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Abstract A numerical model has been developed to simu-
late wave–mud interaction. The fully non-linear Navier–
Stokes equations with complete set of kinematic and dynam-
ic boundary conditions at free surface and interface with the
two-equation k-ε turbulence model with buoyancy terms are
solved. Finite volume method based on an ALE description
has been utilized for the simulation of wave motion in a
combined system of water and viscous mud layer. The model
is an extension to Width Integrated Stratified Environments
2DV numerical model, originally developed by Hejazi
(2005). For validation of the hydrodynamics of the model,
small-amplitude progressive wave train in deep water and
solitary wave propagation in a constant water depth have
been simulated, and the results have been compared with
analytical solutions, which show very good agreements. A
non-linear short wave propagation in a constant water depth
has also been simulated, and the predictions have been
compared against measured values reported in the literature,
which confirms the model ability in prediction of non-linear
short waves. Application of the new model in a combined

system of viscous fluid mud shows good agreements in
determining damping coefficient and water–mud interface
elevation for various wave heights and frequencies com-
pared to the experimental data. Simulated surface wave
number values obtained for various mud layer thicknesses
show very good agreements compared with analytical solu-
tion results.

Keywords Wave–mud interaction . Fluid mud . Projection
method . ALE description .WISE 2DV numerical model .

FVM . Buoyant k-ε turbulence model

1 Introduction

Some coastal and most estuarine sea beds are loaded with
cohesive sediments. In the presence of cohesive sediments,
wave damping is enhanced; surface waves can be attenuated
appreciably in a finite number of wave periods or wave
lengths. Meanwhile, the waves can induce a Lagrangian drift
on the bottom, driving a slow but steady mass transport of
the mud. Cohesive sediment can be considered to exist in
four states: a mobile suspended sediment, a high concentra-
tion near the bed layer which sometimes is referred to as fluid
mud, a newly deposited or partially consolidated bed, and a
settled or consolidated bed. The upper layer of suspension is
separated by a sharp density gradient or lutocline from the
fluid mud (Whitehouse et al. 2000). Suspended sediments
have the largest mobility and may travel long distances
before depositing. In contrast, the highly concentrated fluid
mud, which tends to exhibit profound non-Newtonian be-
havior, is much limited in motion. Nevertheless, the fluid
mud is a complicated layer which plays a crucial role com-
pared to other layers in wave–mud interaction. The fluid mud
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may be developed either by fast deposition of suspended
sediment or by fluidization or failure of soft, freshly depos-
ited mud layers at sea bed (Mehta et al. 1995 and Li and
Mehta 1997). Extensive studies have been carried out to
understand the mechanism of mud and water in a wave-
dominated marine environment, whereas most of them focus
on fluid mud layer as sediment layer.

Since the late 1950s and after Gade (1958), a relatively
large number of analytical and experimental works have
been carried out. Most of the analytical works hold the
assumption of a Newtonian fluid to take advantage of line-
arizing the stress and rate of strain relations. The equations of
motion are the laminar Navier–Stokes equations, which have
been linearized by neglecting the advective accelerations
(e.g., Dalrymple and Liu 1978 and Maa and Mehta 1990).
In the case of complete Navier–Stokes equations, a pertur-
bation analysis may be carried out to the first and second
order to reveal the mean Lagrangian drift in two layers (e.g.,
Ng 2000 and Ng 2004).

In spite of an extensive number of analytical studies, very
few numerical model developments for wave–mud interac-
tion have been reported in the literature. For instance, Zhang
and Ng (2006) presented a numerical model for a two-layer
viscous fluid system to simulate a progressive wave in the
upper layer and the oscillatory motion of lower mud layer
induced by the water wave to evaluate the ratio of interfacial
to surface wave amplitude. They used the dimensionless
conservative form of time-dependent Navier–Stokes equa-
tions in a curvilinear coordinate system fitted to the moving
interfaces. Governing equations were solved, and the bound-
ary conditions were implemented by a time-splitting frac-
tional step method in a two-step predictor–corrector scheme
in a finite difference fashion. An intermediate velocity field
was computed at the prediction step, and the location of the
free surface and the interface was evaluated afterwards.
Within a time step, the solution procedure was first applied
to the upper layer, and then by the application of the bound-
ary conditions across the fluid interface, the solution proce-
dure was applied to the lower layer. Niu and Yu (2010)
developed their model based on the well-known simplified
marker and cell method using a finite difference scheme, in
which the motion of the movable mud and water were solved
simultaneously. Water was treated as a viscous fluid, while a
visco-elastic–plastic model was considered for the mud lay-
er. The free surface and the interface were both traced by the
volume of fluid method. Their model was applied to simulate
wave propagation over a muddy slope.

Propagation of surface water waves over a mud layer
generates an interfacial wave between the water and mud
layer, resulting in a high wave energy dissipation in compar-
ison with non-cohesive sediments. This paper presents the
development of a numerical model to simulate the wave

motion and wave–mud interaction in a two-phase viscous
fluid system. Surface wave height attenuation and interfacial
wave amplitude are investigated. To address these, the
damping coefficient of surface waves is computed for vari-
ous initial wave heights and frequencies, and surface wave
number has been calculated for alternative mud layer thick-
nesses. The upper layer of the system consists of plain water
subject to a surface wave disturbance, while the lower mud
layer is treated as a viscous fluid characterized by a viscosity
and density greater than the water layer. The new model is an
extension to WISE (Width Integrated Stratified Environments)
2DV (two dimensional vertical) hydrodynamic model. WISE
is a finite volume method non-hydrostatic Reynolds-averaged
Navier–Stokes (RANS) free-surface numerical model using a
structured non-orthogonal curvilinear staggered mesh and is
capable of simulating non-homogeneous, gravity-stratified
flow fields. The two-equation k-ε turbulence model with
buoyancy terms has been included in the numerical model.
Projection (fractional step) method has been used for solving
the equations. In WISE, the free surface equation is obtained
by integrating the continuity equation over depth with the
application of kinematic boundary conditions at bed and free
surface (Hejazi 2005). In the refined model, for improving the
free surface prediction, which plays a crucial role in wave–mud
interaction simulation, the dynamic free surface boundary
condition has been modified according to the method of
Ahmadi et al. (2007). To simulate wave–mud interaction, the
original hydrodynamic model has also been modified to in-
clude mud and consideration of interface boundary conditions
for the simulation of two-layer fluid mud system and predic-
tion of water–mud interface elevation. To provide flexibility
and higher resolution for prediction of mud surface, gridding
has been adjusted accordingly, and the model has been mod-
ified for accommodating non-uniform gridding in a vertical
direction in two layers.

Fig. 1 Schematic diagram of the two-layer viscous fluid system in the
2DV presentation
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2 Governing equations, and spatial and temporal
boundary conditions

The governing equations of the 2DV problem in arbitrary
Lagrangian–Eulerian (ALE) description together with the
buoyant k-ε turbulence model have been presented herein.
Spatial and temporal boundary conditions of the solution
domain have been addressed and discussed.

2.1 Governing equations

Figure 1 shows the physical domain bounded by the moving
free surface, η(x, t), and the bottom boundary, z= zb (x). The

upper layer is plain water subject to a wave disturbance and
the lower layer is fluid mud.

For incompressible flows in the two-dimensional vertical
plane, and in the Cartesian coordinate system (x, z, t), the
conservative form of RANS equations in ALE description
may be expressed in a compact vectorial form as (Tannehill
et al. 1997):

∂V
∂t

þ ∂Fx

∂x
þ ∂Fz

∂z
¼ Q ð1Þ

where V, Fx, Fz, and Q are vectors given by:

V¼
0
u
w

2
4

3
5

Fx ¼
u

u2−νt∂u=∂xþ P*

uw−νt∂w=∂x

2
4

3
5; Fz ¼

w
wu−wgu−νt∂u=∂z

w2−wgw−νt∂w=∂zþ P*

2
4

3
5;Q ¼

0
0

−g ρ−ρrð Þ=ρr

2
4

3
5

ð2Þ

where t is time; x and z are coordinates in horizontal and
vertical directions, respectively; u and w are components of
velocity in the x- and z-directions, respectively; P* is the
pressure in the absence of hydrostatic pressure divided by
the reference density of water; ρ is the density of water; ρr is
the reference density of water; g is the gravitational accelera-
tion; vt is the eddy viscosity coefficient; and wg is the mesh
velocity obtained from the vertical displacement of mesh in
each time step. In the ALE method, the newly updated free
surface is determined purely by the Lagrangianmethod, by the
velocity of the fluid particles at the free surface, while the
nodes in the interior of the domain are displaced in an arbitrary
prescribed manner to be redistributed to avoid mesh crossing.

The first row of Eq. (2) corresponds to the continuity equa-
tion, and the second and third rows represent the components of
momentum equation in x- and z-directions, respectively.

To optimize accuracy and economy, the two-equation k-ε
turbulence model with buoyancy terms has been deployed
and included in the numerical model. The conservative form
of the k-ε equations in ALE description is as follows:

νt ¼ cμ
k2

ε
ð3Þ

∂k
∂t

þ ∂uk
∂x

þ ∂wk
∂z

−wg
∂k
∂z

¼ νt
σk

∂2k
∂x2

þ ∂2k
∂z2

� �
þ P þ G−ε

ð4Þ

∂ε
∂t

þ ∂uε
∂x

þ ∂wε
∂z

−wg
∂ε
∂z

¼ νt
σε

∂2ε
∂x2

þ ∂2ε
∂z2

� �

þ c1ε
ε
k

P þ c3εGð Þ−c2ε ε
2

k

ð5Þ

where k is kinematic energy, ε is dissipation rate of energy,
and the empirical constants cμ, σk, cε, c1ε, c2ε and c3ε are
taken to be the same as those proposed by Rodi (1987). P and
G are shear and buoyancy productions, respectively, and are
given by:

P ¼ νt 2
∂u
∂x

� �2

þ 2
∂w
∂z

� �2

þ ∂w
∂x

þ ∂u
∂z

� �2
" #

ð6Þ

G ¼ βg
νt
σt

∂C
∂z

ð7Þ

where σt is the Schmidt number; β is the compressibility
coefficient of fluid, and C is the species concentration, which
may be obtained from the density.

2.2 Spatial boundary conditions

Spatial boundary conditions have been divided into five
locations: the rigid bottom of the mud layer (bed), the inter-
face boundary at plain water and mud flow, the free surface
of water, the inlet, and the outlet boundaries.
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2.2.1 Bed boundary condition

The kinematic boundary condition at the impermeable bot-
tom gives (Dean and Dalrymple 1991):

u
∂zb
∂x

þ w ¼ 0 ð8Þ

where zb (x) is the bed elevation above datum.

2.2.2 Free surface boundary conditions

At the free surface, kinematic and two dynamic boundary
conditions are applied.

Kinematic free surface boundary condition Within the Cartesian
coordinate system, kinematic free surface boundary condi-
tion is formulated by the following one-dimensional hyper-
bolic wave equation (Dean and Dalrymple 1991):

∂η
∂t

þ u
∂η
∂x

¼ w ð9Þ

where η(x, t) is the free surface elevation measured from the
undisturbed mean water level. To keep the consistency, the
free surface equation can be obtained by integrating continuity
equation over depth and by the application of the kinematic
conditions at bed (Eq. 8) and free surface (Eq. 9) as follows:

∂η
∂t

þ ∂
∂x

Zη
zb

uf dz ¼ 0; f ¼ m or w ð10Þ

in which m stands for mud and w stands for water.

Dynamic free surface boundary conditions The free surface
dynamic conditions represent the equilibrium of the normal
and the tangential components of the stresses on free surface.
Neglecting the surface tension on free surface, the dynamic
conditions are as follows:

σ ¼ 0
τ ¼ 0

ð11Þ

where σ and τ represent normal and tangential stress
on free surface, respectively. Using the stress tensor

[σij ¼ −pδij þ μ ∂ui
∂x j

þ ∂u j

∂xi

� �
], Eq. (11) is written in the

form of Eq. (12), which represents the normal and
tangential dynamic boundary conditions, respectively
(Hirt and Shannon 1968):

p ¼ 2μ

1þ ∂η
∂x

� �2 ∂η
∂x

� �2 ∂u
∂x

−
∂η
∂x

� �
∂u
∂z

þ ∂w
∂x

� �
þ ∂w

∂z

" #

2
∂η
∂x

� ∂u
∂x

� �
þ ∂η

∂x

� �2

−1

 !
∂u
∂z

þ ∂w
∂x

� �
−2

∂η
∂x

� ∂w
∂z

� �
¼ 0

ð12Þ

where P represents the pressure at free surface and μ is
the viscosity of water.

2.2.3 Interface boundary conditions

The interface boundary conditions provide no exchange (erosion
or deposition) across the water–mud interface and may be repre-
sented in the same manner as the free surface boundary condi-
tions. The kinematic interface boundary condition is as Eq. (13):

∂ηm
∂t

þ uf
∂ηm
∂x

¼ wf ; f ¼ m or w ð13Þ

where ηm (x, t) is the mud surface elevation measured from
undisturbedmeanmud level. The normal and tangential dynamic
boundary conditions for the interface are written as follows
(Zhang and Ng 2006):

σw ¼ σm

τw ¼ τm
ð14Þ

The balance of fluxes should also be applied at the interface:

uw ¼ um
ww ¼ wm

ð15Þ

2.2.4 Inlet and outlet boundary conditions

At inlet and outlet boundaries, the velocity or pressure or
water elevation may be regarded as known values depending
on circumstances. For instance in the case of wave propaga-
tion on the free surface where a flap-type wavemaker is
applied at the inlet, by assuming a sinusoidal motion for
generated wave, the stroke (S0) at the water surface may be
calculated by Eq. (16), given by Dean and Dalrymple (1991),
to obtain the inlet velocity at the water surface (Eq. 17).

H

S0
¼ 4sinh kLdwð Þ

sinh 2kL dwð Þ þ 2kL dw
sinh kLdwð Þ þ 1−cosh kL dwð Þ

kLdw

� 	
ð16Þ

u ¼ ωS0
2

sin ω tð Þ ð17Þ

where H is the wave height, kL is the wave number, dw is the
depth of water layer, and ω is the wave frequency. To provide
a free exit for water at the outlet and maintain upstream
control hydraulic condition, a zero dynamic pressure condi-
tion is set at the far end of the domain.

2.2.5 k and ε boundary conditions

On the free surface, Neuman boundary for k and Dirichlet
boundary for ε are used and set to zero. Neuman boundary
for k and ε is set to zero at the outlet. At the inlet boundary, it
is assumed that the flow is smooth, and k and ε are set to
small values different from zero.
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2.3 Temporal boundary conditions

Initial values are required for the water elevation and veloc-
ity components within the computational domain. The initial
velocity and pressure values are set equal to zero. k and ε are
set to suitable values to give an appropriate kinematic value
for viscosity.

3 Numerical method

The model developed herein is an extension to WISE 2DV
numerical model (Hejazi 2005). WISE uses a structured
non-orthogonal curvilinear staggered mesh based on ALE
description. The discretization of the flow and transport
equations has been based on finite volume method, provid-
ing flexibility for defining control volumes in a staggered
grid system, especially near the bed and water surface
where rapid changes of the bathymetry and free surface
may have a significant effect on the prediction of flow field.
The finite volume method also provides, if correctly
implemented, the assurance of global conservation. For
modeling the turbulence phenomenon and to optimize ac-
curacy and economy, the two-equation k-ε turbulence mod-
el with buoyancy terms has been deployed in the numerical
model. The model is also capable of simulating non-
homogeneous (i.e., variable density), gravity-stratified flow
fields.

The projection of the geometry and grid configuration, the
control volumes of the scalar and vector quantities, and their
locations on the xoz reference plane are illustrated in Fig. 2.
The scalar variables including pressure, k, ε, viscosity, and

density are calculated at the nodal points (•). The velocity
components are calculated at the central point of each face of
a scalar control volume drawn around the scalar quantities
(e.g., pressure points) and are located midway between scalar
quantities (e.g., pressure points). The velocity components
are indicated by horizontal and vertical arrows for u-, and w-
velocity components, respectively. The control volumes for
the scalar quantities and w-velocity component consist of six
sides, and the control volume for the u-velocity component
consists of four sides. Surface and bottom elevations are
defined at the center of the corresponding surface and bottom
cells, respectively.

3.1 Numerical approximation

A finite volume approximation is used to discretize the
governing equations and boundary conditions. The
discretization of the vectorial Eq. (1) includes either the
derivative of a quantity or the derivative of a flux.
According to divergence theorem, the average x-derivative,
for instance, of a quantity Φ for the representative control
volumes of Fig. 2 is obtained from Eq. (18) (Hejazi 2005):

∂Φ
∂x

� �
Ω

≈
1

ΩR

X
sides

Φ:Δz ð18Þ

where ΩR is the volume value of the finite volume R .
Applying the above relationship to the control volumes of
velocity components presented in Fig. 2, the x derivative of
the horizontal velocity and the z derivative of the vertical
velocity for the grid (I, K) may be written as:

∂u
∂x

� �
I ;K

≈
1

AI ;K
uI−1=2;K ΔzI−1=2 þ u I ;K−1=2ΔzI þ uIþ1=2;K ΔzIþ1=2 þ u I ;Kþ1=2ΔzI
h i

∂w
∂z

� �
I ;K

≈
1

AI ;K
wI ;K−1=2 þ wI ;Kþ1=2


 �
Δx

ð19Þ

where u is the average horizontal velocity obtained by using
four neighboring points.

3.2 Solution procedure

The model has utilized the projection method or the method
of fractional step proposed by Chorin (1968) and Temam
(1969). The solution may generally be accomplished in two
steps. The pressure gradient terms are omitted from the
momentum equations in the first step, and the unsteady
equations are advanced in time to obtain a provisional

velocity field. In the second step, the provisional velocity is
corrected by accounting for the pressure gradient and the
continuity equation.

3.2.1 First step

The first fractional step, which includes the solution of advec-
tive and diffusive terms, consists of finding—providing that
Vn is known—an intermediate or provisional velocity (V * ).
The step is further split into two sub-fractional steps, enabling
separate computations of the advective and diffusive terms.
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This approach allows the use of the most suitable approxima-
tions for each term. Advection and diffusion are computed in a
locally one-dimensional fashion. Therefore, the momentum
equation in the absence of pressure gradient term is split into
two equations which are computed sequentially as follows:

Vn→A nþ1−Vn

Δt
þ div V⊗Vð Þn−wn

g

∂V
∂z

� �n

¼ 0 ð20Þ

V *−Vn→A nþ1

Δt
¼ div νnT :grad 1−θDð ÞVn→A nþ1 þ θDV

*
� �h i

ð21Þ
A stands for advection, and its appearance denotes that the
value corresponds to the time level when the advection
process is completed, in the time interval n→n+1. The ad-
vective contribution of the transport term in Eq. (20) is
further split into three sub-subfractional steps. For large

Reynolds numbers, the flow is effectively advection-
dominated (Weinan and Jian-Guo 1995); hence, to achieve
more realistic predictions of the flow characteristics, the
derivative approximation is obtained by assuming a fourth-
degree polynomial as the shape function of the quantity to be
advected, providing a fifth-order accurate scheme (Hejazi
2005).

Diffusion is computed by the Crank–Nicolson scheme
with a weighing factor (θD) set to 0.5 (Eq. 21). The diffusion
contribution also has been split into two sub-subfractional
steps.

3.2.2 Second step

In the second step, by taking the divergence of Eq. (22), and
subject to the continuity constraint (Eq. 23), the Poisson
equation is obtained (Eq. 24):

Vnþ1−V *

Δt
þ ∇P*nþ1 ¼ 0 ð22Þ

divV nþ1 ¼ 0 ð23Þ

∇2P*nþ1 ¼ divV *

Δt
ð24Þ

This step makes use of the Hodge decomposition theo-
rem, which states that any vector function can be
decomposed into a divergence-free part, plus the gradient
of a scalar potential (Brown 2001). The second step proceeds
by solving the Poisson equation. In the second step, the
pressure equation is obtained for each control volume of
pressure in the domain except the boundary layers by the
use of Eq. (24) for both water and mud layers.

3.2.3 Poisson equation solver

The pressure equation at free surface is obtained by using free
surface equation (Eq. 10). The equation discretizes as follows:

ηnþ1
I −ηnI
Δt

þ 1

Δx

X
K¼1

Kmax

θΔzIþ1=2u
nþ1
Iþ1=2;K−θΔzI−1=2u

nþ1
I−1=2;K þ 1−θð ÞΔzIþ1=2 u

n
Iþ1=2;K− 1−θð ÞΔzI−1=2u

n
I−1=2;K

h i
¼ 0 ð25Þ

Applying fully non-hydrostatic pressure at the top layer,
the calculated wave amplitude and phase are significantly
improved and are well compared with the analytical solutions
(Yuan and Wu 2004). For accurate prediction of free surface
and to obtain the pressure equation, the top layer pressure

gradient and vertical accelerations are treated implicitly, sim-
ilar to the solution of the pressure equation in domain, by
implementing free surface dynamic and kinematic boundary
conditions (Ahmadi et al. 2007). Vertical momentum equation
for column I from the center of the top layer to the free surface

Fig. 2 Presentation of staggered grids, positions of the scalar and vector
quantities, and the corresponding control volumes
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is then approximated by Eq. (26):

wnþ1
I ;T −w*

I ;T

Δt
þ φ

P*nþ1
I ;S −P*nþ1

I ;Kmax

ΔzI=2

 !
þ 1−φð Þ P*n

I ;S−P
*n
I ;Kmax

ΔzI=2

 !
¼ 0

ð26Þ
where PI, S

∗n+1=gηI
n+1 and PI,S

∗n=gηI
n represent pressure at

water surface at time step n+1 and n, respectively. φ is a
weighing factor, which has been set to 0.5. wI,T is the vertical
velocity at the top layer located at a distance of 0.25ΔzI from
the surface, which has been calculated by Eq. (27):

wI ;T ¼ 0:25wI ;Kmax−1=2 þ 0:75wI ;Kmaxþ1=2 ð27Þ
Substituting ηI

n+1 from Eq. (25),wnþ1
I ;Kmax−1=2 from the momen-

tum equation in z-direction, and wnþ1
I ;Kmaxþ1=2 from the column

integration equation of continuity (Eqs. 9 and 10) into
Eq. (26), the pressure equation for the top layer is obtained.

The pressure equations can then be summarized for the
whole domain as follows:

¼
AI

�
P
*nþ1
I−1

¼þ BI
�
P
*nþ1
I

¼þCI
�
P
*nþ1
Iþ1

�¼DI
ð28Þ

This comprises a block tri-diagonal matrix in the form of
Eq. (29), which is an (Imax)×(Imax) matrix, where Imax is the
number of columns. Each block of the block tri-diagonal
matrix takes the form of a (Kmax)×(Kmax) matrix, where
Kmax is the number of rows. Hence, the pressure coefficient
in each cell is correlated to the two upper layers and two
lower layers of the cell together with the layer to which the
cell belongs except at the last row where all pressures of the
corresponding column are contained.

¼
B1

¼
C1 ⋯ 0¼

A2
¼
B2

¼
C2

⋱ ⋱ ⋱ ⋮¼
AI

¼
BI

¼
CI

⋮ ⋱ ⋱ ⋱¼
AImax−1

¼
BImax−1

¼
CImax−1

0 ⋯
¼
AImax

¼
BImax

2
6666666664

3
7777777775

P*
1

P*
2

⋮
P*
I

⋮
P*
Imax−1
P*
Imax

2
666666664

3
777777775
¼

D1

D2

⋮
DI

⋮
DImax−1
DImax

2
666666664

3
777777775

ð29Þ

The block tri-diagonal matrix was solved by block for-
ward elimination and back-substitution (Twizell 1984 and
Golub and Van Loan 1989). The matrices are diagonally
dominated; hence, no pivoting is required (Kincaid and
Cheney 1991).

Having calculated the pressure values, the velocities in the
domain are then computed as follows:

Vnþ1−V *

Δt
þ ∇P*nþ1 ¼ 0 ð30Þ

The velocities on the free surface are then calculated by
solving the dynamic free surface boundary condition
and the continuity equation simultaneously. Water ele-
vation is computed through the solution of free surface
equation obtained from the application of normal and
tangential dynamic boundary conditions and the integra-
tion of the continuity equation over total depth with the
application of kinematic conditions at rigid bed and free
surface. Normal and tangential boundary conditions
have been applied at the water and fluid mud interface
to keep the consistency of solution in the two-layer
system. The interface elevation is obtained by the ap-
plication of the integration of continuity equation over

mud depth and kinematic boundary conditions at bed and
interface. Gridding is then updated in mud and water layers
independently. In the mud layer, grid geometry is computed
and updated according to the interface and bed levels, and in
the water layer, the grid is updated according to the interface
and free surface levels.

4 Model validations

To validate the new improved model, three hydrodynamic
tests of free surface flow problems with significant non-
hydrostatic pressure distribution have been chosen. Predicted
values for small-amplitude progressive wave train in deep
water and solitary wave propagation in a constant water depth
have been compared with the corresponding analytical solu-
tions for water elevation, pressure field, and velocity distribu-
tion. The simulated values of free surface elevation for non-
linear short wave propagation in a constant water depth have
been compared against the measured values reported in the
literature. A two-layer system in which a layer of clear water
overlies a thin layer of viscous mud was considered to simu-
late wave–mud interaction. The predicted values of wave
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height have been compared versus measured values. The
wave damping coefficients have also been compared with
the theoretical- and experimental-based values for alternative
wave heights and frequencies. The ratio of the interfacial to
surface wave amplitudes has been computed and compared
with theoretical- and experimental-based data. The variation
of surface wave number values against mud layer thickness
has also been modeled and compared with analytical solution
results.

4.1 Hydrodynamic tests

4.1.1 Small-amplitude progressive wave train in deep water

A wave train produced by a flap-type wavemaker with the
assumption of an inviscid flow was simulated. The wave
period was taken to be equal to T = 5 s and the wave height
to H = 0.5 m. The water depth was set to d = 15 m, giving a
wave number equal to k ≈ 0.16344. According to Eq. (17),
the sinusoidal velocity of the wave maker at the water sur-
face was set to 0.2604 m/s. The velocity for different layers is
a linear function being zero at the bed and equal to the
maximum velocity at the still water surface. This constituted
the left-hand side boundary condition of the domain, with the
Neumann boundary condition being set to zero for w in the x-
direction. For the right-hand side, a free exit for water was
maintained by setting a zero dynamic pressure condition
at the far end of the domain. The Dirichlet boundary
condition was set to zero for w-velocities at the bed
(i.e., a flat bed), and a Neumann boundary condition
equal to zero was prescribed for u in the z-direction.
The domain was considered to be 1,500 m in length,
which was discretized by grids equal to Δx = 1 m in
the x-direction. The depth of the domain was divided
into 15 layers. Time step was set at Δt = 0.05 s. Using
an analytical solution, the celerity of the wave was
calculated to be 7.692 m/s.

Comparisons of the numerical simulations and the analyt-
ical solutions were undertaken after 28 periods, corresponding
to t = 140 s. Equation (31) demonstrates the relevant surface

water elevation, horizontal and vertical velocity components,
and dynamic pressure under the second-order Stokes wave
train (Dean and Dalrymple 1991):

Θ ¼ kx−ωt

η ¼ H

2
cosΘþ πH2

8L

coshkd

sinh3kd
2þ cosh2kd½ �cos2Θ
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ð31Þ
where L is the wave length. Simulated free surface water
elevations have been plotted and compared against an
analytical solution in Fig. 3. Despite small discrepan-
cies, the wave does not dissipate or decay over time,
and the difference does not grow. The corresponding
dynamic pressure and velocity field are shown in Fig. 4,
confirming the capability of the numerical model to predict
the progressive waves.

4.1.2 Solitary wave propagation in a constant water depth

Propagation of solitary wave in a constant water depth is
performed to evaluate the capability of the model in simu-
lating non-linear terms. According to the potential flow
theory, a small-amplitude solitary wave propagates at a con-
stant speed without changes in form, amplitude, and veloc-
ities in a constant depth (Mei 1983). The samewave condition
described by Yuan and Wu (2004) is prescribed. A solitary
wave with an amplitude of 1 m propagates in a constant water
depth of 10 m. At the inlet, the time series of horizontal
velocities based on the analytical solution of Sorensen (1997)
was applied, where the initial position of a wave crest was
specified at x = −150 m. Outlet and bed boundary conditions
were similar to those which have been used for the progressive
wave test. The domain was considered to be 2,000 m in length,
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Fig. 3 Comparisons of free
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analytical solution and numerical
simulation results under Stokes
wave train at t =140 s
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which was discretized by grids equal to Δx = 2 m in the x-
direction. The depth of the domain was divided into ten layers.
Time step was set to Δt = 0.1 s and the wave celerity and
Courant number were calculated to be c = 10.388 m/s and Cr =
0.519, respectively.

Comparisons of the numerical prediction and analyt-
ical solution for free surface elevation at t = 45, 90,
135, and 180 s are shown in Fig. 5. The dynamic
pressure and velocity field at t = 180 s are shown in
Fig. 6. The horizontal and vertical velocities at the free
surface are also shown and compared with analytical results
in Fig. 7. Overall, numerical predictions are almost identical to
the analytical solutions, suggesting the capability of the model
in simulating non-linear terms, i.e., advection, in Navier–
Stokes equations.

4.1.3 Non-linear short wave propagation in a constant water
depth

Propagation of a non-linear sinusoidal short wave in inter-
mediate water depth has been simulated. The water elevation
and non-linear behavior predicted by the model have been
compared with measurements reported by Chapalain et al.
(1992). The experiments were conducted in a 35.54-m-long,
0.4-m-deep wave flume, and the initial water elevation was
set to zero. The incident wave height of H = 0.084 m and the
wave period of T = 2.5 s were adapted, and the computational
domain of 70 m in length has been considered. The numer-
ical domain was discretized by grids equal to Δx = 0.1 m in
the x-direction. The depth of the domain was divided into ten
layers and the time step was set toΔt = 0.01 s. Comparisons
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of the predicted free surface elevations with laboratory mea-
surements are shown in Fig. 8 at five points in the longitu-
dinal direction of the flume and for 30 seconds. The

numerical results show a good agreement and reasonable
accuracy, confirming the model's ability in the prediction of
non-linear behavior of short waves.
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4.2 Wave–mud interaction tests

A two-layer system in which a layer of clear water overlies a
thin layer of viscous mud was considered to predict wave–
mud interaction. The simulated results have been compared
with the laboratory measurements reported by DeWit (1995)
and Sakakiyama and Bijker (1989). The flume used by De
Wit (1995) was 40 m in length, with a width and depth of
0.8 m. The flume was fitted with a false floor to accommo-
date the mud layer with a length of 8 m. The initial mud and
water depth were 0.115 and 0.325 m, respectively. The mud
viscosity was measured to be 2.7×10−3 m2/s and for water it
was 1.3×10−6 m2/s. Numerical parameters were set, Δx =
0.03 m and Δt = 0.005 s, and the simulation time was 55 s.
Water depth was divided into 15 layers, and mud thickness
was divided into six layers.

The laboratory experiments of Sakakiyama and Bijker
(1989) were performed in a wave flume of 24.5 m in length,

0.50 m in width, and 0.57 m in depth at the Laboratory of
Fluid Mechanics, Delft University of Technology. The mix-
ture of commercial kaolinite and water was applied as mud
layer of 12 m in length. The initial thickness of the mud layer
was 0.09 m, and water depth was fixed at 0.30 m. Surface
wave heights were measured every half meter along the wave
flume by using two capacitance-type wave gauges. Although
mud behaves as a non-Newtonian fluid, an experimental-
based relationship between the apparent kinematic viscosity
and the mud density has been obtained and reported by
Sakakiyama and Bijker (1989) for simplicity and has been
used for the values of viscosity in the simulations. The
numerical geometry was taken to be the same as the labora-
tory setup. The numerical domain was discretized by grids of
Δx = 0.1 m in the flow direction. Water depth was divided
into ten layers, and mud thickness was divided into three
layers, resulting in a total number of 13 layers in the z-
direction. Time step was set to 0.0025 s, and the simulation
time was 70 s.

4.2.1 Surface wave propagation

De Wit's results for the experiment, in which China clay was
used, have been selected for the comparison of surface wave
propagation over the mud layer, and the values of wave
height variations over mud layer have only been considered.
The density of mud was 1,300 kg/m3, and the water density
was 1,000 kg/m3. The incident wave height of H0 = 0.045 m
and the wave period of T = 1.5 s were applied.

Figure 9 shows the measured values of variation of wave
height at six locations along the flume in comparison with
model-predicted values. In spite of the existence of a general
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trend of wave damping along the mud layer, the variation of
the wave height is likely to be due to the ratio of wave height
to water depth.

Characteristics of two set of laboratory experiments
conducted by Sakakiyama and Bijker (1989) have been cho-
sen for the comparison of wave damping coefficients for vari-
ous initial wave heights. The laboratory measurement sets “a”
and “b” have densities of 1,240 and 1,300 kg/m3 for the mud
layer respectively. The value of water density was taken as ρ =
1,000 kg/m3. At the inlet sinusoidal waves of period T = 1 s and
alternative heights of H0 = 0.01, 0.02, and 0.028 m for simu-
lating laboratory set “a” and H0 = 0.01, 0.02, and 0.032 m for

simulating laboratory set “b” were initiated in an undisturbed
two-layer system. Other boundary conditions were similar to
the tests explained earlier. The numerical parameters are those
explained in “Section 4.2”. Calibration was made by adjusting
the value of kinematic viscosity for the laboratory measurement
set “a”.

Figure 10 shows the wave heights along the wave flume
for various initial wave heights for the laboratory sets “a”
and “b”. The comparisons made with the laboratory mea-
surements show good agreements, while the predictions of
waves with smaller amplitudes have less discrepancy with
measured values for the laboratory set “a”, and the opposite

Table 1 Measured and predict-
ed values of wave height for si-
nusoidal wave propagation along
the wave flume in a system of
water and fluid mud. H0, HM

(measured wave height), and HP

(predicted wave height) are in
millimeters

x
(m)

Laboratory data set “a” Laboratory data set “b”

H0=10 H0=20 H0=28 H0=10 H0=20 H0=32

HM HP HM HP HM HP HM HP HM HP HM HP

0 10.0 9.59 19.50 19.40 28.00 27.30 10.5 9.53 20.00 19.25 32.10 31.18

1 8.80 9.16 18.50 18.84 27.60 26.83 9.40 8.69 19.00 17.87 29.63 29.63

2 8.90 8.88 17.00 18.35 27.00 26.27 8.30 8.01 16.70 16.53 28.00 27.51

3 8.00 8.33 16.00 17.23 24.50 24.75 7.50 7.31 15.20 15.06 26.20 25.24

4 8.10 8.12 16.80 16.66 26.00 24.05 6.50 6.69 13.90 13.86 24.30 23.30

5 8.00 7.86 16.50 16.16 24.50 23.00 6.00 6.17 12.90 12.74 21.50 21.50

6 6.90 7.43 13.50 15.29 20.40 21.75 5.10 5.62 12.00 11.55 19.85 19.50

7 7.00 7.30 15.00 15.08 23.70 21.57 4.40 5.23 10.70 10.79 18.11 18.11

8 7.00 6.85 14.00 14.19 20.80 20.37 4.00 4.79 9.70 9.88 16.77 16.55

9 5.80 6.56 11.30 13.60 17.00 19.60 3.60 4.38 8.80 9.08 15.60 15.24

10 6.00 6.45 13.00 13.30 19.60 19.15 3.00 4.10 7.80 8.48 13.60 14.29

11 6.00 6.00 12.70 12.41 19.40 17.70 2.90 3.67 6.90 7.57 12.80 12.81
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is true for the laboratory set “b”. The measured and predicted
wave heights along the mud bed have also been summarized
in Table 1 for the laboratory sets “a” and “b”.

4.2.2 Wave damping coefficient

The wave damping coefficient ki is defined by Iwasaki and
Sato (1972) as Eq. (32):

H ¼ H0 e
−ki x ð32Þ

whereH0 is the reference surface wave height at the origin,H
is either the predicted or measured wave height, and x is the
distance from the origin. The damping coefficients for mea-
sured and predicted values have been calculated and demon-
strated for laboratory sets “a” and “b” and for various initial
wave heights in Fig. 11. The fitted trend lines of predicted
values of wave height in a semi-logarithmic diagram and the
damping coefficients show better agreements with the cor-
responding measured values for larger amplitudes for both
laboratory data sets “a” and “b”.

The damping coefficients of measured and predicted
values have also been calculated and plotted for both labo-
ratory data sets for various wave frequencies in Fig. 12. The
damping coefficients based on the theoretical values of
Dalrymple and Liu (1978) and the theoretical solution of
An (1993) have also been demonstrated in the graph.
Dalrymple and Liu (1978) developed a theory for linear
water wave propagation in a two-layer viscous fluid system,
which gives the orbital motions in both the upper and lower
layers. The solutions to the linearized Navier–Stokes

equations are assumed to be separable and to be periodic in
time and x-direction. An (1993) extended this theory by
adding the visco-elastic–plastic model to present the rheo-
logical properties of mud. The numerical parameters are the
same, with the exception ofΔx, the value of which has been
chosen such that the ratio of grid number per wave length varies
between 14 and 18. The damping coefficients based on numer-
ical simulation have better agreements with experimental-based
calculations than both of the theoretical-based values for lower
frequencies. However, for higher frequencies the predictions
show a closer agreement with the theoretical values of
Dalrymple and Liu (1978). The experimental-, theoretical-,
and predicted-based values of the damping coefficients
have also been tabulated in Table 2 for both laboratory
data sets.

4.2.3 Interfacial wave amplitude

Figure 13 shows the computed ratio of the interfacial to surface
wave amplitude for various wave frequencies for both labora-
tory sets “a” and “b” calculated by Sakakiyama and Bijker
(1989). The corresponding experimental results and the analyt-
ical solution of Dalrymple and Liu (1978) have also been
graphed for comparison. For both laboratory data sets, the
simulated values are between the experimental-based values
and the theoretical solution. The experimental-, theoretical-
and numerical-based values of the ratio of the interfacial to
surface wave amplitude have also been presented in Table 3
for both laboratory sets.

4.2.4 Wave number

The variation of dimensionless surface wave number values
versus dimensionless mud layer thickness is plotted in Fig. 14.
The agreement with the results of the theoretical solution of
Dalrymple and Liu (1978) is quite good.

5 Discussion

Fluid mud, in which the particles are largely fluid-supported,
may result from rapid deposition or liquefaction of a mud bed
due to wave action. Compliant or fluid mud can oscillate as
waves pass over and cause wave heights to attenuate signifi-
cantly. In addition to upward entrainment or downward move-
ment due to dewatering, it is easily displaced under the effect of
external forces, e.g., pressure gradients at the lutocline or grav-
ity on inclined beds. Water waves propagating over a fluid mud
bed are attenuated mainly due to energy dissipation in the fluid
mud layer. The attenuation of wave height on a horizontal bed
is usually approximated by an exponential function, which
follows from the standard harmonic solution that satisfies the
equation of motion for a progressive sinusoidal wave.
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In the present numerical formulation, two distinct process-
es of bed fluidization and surface erosion are not considered. It
has been assumed that the mud is fluidized at the beginning of
the simulation and does not change throughout, and the vis-
cosity has been taken to be constant. However, the fluid mud
depth and thickness may vary throughout the simulation, and
the solution is updated accordingly.

Suitable rheological models of mud should be adopted in
order to investigate wave–mud interaction. Mud, in general,
may range from being a highly rigid and weakly viscous

material to one that can be approximated as a purely viscous
fluid, depending on the properties of the constituent sediment
and the ambient fluid. In the present formulation, mud bed is
treated as a Newtonian fluid which has greater viscosity and
higher density than water. This simple treatment enables using
Navier–Stokes equations for the two-layer fluid system of mud
and water. A higher number of the rheological parameters
should be determined in order to apply more sophisticated
rheological models, e.g., viscoelastic, visco-plastic or visco-
elastic–plastic. The problems associated with measuring these
parameters affect the accuracy of simulating wave–mud inter-
action in a way that the use of non-Newtonian rheological
models in practical applications may not necessarily lead to
an increase of the accuracy of predictions.

For hydrodynamic tests, three free surface flow problems
have been simulated. Simulation of small-amplitude progres-
sive wave in deep water shows excellent agreements with the
analytical solution of second-order Stokes wave train, which
confirms the capability of the numerical model for simulating
progressive waves. Simulation of propagation of a solitary
wave in a constant water depth as the second hydrodynamic
test showed very close predictions to the analytical solutions.
The small asymmetry of the pressure distribution under the
solitary wave is due to the small asymmetry in the prediction
of surface water elevation of the wave. The ability of the model
in prediction of non-linear behavior of short waves was also
confirmed by reasonable accuracy and good agreements
obtained from the simulation of non-linear short wave propa-
gation in a constant water depth as the third hydrodynamic test.

Wave–mud interaction has been simulated for a two-layer
system consisting of clean water and underlying fluid mud.
In comparison with the experimental data of De Wit (1995) in
Fig. 9, the ratio of wave height to water depth (~ 0.14) may

Table 2 The experimental-, theoretical- and predicted-based damping coefficient values for various wave frequencies

T (s) Laboratory data set “a” T (s) Laboratory data set “b”

ki (m
−1) ki (m

−1)

Experimental Theoretical Numerical Experimental Theoretical Numerical

DL An DL An

2.01 0.058 0.056 0.058 0.052 2.02 0.121 0.077 0.075 0.101

1.81 0.051 0.058 0.060 0.052 1.8 0.125 0.084 0.082 0.106

1.63 0.057 0.059 0.072 0.052 1.62 0.120 0.089 0.087 0.104

1.43 0.051 0.059 0.069 0.052 1.45 0.119 0.092 0.090 0.103

1.21 0.047 0.057 0.070 0.048 1.21 0.102 0.094 0.102 0.097

1.1 0.043 0.054 0.064 0.044 1.1 0.089 0.093 0.106 0.092

1.03 0.039 0.051 0.073 0.040 1.02 0.084 0.089 0.109 0.084

0.89 0.036 0.041 0.061 0.027 0.89 0.074 0.074 0.096 0.063

0.79 0.031 0.029 0.050 0.007 0.8 0.068 0.058 0.073 0.041

DL Dalrymple and Liu (1978), An An (1993)
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have caused the variation of wave height-simulated values
along the mud layer. The sudden increase in measured wave
heights near the down wave end of the mud patch was likely to
be caused by wave reflection from the back of the mud pit
(Kaihatu et al. 2007), but the model does not simulate this effect.

The comparisons of wave height simulation against the
laboratory measurements of Sakakiyama and Bijker (1989)
show that for both cases “a” and “b”, the predictions of the
numerical model grow, moving from the upstream side of the
mud section towards the downstream. For instance, for case
“a” and for an initial wave height of 0.028 m, the model
underestimates the wave height for the upstream part of mud,
while this underestimation lessens for the downstream part,
and for case “b” and for an initial wave height of 0.01 m, the
model underestimates the wave height for the upstream part
of mud, while for the downstream part the predictions are
overestimated. Larger discrepancies and steeper slopes may
also be observed for the graphs of predicted values for
laboratory data set “b”, with a larger viscosity. Figure 15

demonstrates this interpretation for both cases, which shows
milder slopes for the graphs of simulated results compared
with measured values. This may be explained by the fact that
in the laboratory experiments, energy loss is due to both wave
flume wall friction and bottommud dissipation (Tsuruya et al.
1987); however, in the numerical simulations, no dissipation
due to wall friction has been considered. The difference of the
slopes of fitted graphs of model predictions and measured
values grows for smaller wave heights. The comparison of
predicted- and measured-based ki values confirm the same
trend, which is shown in Fig. 16 for both cases “a” and “b”,
i.e., the agreement of numerical model predictions and mea-
sured values improves with the increase of the initial wave
heights. Table 4 tabulates the percentage of relative error of
predicted-based values compared tomeasured-based values of
wave damping coefficients for various initial wave heights to
quantify the discussion presented herein.

Regarding the relationship between the wave damping
coefficient and wave frequency and according to Fig. 12,
the closer graphs of the predicted- and measured-based
values for low frequencies compared with the theoretical
results may be influenced by the non-linear behavior of the
wave propagation on the mud layer, whereas in the theory
developed by Dalrymple and Liu (1978) and An (1993),
linearized Navier–Stokes equations have been employed.
This interpretation loses its documentary for high frequen-
cies as it is guessed that wave propagation over the mud layer
is more dominated by the non-Newtonian behavior of mud
which is not included in the numerical model, and the non-
linear part of Navior-stokes equations, i.e., advection terms, is
of less impact. The closer agreements of the theoretical results
of An (1993) and the experimental values for high frequencies
compared with low frequencies confirm this conclusion. Peak
values are observed for both “a” and “b” laboratory-based data
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Fig. 14 Comparisons of dimensionless wave number versus dimen-
sionless mud layer thickness between predicted and theoretical values
of Dalrymple and Liu (1978)

Table 3 The experimental-, theoretical-, and numerical-based values of the ratio of the interfacial to surface wave amplitude for various wave
frequencies

T (s) Laboratory data set “a” T (s) Laboratory data set “b”

Wave amplitude ratio Wave amplitude ratio

Experimental Theoretical Numerical Experimental Theoretical Numerical

2.01 0.172 0.161 0.177 2.02 0.173 0.125 0.154

1.81 0.160 0.160 0.176 1.8 0.194 0.127 0.155

1.62 0.187 0.159 0.172 1.62 0.201 0.128 0.155

1.4 0.173 0.152 0.167 1.43 0.200 0.127 0.150

1.22 0.162 0.144 0.158 1.22 0.182 0.122 0.143

1.1 0.154 0.135 0.149 1.1 0.162 0.116 0.135

1.03 0.151 0.127 0.140 1.01 0.161 0.109 0.125

0.9 0.128 0.108 0.117 0.9 0.133 0.096 0.109

0.79 0.097 0.084 0.091 0.81 0.115 0.079 0.089
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sets and relevant simulated-based values, which show small
discrepancies for relevant frequencies.

The interfacial wave amplitude is influenced from the sur-
face by the water wave and from the bottom by the viscosity
and density of the mud. Figure 13 shows that the ratios of the
interfacial to surface wave amplitude are larger for mud with a
lower density according to the theoretical and numerical
values. However, the experimental-based values show the re-
verse tendency, but this is an exception for mud with a density
of 1,300 kg/m3, and for the remaining tests of Sakakiyama and
Bijker (1989), the same tendency is valid. For lower frequen-
cies, with the rising effect of the surface waves on the mud
layer the ratio increases; for further decreasing frequencies,
however, the boundary layer thickness of the mud layer over
the rigid bottom increases, and therefore with the increase of
viscosity effect, the ratio decreases. This discussion may be

observed from the numerical values of the ratio of the interfa-
cial to surface wave amplitude which have a peak value for
laboratory set “b”. For laboratory set “a”, however, no such
peak is observed. In Fig. 14, with the increase of mud layer
thickness, the wave number decreases, which is expected from
shoaling effects.

Although the linearized Navier–Stokes equations may be
theoretically solved using the approach of Dalrymple and
Liu (1978) for the wave–mud interaction on horizontal bed,
the proposed numerical model, using the non-linear Navier–
Stokes equations and boundary conditions, is capable of
computing the wave height transformation on other condi-
tions, e.g., mud profiles and mud trenches, where analytical
solutions do not exist. The new model may also be adjusted
to simulate mild muddy slopes, and it is possible to extend
the rheological model to non-Newtonian fluids.
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Fig. 16 Comparisons of wave damping coefficients based on experimental data and model predictions versus initial wave height. a Laboratory set
“a”. b Laboratory set “b”
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6 Conclusions

A 2DV numerical model based on an ALE description has
been developed to simulate wave propagation over a fixed
bed of cohesive mud layer by finite volume method. Non-
linear Navier–Stokes equations are solved by the use of
projection method. The two-equation k-ε turbulence model
with buoyancy terms has been included in the numerical
model. Bed fluidization and surface erosion are not consid-
ered, and mud bed is treated as a Newtonian fluid:

1. The application of small-amplitude Stokes wave train
in deep water showed good agreements for water ele-
vation, pressure field, and velocity distribution com-
pared with the analytical solution.

2. The simulation of solitary wave propagation in con-
stant water depth and comparing the predictions with
analytical solutions of water elevation, pressure field,
and velocity distribution showed the capability of the
model in simulating non-linear terms, i.e., advection, in
Navier–Stokes equations.

3. Simulation of non-linear short wave propagation in
constant water depth and comparison of the predictions
against measured values of free surface elevation con-
firmed the ability of the model in prediction of non-
linear short waves.

4. The model was applied to a two-layer system of water
and fluid mud, and satisfactory results were obtained
for attenuation coefficient of wave and its relationship
with wave height and frequency in comparison with
experimental data.

5. The model predictions show a milder trend for ki for
smaller wave heights/larger viscosities compared with
measured-based values.

6. Both laboratory data and numerical simulations reveal
a decrease of wave attenuation rate with the increase of
wave height.

7. Closer agreements for predicted-based wave damping
coefficients with theoretical results compared with
measured-based values, for higher frequencies, and
the larger discrepancies for lower frequencies may be

due to the non-Newtonian behavior of the mud layer for
large frequencies.

8. The simulated values of the ratio of the interfacial to
surface wave amplitude lie between the experimental-
based values and the theoretical solution.

9. The ratios of the interfacial to surface wave amplitudes
are larger for mud of lower densities according to the
theoretical-, numerical-, and experimental-based values,
with the exception of experimental values for mudwith a
density of 1,300 kg/m3.

10. The increase of mud layer thickness results in the
decrease of surface wave number, which is in agree-
ment with the theoretical solution.

In summary, the capability of the numerical model in
simulation of non-linear short waves and a system of fluid
mud were confirmed. Wave height, wave damping coeffi-
cient, and water–mud interface elevation were simulated and
compared with the experimental data and theoretical solu-
tions for various wave heights and frequencies. The results
revealed a decrease of wave attenuation rate with an increase
of wave height and in accordance with the measured values.
The non-Newtonian behavior of mud layer, not being con-
sidered in the present formulation, may have affected the
simulated values for large frequencies. In general, the ratios
of the interfacial to surface wave amplitudes are larger for
mud with a lower density, and the increase of mud layer
thickness results in the decrease of surface wave number.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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