007,
2011) demonstrate that LB method is accurate and efficient
after the numerical model is tested against laboratory experi-
ments. In this section, the main results of the performed direct
numerical simulations for turbulence-induced flocculation
process are discussed. Floc properties, such as floc size, floc
fractal dimension, floc density, and settling velocity, are ana-
lyzed. Subsequently, the interaction forces and collision effi-
ciency between particles during flocculation are investigated.

Fig. 5 Flocs generated by shear rate of 17.6 s−1 at initial sediment
concentration of 2.0 kg m−3 during the early-stage flocculation (t=10 s)

Fig. 6 Time evolution of maximum floc size in the domain for the
different shear rates of 3.1, 4.7, 6.4, 8.8, 12.8, 17.6, 22.0, 29.3 s−1

Fig. 7 Floc size distribution and normalized floc size distributions during
floc growth for the shear rate G =17.6 s−1

Ocean Dynamics (2013) 63:1123–1135 1129



4.1 Time evolution of floc size

The fractal characterization of a floc can be calculated based
on the concept of capacity dimension DB, which is proposed
by Liebovitch and Toth (1989) as:

DB ¼ lim
l→0

logNB lð Þ
log 1=lð Þ ð25Þ

This is called “box-counting” because one counts the min-
imal number of boxes NB(l), which cover the set of boxes of
size l (l -covering). Figure 5 shows three flocs formed by a
shear rate of 17.6 s−1 at the time of 10 s, the particle number
Np in these three flocs are 9, 15, and 16, which have 3D
capacity dimension DB of 1.84, 1.89, and 2.03. The above
three DBs agree well with that given by Huang (1994), 1.53–
2.10, based on laboratory experiments.

The number of primary particles, Np, within a floc can be
obtained from DB (Maggi et al. 2007):

Np ¼ d f

dp

	 
DB

ð26Þ

where dp is the average primary particle size and d f is the floc
size. When the number of primary particles Np, is counted based

on the numerical result and the fractal dimensionDB is calculat-
ed, then the floc size d f can be obtained by using Eq. (26).

The time history of maximum floc size in the domain for all
the different shear rates suggested that the growth rate depends
on the shear rate (Fig. 6). For aggregates formed by 3–5 μm
primary particles at solid volume fraction φ =7.55×10−4, the
maximum aggregate size increases quickly atG =17.6 s−1 and
reaches a stable status after about 100 s. For small shear rates,
e.g., G ≤6.4 s−1, the increasing trend is small and continuous
after 250 s, but for other shear rates, it reaches a stable size at
the time of 180 s, which is close to that given by Frappier et al.
(2010). Their study suggested that the average aggregate size
reached a steady-state after about 200 s atG =3.7∼82.5 s−1, for
suspensions coagulated from 2 μm primary particles at the
volume concentration of φ =10−3. The results in Fig. 6 also

Fig. 8 a Steady-state floc size distributions as a function of shear rate at
solid volume fractionφ =7.55×10−4. b Normalized floc size distributions
during steady-state for different shear rates

Fig. 9 Variations in settling velocity with floc size (a) at t =6 s and (b) at
t =200 s. The solid square is the numerical results; the hollow circle
expresses the experimental data (Manning and Dyer 1999); hollow
square and triangle stand for the observations of floc settling velocities
and floc size in the Hamilton Harbour (Amos and Droppo 1996) and in
the Tamar estuary (Winterwerp et al. 2006), respectively. The solid line
stands for linear fit of numerical results
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show that the turbulent shear rate has an impact on the max-
imum aggregate size: it tends to increase with G at low shear
rates (e.g., G <17.6 s−1), but decrease as the shear rate further
increases. This is because large G (e.g., G =29.3 s−1) will
destruct flocs, especially large flocs.

4.2 Floc size distributions

During early-stage flocculation, floc size distribution varies
with flocculation time. After about 100 s, the floc size distri-
bution reaches a steady-state (Fig. 7a). Nevertheless, the di-
mensionless floc size d f/d f,ave at any selected time, calculated
from the simulation results, where d f,ave is the mean floc size
at that time, shows (Fig. 7b) the normalized floc size distribu-
tions do not change with time, which is consistent with pre-
vious experimental results given by Frappier et al. (2010).

After reaching the steady-state of flocculation, the effects
of shear rate on the steady-state floc size distribution (Fig. 8a)
shows that high shear rates reduce the large tail of distribution
and decrease the range of floc size distributions. Narrower
distributions with an increase in shear rate were also reported
by Spicer and Pratsinis (1996), for aluminum particles with a
weight concentration of 32 mg/l, i.e., φ =8.3×10−5. However,
the normalized floc size distributions, when put together, are
all close to each other and may be described by a single
equation (Fig. 8b). This implies the shear rate has no effect
on the shape of normalized steady-state floc size distribution,
or independent with respect to shear rate. Hunt (1982) theo-
retically predicted self-similar size distributions during coag-
ulation and verified experimentally with clay particles. This

phenomenon was also found from the flocculation of particles
in a stirred tank at the laboratory (Spicer and Pratsinis 1996).

4.3 Floc settling velocity

The settling velocity of a sediment particle in the model is the
vertical component of solid-particle translational velocity U
(as shown in Eq. (12)), which is updated according to the
forces applied on the particle. The velocities of particles
increase significantly due to collision and adhesion between
particles and then keep the floc settling velocity. So, the
settling velocity of floc is obtained as mean settling velocities
of particles that coagulate to form the floc. It was found that
the mean settling velocity was basically the same as the entire
floc settling velocity (Zhang and Zhang 2009).

During early-stage flocculation (i.e., 6 s after the simula-
tion), the relation of floc size and settling velocity (Fig. 9a)
indicates a power–law relationship. At this non-equilibrium
stage, this relationship can be expressed as:

ws ¼ 0:0068d f
1:16 ð27Þ

where ws is in millimeter per second and d f is in micrometer.
Floc effective density ρ e is determined from the porosity p ,

where the porosity can be written in terms of capacity dimen-

sion DB, p ¼ 1− d f=dp
� �DB−3 , so the floc effective density

can be expressed as:

Fig. 10 Variations in floc settling
velocity and effective density
over the turbulent shear range at
sediment concentration of
2.0 kg m−3and t = 6 s

Fig. 11 Temporal variation of x
component force between two
particles (#36 and 86) and the
distance between these two
particles during the first 8 s
simulation when they are placed in
an isotropic and homogenous
turbulent flow with shear rate of
6.4 s−1 (or shear stress 0.02 N/m−2)
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ρe ¼ ρs−ρwð Þ 1−pð Þ ¼ ρs−ρwð Þ dp
d f

	 
3−DB

ð28Þ

From Fig. 10, we can see that the range of floc settling
velocity is 0.05-0.2 mm s−1 and the excess density is in the
range of 400–800 kg m−3. As illustrated in Fig. 10, the floc
settling velocity and excess density are substantially invariant
with the shear stress, mainly because the flocculation was
under non-equilibrium environmental conditions. For small
time scales, the size, settling velocity and excess density of
flocs do not change for shear stresses in the experimental
range 0–0.4 N m−2. When approaching steady-state (i.e., after
about 200 s simulation), the relationship between floc size and
settling velocity (Fig. 9b and Eq. 29) obtained from this
numerical experiment shows a generally higher values than
those obtained from lab and field experiments. This is mainly
because the lab and field data don’t have the perfect spherical
primary particles as the building block. Other reasons, e.g.,
measurements at lab were made 120 s after the turbulence has
ceased (Manning and Dyer 1999), unlike that turbulence is
always existed in this numerical study.

With the assumption that the settling of individual flocs
satisfies Stokes’ law, at the equilibrium flocculation condition,
the same empirical equation as Eq. (27) can be obtained:

ws ¼ 0:0105d f
0:98 ð29Þ

Comparison of the relation between floc size and settling
velocity (Eq. 27) established during floc growth with the cor-
responding steady-state relation (Eq. 29), the settling velocity

ws∝df1.16 under the non-equilibrium flocculation condition, a
fractal dimension DB=2.16 is found according to the simple
relationship of the form ws∝d f

DB−1 (Winterwerp 1998); at the
same time, a fractal dimension DB=1.98 is obtained under the
equilibrium flocculation condition, which is less than that dur-
ing floc growth. DB decreases slightly because of the forming
of flocs with a looser structure at the steady-state.

4.4 Interaction forces

This LB simulationmay reveal the inter-particle forces between
particles. The following three examples are all with initial
sediment concentration of 2.0 kg m−3, and the sediment particle
is numbered from 1 to N , such as particle 36 and 86 (Fig. 11).

When particles are sufficiently apart, the only force that acted
on these particles would be drag force caused by flow turbulence
(Fig. 11). The hydrodynamic drag force is relatively stable and
only changes a little because of the isotropic and homogenous
turbulence. As particle 36 and 86 are close to each other, other
attractive forces become dominant. These two particles collide at
time of about 4.5 s when the distance reduces to 0.01dp and
forces on the particle 36 and 86 increases sharply. Then the two
particles aggregate to form an aggregate. If the turbulence shear
stress is larger than the adhesive force of the aggregate, it will
breakup, as shown at time of about 4.8 s. At 6.3 s, particle 36
and 86 collide and aggregate again.

The following describes the formation of a three-particle
aggregate at shear rate G =17.6 s−1 (Fig. 12), the distance
between particle 36 and particle 86 is close at time of about
5 s to show a sharp increase of forces between them. As the

Fig. 12 Temporal variation of x
component force and the distance
between particles (#36 and 86)
and particles (#36 and 30) during
the first 8 s simulation when they
are placed in an isotropic and
homogenous turbulent flow with
shear rate of 17.6 s−1 (or shear
stress 0.2 N/m−2)

Fig. 13 Temporal variation of x
component force between two
particles (#31 and 70) and the
distance between these two
particles during the first 8 s
simulation when they are placed in
an isotropic and homogenous
turbulent flow with shear rate of
22.0 s−1 (or shear stress 0.3 N/m−2)
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distance between them is about 0.01dp, a two particle aggregate
is formed. At t=5.5 s, the aggregate catches another particle,
particle 30 to form a new aggregate when the distance between
the particle 36 and 30 reduces to 0.01dp. Higher shear rate may
provide better opportunities to form a three-particle aggregate.

The higher shear rate may also increase the opportunity of
aggregate breakage in turbulent flow. An example with G =
22.0 s−1 (Fig. 13) shows the collision of particles 31 and 70
and forms a new aggregate at t ≈5 s. The higher shear rate value
breaks the aggregate at t=5.7 s, when the distance between
particles becomes bigger than 0.01dp. Then, the processes of
the floc breakage and re-flocculation take place by turn.

The particle collision efficiency of the aggregates in different
shear turbulent conditions are obtained based on the analysis of
interaction forces between particles (Fig. 14). If we track a
particle, the particle collides with other particles when the forces
on the particles increase sharply. As the distance between them
is less than 0.01dp, the particle catches the other particle to form
a floc. So, the likelihood for two particles to adhere and glue
together after collision, i.e., the collision efficiency α im, will be
achieved. The average collision efficiency factor α im can be
calculated as 0.24, 0.22, 0.19, 0.19, 0.19, 0.20, 0.19, and 0.18 for
the eight shear rates, respectively. Although higher shear rates
will increase the particle collision frequency due to the higher
turbulent kinetic energy, particle collision efficiency will de-
crease with G (Fig. 14). As Li and Logan (1997) discussed,
the potential due to the increasing particle collision frequency by
higher velocity will be partially offset by less contact time
between the particles. As a result, the particle collision efficiency
decreases with the shear rates.

4.5 Particle collision frequency function

The number of collisions between two particles with size i and
size m per unit time per unit volume can be expressed by

Nim=α imβ imn inm (Smoluchowski 1917), in which, ni and
nm are the number concentration of sizes i and m particles,
respectively, β im is a collision frequency function. In the LB
simulation, the number of collisions between two particles
Nim, ni, nm, and α im can all be acquired from the numerical
model results directly. Thus, the collision frequency function
β im can be estimated at any time. Here, the estimated β im, at
t =180 s, is plotted as the solid square in Fig. 15.

If shear is the only parameter that controls the flocculation
mechanism, a collision frequency function β im can be
expressed by β im=G (di+dm)

3/6, in which di and dm are
diameters of the i and m particles, respectively (McCave
1984). If di and dm are selected as 3 and 5 μm (the minimum
and maximum primary particle size in the model), respective-
ly, the collision frequency β im may be obtained (open squares
in Fig. 15). But di and dm are not limited to only 3 and 5 μm.

Compared with the numerical results and the theoretical
values, it can be seen that the calculations by LB model is
slightly larger than that obtained by theoretical equation. It is
because that the empirical equation only considers the shear
rate, but the coagulations due to differential settling are also
included in the numerical model. Nevertheless, Fig. 15 shows
that flow shear rate contributes much more in flocculation
than differential settling. It could be concluded that the role
of differential settling on flocculation processes may be ig-
nored for shear rates in the simulation range of 3.1–29.3 s−1.
Moreover, it also concluded that the collision frequency can
be calculated directly using the simple empirical equations.

5 Conclusions

A numerical model on micro-scale simulation of turbulence-
induced flocculation processes of fine sediments was
established via LBmethod to explore aggregationmechanisms,

Fig. 14 Particle collision efficiency of the aggregates in the different
turbulent shear rates of 3.1, 4.7, 6.4, 8.8, 12.8, 17.6, 22.0, 29.3 s−1

Fig. 15 Relationship between the collision frequency and the shear rate.
Solid square means numerical results at 180 s and hollow square stands
for the theoretical results
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to examine the development of flocs at early-stage and steady-
state flocculation. Although this model uses perfect spherical
particles as the primary particles, only one salinity environ-
ment, and only one initial concentration, 2.0 kg m−3, for the
suspended sediment with a narrow band on primary
particle size (3 to 5 μm), it is the first step toward
the simulation of true cohesive sediment flocculation.

The flocculation and settling of selected sediment with
different turbulent shear rates, G =3.1, 4.7, 6.4, 8.8, 12.8,
17.6, 22.0, and 29.3 s−1, were simulated, respectively. The
time evolution of floc size, floc size distribution, and floc
settling velocity were examined through the numerical model.
The dimensionless floc size d f/d f,ave distributions present a
time-independent pattern during early-stage flocculation.
During steady-state flocculation, from the floc size distribu-
tions, it can be seen that increasing shear rate reduces the large
tail of distribution and decreases the range of floc size distri-
butions. However, the shear rate has no effect on the shape of
normalized steady-state floc size distribution.

The floc size, settling velocity and effective density at the
non-equilibrium flocculation do not change obviously for
shear stresses in the range 0–0.4 N m−2. Comparison of the
relation between floc size and settling velocity established
during floc growth with the corresponding steady-state rela-
tion reveals that the different relations lead to the mean fractal
dimension decreasing at the end of the growth period.

Additionally, hydrodynamic forces on the sediment particles
were obtained directly from the numerical model. Low shear
rate would encourage the floc formation. The opposite trend is
observed at high shear rate. So it can be seen that the turbulence-
induced flocculation was a combined process of aggregation
and floc breakup based on the forces acting on sediment parti-
cles. Furthermore, the collision frequency and aggregate effi-
ciency can be obtained directly through simple statistics of
numerical results via LB model, which is attributed to precise
description of each sediment particle and inter-particle forces in
LBmodel. From thismodeling exercise, it can be concluded that
turbulent shear has a significant influent factor on the floc size,
floc settling velocity, and collision frequency.

It is understood that non-spherical particles should be used
in the modeling of collision, aggregation, breakup, and set-
tling. Furthermore, clay mineral and organic matter, consists
mainly of polymers (Manning et al. 2007), is another major
factor responsible for mud flocculation. Biological coating of
the particles will also affect the particle characteristics (Amos
et al. 2010). As a perspective, the model may include some
parameters to simulate non-spherical particles, polymers, and
some biological coating effects.
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