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Abstract This paper addresses oil spill detection from
remotely sensed optical images. In particular, it focuses
on the automatic classification of regions of interest
(ROIs) in two classes, namely oil spills or look-alikes.
Candidate regions and the corresponding boundaries
have been manually identified from full resolution Moderate
Resolution Imaging Spectroradiometer images, related to the
Mediterranean Sea over the years 2008 and 2009. Then, a set
of features has been extracted from each ROI, allowing to
formulate the oil spill detection problem as a two-class clas-
sification task on the provided regions (i.e. using a supervised
learning strategy). Since ROI classification is challenging,
some desired characteristics for the classification algorithm
are first identified, such as accuracy, robustness, etc. Then, a
solution (called SVME) is provided: it is based on an ensem-
ble of incremental/decremental cost-oriented Support Vector
Machines, aggregated with the Receiving Operating
Characteristic (ROC) convex hull method in the ROC
space. Such a solution addresses all the desired charac-
teristics. Finally, the results obtained on the collected
dataset are shown. The importance of this study is the

devising of a powerful classification technique that may
have an impact on optical oil spill detection from space,
especially if fused with satellite synthetic aperture radar data.
Moreover, it is shown how the proposed system can be used as
a decision support tool, to help a junior operator in making
more reliable detections.
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remotely sensed images . Support VectorMachines (SVMs) .
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1 Introduction

Today, 90% of oil and refined products are transported by
sea. Out of the 1.5 to 1.8 billion tonnes of crude oil trans-
ported worldwide yearly, Europe is the main recipient, with
nearly 500 million tonnes of crude oil and 250 to 300 million
tonnes of refined products per year (Oceana 2003). More-
over, many oil tankers transport their cargo to other desti-
nations through European waters, meaning that the total
amount of crude oil passing through European waters could
be over 1 billion tonnes. Accidents resulting in massive and
devastating oil spills, announced by the mass media, affect
public opinion and mobilise policymakers. However, such
dramatic accidents occur only occasionally and represent a
small fraction of the pollution events at sea. Oil released into
European seas as a result of operational discharges greatly
exceeds the amount released during accidental spills. As an
example, yearly, in the Mediterranean, these operations can
add up to nearly 20 times the amount that was spilled by the
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‘Prestige’ off the northern Spanish coasts in 2002 (Kluser et
al. 2006).

Due to the lack of adequate waste reception facilities in
many ports, added to poor surveillance, every year, at a
lower cost, oil tanker crews release million of tonnes of oil
from oily ballast waters and tank-washing residues in our
seas. Another part is due to machinery space bilge and fuel
oil sludge, the latter constituting more than 50% of the total
operational discharges.

More precisely, illegal dumping and routine operations of
vessels account for between 666,000 and 2.5 million tonnes of
hydrocarbons of marine pollution per year. Furthermore, it is
estimated that at least 3,000 major illegal hydrocarbon-
dumping incidents take place in European waters yearly. The
Mediterranean is the sea that is most affected by this type of
dumping, amounting to more than 400,000 tonnes of released
oil per year (Oceana 2003). Even if the estimates of the Joint
Group of Experts on the Scientific Aspects of Marine Envi-
ronmental Protection (GESAMP) are lower (the GESAMP is
an inter-agency advisory body of the United Nations), their
latest reports (GESAMP 2007, 2009) confirm the severity of
oil pollution at sea due to ships.

It must be observed that not all oil discharges at sea are
illegal: the International Convention for the Prevention of
Pollution from Ships (MARPOL 73/78) only limits them in
‘Special Areas’, but the entire Mediterranean Sea is one of
them. In special areas like the Mediterranean Sea, the MAR-
POL 73/78 convention allows for only a small percentage of
oil (15 parts per million) to be released in the sea. During the
years, however, such constraint has been frequently over-
looked. This solicited the adoption of 2005/35/EC Directive
(amended by the 2009/123/EC Directive) by the European
Parliament on 12 July 2005, to ensure that persons respon-
sible for illicit discharges are subject to adequate penalties.

The European Maritime Safety Agency (EMSA) has
been tasked to support the Member States and the European
Commission for the implementation of the directive. For
this purpose, since 2007, it has started the CleanSeaNet
service, which is intended to provide a near real-time
satellite-based oil spill and vessel monitoring service. It
entered into operation on 16 April 2007. Despite this and
other services currently available, which are mainly based
on satellite Synthetic Aperture Radar (SAR) data, further
research is required for looking at complementary or alterna-
tive solutions, in order to strengthen the available ones and/or
reduce their costs. In particular, the exploitation of satellite
images for oil spill detection, which is the topic of this work,
allows monitoring large areas in an economical and easy way,
thus offering many advantages in cost and time-saving terms.
Using another source for oil spill detection could also help in
reducing the number of false alarms (i.e. oil spill alarms that
reveal to be natural phenomena after in situ verification)
generated by current SAR-based services.

1.1 Organisation of the paper

The paper is organised as follows. Section 2 reviews the
state-of-the-art of oil spill detection from SAR and optical
satellite data. Section 3 shows the proposed approach to oil
spill detection from remotely sensed optical images, the
collected dataset and the extracted features. Section 4
describes the classification algorithm, where the classifier
is trained over the collected dataset. In particular, a power-
ful framework for two-class classification [the Receiving
Operating Characteristic (ROC) space and the ROC convex
hull] is first shown, then some desired characteristics for the
classification algorithm are defined, and finally a powerful
classifier, based on an ensemble of Support Vector Machines
(SVMs), is built in three steps. Section 5 provides the results
of two experiments which demonstrate the effectiveness of the
proposed approach. Section 6 summarises the whole method-
ology and discusses the possible alternative uses of the pro-
posed system, while Section 7 is devoted to conclusions and
future work.

2 Satellite sensors for oil spill detection

Many different types of sensor are able to detect oil
spills at sea, either mounted on satellites or aircrafts, like
the synthetic aperture radar, the microwave radiometer,
the ultraviolet radiometer, visible and near infrared radio-
meters, etc. Each sensor exploits different properties of
oil, water and their interaction. In Brekke and Solberg
(2005), a review of the literature in oil spill detection
based on different sensors is provided, along with the
associated strengths and weaknesses.

However, few of such sensors are suitable for monitoring
large areas, like the entire Mediterranean Sea, in a cost-
effective way. In this paper, only sensors onboard satellites
have been considered, since collecting data from aircrafts
would be far more expensive. Satellite SAR-based studies
and services are very popular in oil spill detection and are
reviewed in the next subsection. Then, the state-of-the-art
using the optical sensors (especially visible and near infrared)
is provided as well.

2.1 Oil spill detection using SAR: state-of-the-art

SAR, as any radar-based instrument, is able to detect oil
spills due to the difference between oil and water in wave-
damping capacity. A radar image of the sea surface is
formed by reconstructing the reflection of active radar sig-
nals from small gravity and capillary waves. The presence
of an oil slick, due to oil viscosity, suppresses capillary
ripples, so that the return signal from an oil-covered surface
is less intense. Thus, oil slicks appear as dark objects in
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SAR images. However, calm sea regions appear as dark
objects too and represent a source of error for oil spill
detection. Sea state is another limiting factor for SAR oil
spill detection. Indeed, when the wind speed is below 1.5 m/s,
the wind stress is insufficient to generate ripples, while above
12 m/s, the oil film is disrupted and washed down by breaking
waves (Alpers and Huhnerfuss 1989). More precisely, the
optimal wind velocity range for oil spill detection has been
estimated to be between 1.5 and 6 m/s (Liu et al. 2000).
However, this range must be handled with care, since it also
depends on the frequency of the SAR sensor used.

Since SAR data have been widely exploited for oil
spill detection, many contributions can be found in the
literature regarding the study of oil slicks in SAR images, and
several efforts have been made in order to develop automatic
detection systems. Images from remote sensing instru-
ments, in particular SAR images, are usually combined
with information from trained and experienced human
observers. Visual observation relies on many of the
same physical mechanisms which are used by various
remote sensing instruments and which give rise to the
perception of colour (wavelength distribution), bright-
ness (signal intensity) differences between oil and water,
variations in surface roughness (wave damping), and
finally, the interpretation of spatial patterns and the
analysis of surrounding elements (e.g. proximity to land,
presence of other similar objects in the scene, etc.).
Thus, a fully automated or semi-automated system for
oil spill detection should actually resemble the expert’s
decisions based on similar criteria, knowledge and rules,
and this has been subject of several studies reported in
literature.

Kubat et al. (1998) proposed a neural network for the
classification of dark regions detected in SAR images, to be
used as a training set of the system. In their paper, the
authors also analyse in detail the issues related to the appli-
cation of machine learning techniques to oil spill detection.
Del Frate et al. (2000) also used a neural network for semi-
automatic detection of oil spills in SAR images, building an
input vector for the network, containing a set of features
which characterise oil spill candidates. Later, Topouzelis et
al. (2004) compared the performance obtained using multi-
layer perceptron and radial basis function neural networks.
In particular, the authors used original reconstructed SAR
images as input for the classification system, instead of
using a vector of features extracted from dark regions in
the images. Solberg et al. (1999) developed a semi-
automated classifier for oil spill detection, based on statisti-
cal modelling combined with a rule-based approach. They
identified 11 different object features (Solberg and Solberg
1996) and used them to build a classification procedure
based on Bayesian inference, where three different catego-
ries of real oil spill probability (low, medium and high) were

recognised. Fiscella et al. (2000) developed a stochastic
classifier based on Mahalanobis statistical tests and classical
compound probabilities.

Fuzzy logic systems, able to better resemble a human
expert’s decision, have also been used by Keramitsoglou et
al. (2006) to develop a fully automated system for oil spill
identification in SAR images. Finally, it must be observed that
the interesting conclusions provided in Brekke and Solberg
(2005), concerning the use of satellite SAR and the related
limitations, are still valid today. As regards to SAR-based
services, a recent review of them can be found in Ferraro et
al. (2010), in addition to the CleanSeaNet service run by
EMSA mentioned above.

2.2 Oil spill detection using optical satellite images

Although SAR-based solutions are really powerful for oil
spill detection from space, mainly due to their all-weather
and all-day detection capabilities, they have well known
limitations. For instance, the difficulty in detecting oil spills
for high wind speeds (>6 m/s), which exposes to the possi-
bility of missing true oil spills, or, when the wind speed is
low (<1.5 m/s), to that of generating too many false alarms,
i.e. alerts indicating supposed oil spills which could reveal
to be look-alikes, after in situ verification. Since the latter is
very expensive, there is a need for keeping the number of
false alarms as small as possible, while trying not to miss
any true oil spill case.

Thus, there is a need for alternative or complementary
solutions. This suggests the possibility of exploiting optical
data, which, up to now, have been little used for oil spill
detection applications. The development of a new approach,
based on optical data, could be used either on its own or as a
support to SAR-based solutions, in order to meet the need of
environmental protection authorities for efficient and cost-
effective monitoring tools. Indeed, with the exclusion of
hyper-spectral data, which are very expensive, optical satel-
lite images are generally cheaper (sometimes freely avail-
able) and provide more frequent (daily) information if
compared to SAR images, allowing for large area monitor-
ing and remote zone control.

The reason why optical satellite images have been less
commonly used in the field of operational oil spill detection
is that good weather and daylight are mandatory conditions
to perform a correct detection, while these conditions are not
required when using SAR data. However, even the use of
SAR data implies many other limiting factors, such as cost,
low revisit time and sea state (in particular, wind speed).

The use of optical data can improve operational monitor-
ing for many reasons. The key point is that oil spill identi-
fication by optical sensors and by SAR sensors relies on
different mechanisms that are respectively controlled by
differences in oil and water optical properties (Appendix 1),
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which give rise to oil–water contrast (Appendix 2), and by
differences in oil and water wave-damping capacity. Thus,
oil spill detection systems based on optical data are not
affected by the same false alarm types (such as very calm
sea areas) as SAR-based systems. Moreover, while micro-
wave, infrared and ultraviolet radiation are strongly
absorbed by water, visible radiation can penetrate water to
a depth of many metres, especially in the blue. Hence,
optical sensors operating in the visible range of the spectrum
can potentially detect oil not only on the surface, but also
dispersed in the water column.

The possibility of detecting oil spills from optical data
has also been demonstrated in Hu et al. (2003), where the
authors use optical images, captured by NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS, see Table 1),
to access the magnitude, area covered and duration of a big oil
spill which occurred in LakeMaracaibo, Venezuela, caused by
several accidents related to the oil industry operating in
the lake’s area. More recently, empirical relationships
based on MODIS higher resolution bands (250 m) have
been used to detect oil spills in the Arabian Sea (Alawadi et
al. 2008). MODIS images have also been used to detect
natural crude oil slicks and consequently estimate the
annual seepage rates in the northwestern Gulf of Mexico (Hu
et al. 2009).

These studies prove that oil spill identification from
optical images, in particular those acquired by MODIS, is
possible, and it can be used for operational monitoring.
Beside this, the interpretation of the remotely sensed
multi-spectral signal produced by an oil slick on the sea
surface appears to be quite problematic because many fac-
tors contribute to oil–water contrast, such as oil type, oil
absorption properties, oil thickness and water constituent
concentrations (see Appendix 2). These factors often give
conflicting contributions, which vary through the visible
and near infrared spectral range. An additional issue is
represented by the difficulty in performing an accurate at-
mospheric correction, in order to reduce path radiance con-
tribution, and by the presence of sunglint. These factors
make spectral analysis a difficult task.

The approach to oil spill detection which has been chosen
in the present work consists in employing full resolution
MODIS optical data and using a powerful and flexible

classification algorithm, avoiding any spectral analysis.
The identification of oil spills is then mainly based on
geometrical features, together with differences in the con-
trast. The use of a supervised classification algorithm allows
overcoming difficulties related to contrast interpretation and
atmospheric correction, which are typical of an analytic
approach.

3 The adopted approach

In this paper, oil spill detection is tackled as a classification
problem. A numerical vector (called feature vector) is
extracted from each Regions of Interest (ROI), and it is
fed to a classification algorithm. The classification itself is
described in the next section, while in the following sub-
sections, the collected dataset and the feature vector are
described.

It is important to observe that the rationale behind this
way of work (collect a meaningful dataset of oil spills and
look-alikes and train a supervised learning algorithm to
distinguish them) is to verify whether or not an automatic
classification software can mimic the behaviour of a skilled
operator. If the performance of an automatic system is
satisfactory enough, then, in the future, both an automatic
oil spill alert generation system could be developed for
optical images and a decision support system for aiding a
junior operator in making more reliable decisions (these
aspects will be further elaborated in Section 6).

3.1 The collected dataset

The supervised learning procedure that will be described in
Section 4 requires a dataset of input and target elements
which serves partly for training the classifier, partly for
validation and partly for testing the classification perfor-
mance. Dataset collection represents a relevant issue in
supervised classification. Training set size must be appro-
priate to the number of unknown parameters in the classifier
structure. In addition, elements in the dataset must compose
a representative set of the data the trained classifier will
process.

For the present study, a considerable dataset of regions of
interest has been built by collecting a number of optical
images taken during the years 2008 and 2009, over the
entire area of the Mediterranean Sea. In particular, full
resolution level L1B data from MODIS sensor have been
used, having a spatial resolution of 250 m. Level L1B data
consist in calibrated radiance or reflectance values, which
are freely available from NASA (http://ladsweb.nascom.
nasa.gov/data/). The MODIS instrument is onboard TERRA
and AQUA satellites. TERRA’s orbit around the Earth is
timed so that it passes from north to south across the equator

Table 1 MODIS specifications

Orbit Altitude 705 km, 10:30 a.m. descending node
(TERRA) or 1:30 p.m. ascending node
(AQUA), sun-synchronous, near-polar, circular

Scan rate 20.3 rpm, cross track

Swath dimensions 2,330 km (cross track) by 10 km
(along track at nadir)

Quantization 12 bits
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in the morning, while AQUA passes south to north over the
equator in the afternoon (see Table 1). Using data from both
MODIS-TERRA and MODIS-AQUA sensors, up to four
images per day are available, each one partially covering the
Mediterranean Sea.

As Table 2 shows, only bands 1 and 2, respectively,
centred in the visible at 0.65 μm and in the near infrared
at 0.85 μm, are available from MODIS at the highest reso-
lution, so that any spectral analysis is precluded. On the
other hand, it is important to have a spatial resolution as
good as possible, since most slicks produced by illegal
discharge from moving ships could not be detected in lower
resolution images (e.g. 1 km) due to their small area.

Only images acquired in clear sky conditions have been
selected when building the dataset. After georeferencing, a
contrast enhancement based on histogram equalisation has
been applied in order to improve the visualisation. Then, the
boundaries of ROIs have been drawn by hand.

Eleven ROIs were real oil spills verified in situ by the
Italian Coast Guard (dataset provided by the Italian Ministry
of Environment). Another 11 ROIs have been labelled as oil
spill after verifying the presence of a similar dark patch on
satellite SAR images (Envisat-ASAR image at 150 m spatial
resolution), acquired within a reasonable time frame. The
remaining 135 ROIs have been labelled as oil spill events
according to photo-interpretation only, on the basis of the
contrast between regions and surrounding areas (which have
been supposed to be clean waters). Similarly, look-alike

labels have been assigned by photo-interpretation and, when
available, by checking a related SAR image. Typical look-
alike events are due to algal blooms or effects due to current
patterns. Figure 1 shows an interesting case of oil spill event
visible both on MODIS and Envisat-ASAR images.

In particular, the photo-interpretation analysis has been
conducted examining the scene where the candidate oil spill
or look-alike had been detected, that is, considering the
context, the location and the possible presence of other
elements in the surrounding area. This allowed distinguish-
ing between linear slicks, which might be caused by a
moving ship releasing oil, like the one shown in Fig. 2a–c,
and effects related to current patterns, usually occurring in
particular spatial patterns, such as those shown in Fig. 2d–f.

In the end, the number of detected oil slicks is approxi-
mately equal to the number of look-alikes, for a total of 316
ROIs. A search for outliers has also been performed accord-
ing to the distribution of the features characterising oil spills
described in the next subsection. After this analysis, 12
ROIs have been removed, obtaining a dataset composed of
304 elements, 157 oil spills and 147 look-alikes (see
Table 3).

The outliers found resulted to be represented by big
nonlinear-shaped slicks and dark regions in a particularly
complex background, which have been manually discarded
from the dataset and not further considered in this applica-
tion. The reason for this choice is motivated by the fact that
the classification system proposed in this work is intended
for the identification of illegal oil discharge by moving ships
or of oil released during tank cleaning in the sea. Thus, since
training elements should resemble data that the classifier
will be asked to process in the finished application, only
these types of slicks have to be well represented in the
dataset. Very big slicks, produced for instance by oil tanker
accidents, which can cause environmental disasters to hap-
pen, have not been handled, since the appropriate author-
ities are usually informed about these events.

3.2 The extracted features

In order to discriminate between oil spills and look-alikes, a
number of physical and geometrical features characterising
the object to be classified have been exploited. Following
the results of SAR oil spill detection (Brekke and Solberg
2005; Solberg et al. 1999; Del Frate et al. 2000), a set of
grey level features, characterising the differences between
the object and the surrounding area, and a set of geometrical
features, describing shape and extension, have been used:

1. Geometrical features

– Area of the object (A) expressed in square kilometer
– Perimeter (P) expressed in kilometer

Table 2 MODIS 1–19 bands and associated spatial resolution

Primary use Band Bandwidth
(nm)

Spatial
resolution (m)

Land/cloud/aerosols boundaries 1 620–670 250
2 841–876

Land/cloud/aerosols properties 3 459–479 500
4 545–565

5 1,230–1,250

6 1,628–1,652

7 2,105–2,155

Ocean colour/phytoplankton/
biogeochemistry

8 405–420 1,000
9 438–448

10 483–493

11 526–536

12 546–556

13 662–672

14 673–683

15 743–753

16 862–877

Atmospheric water vapour 17 890–920

18 931–941

19 915–965
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– Complexity (C): defined as

C ¼ P

2
ffiffiffiffiffiffi
pA

p :

This feature generally assumes small numerical
values for regions with simple geometry and larger
values for regions with complex geometry.

– Spreading (S) was computed performing a principal
component analysis on the vector whose components

are the coordinates of the pixels belonging to the
object:

S ¼ 100l2
l1 þ l2

;

where 1 1 and 1 2 are the two eigenvalues asso-
ciated with the covariance matrix (1 1>1 2). This
feature assumes low values for long and thin
objects and high values for objects closer to a circular
shape.

(a) (b)

Fig. 1 An oil spill viewed both
by optical (a) and SAR (b)
instruments on 14 July 2008
offshore south-west
Peloponnese, Greece (MODIS
and Envisat-ASAR, respective-
ly). The two patches slightly
differ due to the effect of
currents, since they have been
acquired at different times

(a) (b) (c)

(d) (e) (f)

Fig. 2 Examples of oil spills
(a, b and c) and look-alikes
(d, e, f) from the dataset
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2. Grey level features

– Object standard deviation is the standard deviation
of the intensity (in radiance or reflectance), values
of pixels belonging to the object.

– Max contrast is difference between the background
mean intensity value and the lowest intensity value
inside the object.

– Mean contrast is difference between the back-
ground mean intensity value and the object mean
intensity value.

Spectral features have not been used, since the two bands
available from MODIS full resolution images are insufficient
for a spectral analysis. Grey level features have been calculated
on a two-band ratio (band 2/band 1), since computing the ratio
between the two bands enhances the contrast.

Tables 4 and 5 report some statistical parameters of the
above-mentioned set of features, computed for the 157 oil spill
and 147 look-alike cases in the dataset where outliers had been
removed. The tables show that oil spills are generally smaller
and have a thinner shape. This is consistent with the choice of
considering slicks produced by moving ships.

4 Building a powerful SVM ensemble classifier in three
steps

As already said, oil spill detection has been tackled as a
classification problem of oil spill candidate regions. Since

the number of classes is two (oil spill and look-alike), all the
powerful theoretical results and tools specifically devised
for two-class problems can be exploited. This allows build-
ing a more powerful classifier with a strong theoretical
background, with respect to general purpose multi-class
classification algorithms. Indeed, the latter classifiers can
be used safely only when all the following conditions hold:
(a) the classes are balanced, (b) their a priori probabilities
are similar and (c) misclassification costs are equal for
patterns belonging to any classes. The first condition means
that general purpose multi-class classification algorithms,
such as multi-layer perceptron and radial basis function
neural networks, are unreliable when class distributions are
very imbalanced (e.g. one or more of them is overrepresented
in the training set). As an example, let us consider the
case of a problem having 1,000 instances, 990 of which
belonging to the first class (class A) and only ten to the
second (class B). Once trained, a neural network classi-
fier will tend to classify all the patterns as belonging to
the majority class (class A), apparently reaching very
good classification accuracy (99%), while the classifier
is not able to detect any class B (minority class) pattern.
A similar effect happens when the second condition
holds, i.e. when the a priori probabilities are highly
imbalanced: in such cases for instance, a Bayesian clas-
sifier will tend to classify all the patterns as belonging to
the a priori most probable class. The third condition
means that classification has to be carefully made when
the misclassification costs are class dependent and highly
imbalanced. Indeed if misclassifying a pattern belonging
to class A as belonging to class B costs several hundred
times more than the opposite, the former kind of mis-
classification should be avoided as much as possible,
while the latter can be tolerated much more. When all
the three above conditions hold, any general purpose
classifier can be used. Otherwise, the classifier needs to
be carefully designed in a framework that allows coping
with all the conditions. Fortunately, for two-class problems,
such a framework already exists.

Table 3 The collected dataset

MODIS images 46

Regions of interest (ROIs) 304

Oil spills (OSs) 157a

Look-alikes (LAs) 147

a Among the 157 oil spills, 11 (7% of total) have been verified in situ
by the Italian Ministry of Environment and additional 11 were also
detected in a related SAR image. The remaining 135 were labelled by
the authors by using photo-interpretation only

Table 4 Statistical parameters of the features calculated for oil spill
cases in the dataset

Feature Min Max Mean Std. dev.

Area (km2) 0.688 41.7 6.96 6.58

Perimeter (km) 2.91 94.6 20.4 15.9

Complexity 0.229 5.40 2.16 0.770

Std. dev. band ratio 0.00610 0.0519 0.0199 0.00940

Mean contrast band ratio −0.0588 0.156 0.0505 0.0311

Max contrast band ratio −0.0255 0.216 0.0933 0.0449

Spreading 0.114 26.8 4.25 5.35

Min minimum, Max maximum, Std. dev. standard deviation

Table 5 Statistical parameters of the features calculated for look-alike
cases in the dataset

Feature Min Max Mean Std. dev.

Area (km2) 0.875 73.9 14.4 14.7

Perimeter (km) 1.00 147 26.4 21.2

Complexity 0.0912 5.009 2.016 0.893

Std. dev. band ratio 0.00521 0.0999 0.0283 0.0179

Mean contrast band ratio −0.00535 0.234 0.0733 0.0519

Max contrast band ratio 0.0198 0.451 0.134 0.0822

Spreading 0.548 44.3 11.9 10.0

Min minimum, Max maximum, Std. dev. standard deviation
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4.1 A powerful framework for two-class problems

A very important point that differentiates two-class prob-
lems from general purpose multi-class problems is that the
performance of a classifier can be analysed in the so called
ROC space, i.e. a portion of the first quadrant of a two-
dimension plane where the false positive rate (FPR) is
represented on the abscissa and the true positive rate
(TPR) on the ordinate axes. In the application on hand, the
TPR is the ratio between the number of oil spills correctly
classified as oil spill and the total number of oil spills, while
the FPR is the ratio between the number of look-alikes
wrongly classified as oil spills and the total number of
look-alikes.

For a given classifier, describing its performance trough
the pair (FPR and TPR) is far more meaningful than mea-
suring the accuracy using a mono-dimensional performance
metric, such as the percentage of correct classification, as
discussed in the previous subsection. When the classifier is a
continuous mapping between the F input space (the feature
space) and the output space (typically, the interval [0,1]),
then it is called continuous:

ΓðxÞ : < F ! 0; 1½ �:

Continuous classifiers are very common: neural net-
works classifiers, fuzzy classifiers and support vector
machines are usually continuous, for instance. To actually
perform a binary classification using a continuous classifier,
one has to choose a threshold τ on the classifier output.
More precisely, the binary classifier can be obtained as
follows:

Γ tðxÞ : N if ΓðxÞ < t
Y if ΓðxÞ � t

�

where 0 � t � 1 , N and Y stand for negative and positive
classifications, respectively. So doing, the continuous classi-
fier can thus be associated with a set of pairs ðFPRt i ;TPRt iÞ,
i01,…, I, where I is the number of thresholds τ. This allows
charting the performance of a continuous classifier in the
ROC space by means of a ROC curve, instead of a single
point: each point belonging to the curve corresponds to a
certain threshold and consequently to a certain binary
classifier.

Observe that FPR and TPR can now be more formally
defined using probability as (Provost and Fawcett 2001):

FPR ¼ p Y jnð Þ

TPR ¼ p Yjpð Þ
where p and n are the positive (oil spill) and the negative
(look-alike) classes, respectively.

A very important aspect of the ROC analysis is that it
allows selecting the optimal threshold, given the prior prob-
abilities and the misclassification costs. This means that the
user must provide priors and costs and then the optimal
operating point can be automatically determined. This fol-
lows from the fact that in two-class problems a mono-
dimensional performance index can be defined as:

J FPR;TPR½ � ¼ FPR � C Y ; nð Þ � pðnÞ þ ð1� TPRÞ � C N ; pð Þ � pðpÞ
ð1Þ

where C(Y, n) and C(N, p) are the cost functions associated
to the misclassification of, respectively, a negative and a
positive pattern, and where p(n) and p(p) are, respectively,
the a priori probabilities for negatives and positives.

Such probabilities are typically estimated through the
relative frequencies of positives and negatives in the avail-
able dataset. Here, it is worth noting that the cost functions
C(Y, n) and C(N, p) must be provided by the user and that
they could change over time.

By using Eq. 1, the optimal threshold t can be easily
found even if priors and misclassification costs are changing
over the time:

t ¼ argmin
t i

fJ ½FPRðt iÞ;TPRðt iÞ�g:

Doing so, a single optimal binary classifier can be auto-
matically extracted from the associated continuous classifier.

When using the above index, it can be further demon-
strated that iso-performance lines are straight lines with
slope [C(Y, n)·p(n)]/[C(N, p)·p(p)] (Provost and Fawcett
2001). From this result, it derives that only the points on
the convex hull of the ROC curve can be actually optimal. It
is worth noting that the ROC space is insensitive to changes
in misclassification costs and a priori probabilities: the ROC
curves remain the same even if those parameters change
over time.

Another important aspect is that the same theoretical
framework can be exploited even when multiple classifiers
(i.e. an ensemble of classifiers) are used. There are many
reasons for opting for multiple classifiers instead of using
just one, like performance and robustness. What is interest-
ing in this scenario is that a single convex hull can be
computed for the set of ROC curves, and at each time
instant, the optimal classifier (i.e. one of the classifiers
within the ensemble and the associated optimal threshold t )
can be easily determined (see Fig. 3).

It can be observed now that the (FPR and TPR) pairs
constituting the ROC convex hull are all optimal in the Pareto
sense because each of them has either a better TPR but a worse
FRP or vice versa, with respect to any other pair of the convex
hull. This observation allows further appreciating the useful-
ness of the mono-dimensional index J defined in Eq. 1, which
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consents the automatic selection of a single optimal pair
among the Pareto optimal ones.

Finally, it can be observed that the convex hull of multiple
ROC curves associated to an ensemble of continuous classi-
fiers can also be used in an online mode, i.e. taking into
account the arrival of new ROIs. The following section will
now introduce some desired characteristics for building the
preferred two-class classifier.

4.2 Defining the desired characteristics for the two-class
classifier

Once a dataset of oil spills and look-alikes has been
collected, as new satellite images are available and new
oil spill candidates are detected, the dataset can be
updated, and the classification system can consequently
be re-trained, benefiting from a larger dataset. In this
framework, an online learning approach allows to easily
improve the classification capability of the system. Every
time a new satellite image is downloaded and analysed,
new candidates detected in the image are included in the
dataset and the proposed classification system is able to
learn quickly from these new candidates, by means of
the online learning process. The described situation well
represents an operational scenario where a dataset of oil
spills is available, and it is continuously updated (say
daily) by the detection of other oil spills in some new
images. These considerations suggest the investigation of
an online approach to oil spill classification.

Coping with changing a priori probabilities and misclas-
sification costs is crucial in oil spill detection. For instance,
if the coast guard verifies that too many look-alikes have
been labelled as real oil spills, then the misclassification cost
for the look-alikes can be increased, thus improving the
classification of future events.

In other words, in order to fulfil the above-mentioned
characteristics, a classifier has to:

– Be flexible to changes in a priori probabilities (d.prob);
– Be cost-oriented (d.co);
– Automatically select the best operating condition (i.e.,

the optimal threshold) (d.aut);
– Be as much robust and stable as possible (d.rs);
– Be time varying (d.tv);
– Be computationally efficient (d.eff); and
– Be as accurate as possible (d.acc).

Most of existing classification algorithms cannot be adap-
ted to simultaneously meet all the above desired character-
istics, with the exception of SVMs. The SVMs are powerful
classifiers that have demonstrated to be able to achieve state-
of-the-art performance on widely used classification bench-
marks (thus they meet desired characteristic d.eff ).

However, using SVMs is just one step towards meeting
all the listed desired characteristics. In particular, it is nec-
essary to employ them within the powerful framework of
two-class classifiers and ROC analysis. The following sub-
sections will show how to build the desired classifier in
three steps. In the first step, the used SVM formulation,
namely, the cost-oriented (CO) and incremental/decremental
(ID) formulation, is presented within the ROC space. This
allows meeting desired characteristics d.co, d.tv, d.prob, d.
aut, other than d.acc. In step 2, the use of an ensemble of
COID-SVMs (in place of a single COID-SVM) is sug-
gested, in order to make the classifier more robust and stable
(i.e. to meet desired characteristic d.rs). The use of an
ensemble of SVMs in the ROC space, combined with the
use of the ROC convex hull, also allows improving the
classification accuracy (d.acc).

Finally, in step 3, a technique called ‘concavity repairing’
is employed. This technique is able to further increase the
classification performance (d.acc) by combining the SVMs
instead of selecting the best SVM.

4.3 Step 1: cost-oriented, incremental decremental SVMs
(COID-SVMs)

The proposed COID-SVM formulation in the ROC space is
based on the incremental/decremental SVM formulation
described in Cauwenberghs and Poggio (2001). Their for-
mulation of the incremental learning algorithm builds the
solution recursively by adding one new point (pattern) at a
time. The constraints for the SVM problem are retained on
the previously considered patterns, while the new point is
added adiabatically to the solution. At the same time, the
decremental unlearning algorithm, in an analogous way,
allows to remove data from the fully trained solution. Thus,
the so built classifier is able to update the solution adapting
the classification to time-varying conditions, making this

FPR

T
PR

Fig. 3 Convex hull of three ROC curves. Lines α and β are two iso-
performance lines, both tangent to the convex hull, but with different
slopes, thus corresponding to different costs and class distributions
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approach more desirable than a batch one. Moreover, bene-
fits are also obtained in terms of computational complexity.

In this paper, the ID formulation has been extended to
make it both cost-oriented and online-oriented. The cost-
oriented characteristic has been achieved by following the
approach described in Cortes and Vapnik (1995), which
consists in maximising the margin between two separating
hyperplanes though tolerating some errors, allowing some
positive class elements to be on the negative side and some
negative class elements to be on the positive side. The upper
bound on the maximum distance between an element and
the correct hyperplane determines the cost associated with
the misclassification of that pattern [either M(Y, n) or M(N,
p), depending on the class of the pattern]. This modification
of the original (not cost-oriented) SVM classification prob-
lem results in an additional term in the objective function,
which involves costs M(Y, n) and M(N, p), and which makes
the optimization process search for a tradeoff between a
large margin and a small misclassification error penalty.

Regarding online classification, it is worth pointing out
that in the original algorithm by Cauwenberghs and Poggio
(2001) data acquisition was a batch process, while pattern
evaluation was performed incrementally, following the same
order as the acquisition. On the other hand, with the online
approach, data acquisition happens incrementally, so the
SVM structures can be dynamically modified, instead of
being fixed by the dimension of the data acquired in batch
mode. This intrinsic dynamicity improves the adaptability of
the system to time-varying conditions. The online approach
is handled by introducing a sliding window (which moves
one step ahead at each online epoch), over which the train-
ing is performed. The use of this window arises from the
study of some typical problems of real world applications,
such as limited storage capability and the continuous incom-
ing data stream, which require the system update in order to
improve the classification.

In order to build an online training for the considered
SVM, the algorithm has been structured in the following
three sub-steps:

1. SVM initialization: This is performed by training the
SVM over those patterns belonging to the window. In
this way, the SVM structure is initialized based on a
small data sample in batch mode. Thus, the resulting
SVM trained on the window can be used in incre-
mental mode. In this first step, the only difference
with respect to the original ID-SVM described in
Cauwenberghs and Poggio (2001) is that the considered
one is cost-oriented.

2. SVM incremental learning: A new pattern enters the
window and the cost-oriented incremental learning starts.

3. SVM decremental unlearning: The oldest pattern exits
the window and the decremental unlearning starts.

Besides the online training process, which is built by
introducing the sliding window, performance evaluation in
ROC space (which implies drawing ROC curves, computing
the convex hull and choosing the optimum threshold t )
requires the presence of a validation set. In addition, perfor-
mance should be evaluated using a third set, the test set.

In order to integrate all these characteristics, the adopted
sliding window has been structured as in Fig. 4. The sliding
window has a size twice the size of the desired window for
training. At each online epoch, two new ROIs enter the
window and two are excluded from it. The SVM is trained
over the odd elements within the window, while the even
patterns compose the validation set, used to evaluate the
expected costs, to build the ROC curves and convex hull
and to determine the optimal threshold. This procedure
allows only one ROI at a time to enter the training set
(another one enters the validation set). The test set is instead
chosen outside the window, so that the patterns used for
testing are not known to the SVM, thus, the settings estab-
lished during the validation phase can be evaluated in an
independent way. In particular, the test set is composed of a
number of patterns following the moving window and equal
to the size of the number of elements used for training and
for validation. Test set size is thus half of the size of the
sliding window. The following subsection explains how the
implemented model for online COID-SVM has been included
in an ensemble of classifiers.

4.4 Step 2: an ensemble of COID-SVMs in the ROC space

Instead of using just one COID-SVM, with dynamically
changing costs M(Y, n) and M(N, p), a set of COID-SVMs
has been employed, using static misclassification costs. The
advantages associated with this approach are threefold:

1. An ensemble tends to provide a performance that can
outperform the single best classifier;

ROIs entering the sliding
window (twice at a time)

ROIs exiting the sliding
window (twice at a time)

Training &Val. Test

Fig. 4 Sliding window used for the online learning of the SVME. The
window is made of two parts: training & validation and test. The
training & validation part is made of 2G ROIs [odd ROIs (blue) used
for training, even ones (red) for validation)], while the test part is made
of the subsequent G ROIs. A value of G050 has been used. The
window moves ahead two ROIs at a time, for a total number of 77
online epochs (i.e. 154 ROIs entered the sliding window, two by two,
during the phase 2, while the remaining 150 where used for SVME
construction during phase 1)
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2. An ensemble tends to provide more robust and stable
performance; and

3. Static cost functions give better stability to the algo-
rithm used for the SVM online training.

The only drawback is the increase in computational com-
plexity. However, the use of incremental and decremental
learning mitigates this problem. Moreover, the computation-
al complexity of the method is negligible if compared to the
time needed to download a new satellite image, select,
within the image, those regions which could contain possi-
ble oil spills, and extract the input features for the classifier.
This means that the proposed classifier could work in near
real-time conditions, while being able to adapt the classifi-
cation to the most recent patterns.

All the COID-SVMs composing the ensemble undergo
the training process described in step 1; therefore, the
validation set is used to draw the ROC curves corresponding
to each SVM and to compute the overall convex hull.
This means that the information derived by each classi-
fier is automatically selected by means of the convex
hull, and the optimum can be chosen according to the
iso-performance line, taking into account the entire classifier
ensemble.

4.5 Step 3: concavity repairing

In order to improve the convex hull, a technique called
SwapOne, proposed by Flach and Wu (2003) for repairing
concavities in ROC curves has been exploited. It consists of
combining together the outputs of two binary classifiers
(two points in the ROC curve), in order to obtain a third
classifier possibly having a point in the ROC space above
the segment connecting the original two points. When this
happens, any concavity of the ROC curve between the two
classifiers is ‘repaired’ by the new classifier, which can also
extend the ROC convex hull.

By putting all the above described pieces together, the
whole classification approach is obtained, consisting of two
phases: in phase 1, the SVME is constructed (Fig. 5), while
in phase 2, it is used in online mode and it is updated over a
sliding window (Fig. 6). In phase 1 and phase 2, 150 ROIs

(first part) and 154 (second part) ROIs of the collected
dataset have been used, respectively.

5 Results

The proposed algorithm for building an ensemble of online
COID-SVMs, described in the previous section, has been
integrated in a software tool, which is structured according
to the flowcharts shown in Figs. 5 and 6. The software is
provided with a graphic interface which allows the user to
set the inputs and to obtain the optimum for the classifica-
tion, based on the convex hull method. In particular, the user
can select the dataset and can set the static misclassification
costs for each COID-SVM in the ensemble, the cost func-
tions which define the iso-performance lines and the size of
the sliding window. For each data subset entering the sliding
window, the software produces a plot showing the ROC
curve for each SVM, the convex hull and the optimum for
the classification, all computed over the validation set.
Moreover, the cost index J[FPR, TPR], defined in Eq. 1, is
computed for the ensemble on the validation set and on the
test set. The confusion matrix for each SVM can also be
computed. Possible concavities in the convex hull can be
repaired by enabling the corresponding function. The soft-
ware employs an ensemble of five SVMs, namely COID-
SVM 1, COID-SVM 2, COID-SVM 3, COID-SVM 4 and
COID-SVM 5.

The interface allows to choose the values of the static
misclassification costs for the negative and positive class [M
(Y, n) and M(N, p), respectively] for each COID-SVM in the
ensemble. The cost functions C(Y, n) and C(N, p) that define
the iso-performance lines in the ROC space, used to select
the optimum from the convex hull, are also set from the
interface. In particular, these cost functions can be either
constant or time varying. In the latter case, the symbols C(Y,
n)(t) and C(N, p)(t) will be used.

The size of the moving window can be selected by means
of a sliding bar, while concavity repair is enabled by a
checkbox. In the following subsection the results obtained
by applying the online COID-SVM ensemble to the oil spill
dataset will be presented, and the effect of repairing convex
hull concavities will be investigated.

5.1 Experiment without concavities repair

Figure 7 shows a typical result for an online classification
step. The figure shows the ROC space where the ROC
curves for the ensemble of online COID-SVMs are drawn.
The violet line represents the overall convex hull and the
black line is the iso-performance line tangent to the convex
hull. The black square mark represents the optimum, result-
ing from the algorithm. In order to find a tradeoff between

Initialize each
COID-SVM

Perform the Cost Oriented Incremental
Learning of the first part of the dataset
(150 ROIs), for all the 5 COID-SVMs.

Fig. 5 Phase 1 (SVME construction)
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the size of the dataset (304 ROIs) and the necessity to test
the online learning procedure, a sliding window of 100
ROIs has been chosen, 50 used for training and 50 for
validation. According to Fig. 4, each online epoch has been
tested on 50 test ROIs.

Time-varying sigmoid cost functions C(Y, n)(t) and C(N,
p)(t) have been used, with values in the interval [1, 2]. As
shown in Fig. 8, where the costs are plotted as a function of
the online epochs, C(Y, n)(t) decreases with time while C(N,
p)(t) increases. It is important to notice that the absolute
values used here for C(N, p)(t) and C(Y, n)(t) are rather
arbitrary: they have been chosen to replicate a situation in
which one is greater than the other at the beginning, but the
opposite happens at the end. This simulates a real situation
with changing needs: after tolerating losing too many real
oil spill events, the operator decreases C(Y, n)(t) and
increases C(N, p)(t), in order to detect more true oil spills.
This, of course, has the drawback of generating more false
alarms near the end

The static misclassification costs associated with each
COID-SVM in the ensemble are shown in Table 6. Note

that these misclassification costs could assume any value. In
particular, for each SVM, M(Y, n) and M(N, p) are not
necessarily equal. Experimental tests showed that, in this
application, using equal misclassification costs for the pos-
itive and negative classes, for each COID-SVM, gives better
performance. This could be explained with the fact that
the oil spill dataset is actually balanced, since the number
of elements belonging to the oil spill class is approximately
equal to the number of elements belonging to the look-
alike class. Indeed, according to the cost-oriented formu-
lation of SVMs (Cortes and Vapnik 1995), the static
misclassification costs M(Y, n) and M(N, p) represent
the upper bound on the maximum allowed distance between
an element and the separating hyperplane associated (which is
defined on the higher dimensional space of the kernel func-
tions used by the SVMs) to the negative class and to the
positive class, respectively. Thus, using equal values for
the two misclassification static costs does not exactly
mean that the cost of misclassifying a positive element
is being considered equal to the cost of misclassifying a
negative one.

Perform the Cost Oriented Incremental
Learning of the new ROI entering the

training part of the sliding window

Perform the Cost Oriented Decremental
Learning of the ROI exiting the training part

of the sliding window

Draw the ROC curves associated with each
COID-SVM for the ROIs whitin the
validation part of the sliding window

Compute the ROC Convex Hull

Find the optimal threshold according to
current cost functions C(Y, n)(t) and C(N, p)(t)

Concavities can
be repaired?

Swap the ROC curves
(SwapOne) Yes

No

Classify the ROIs the Test part of the sliding
window using the optimal threshold

SVME construction (see Phase 1)

Maximum number of
online epochs reached?

End

No

Yes

Move the sliding
windows 2 epochs ahead
(one ROI will enter the

training part and one the
validation part)

Fig. 6 Phase 2 (SVME online
use and update)
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A measure of the classification performance of the
system can be achieved by considering the cost index J
[FPR, TPR] as defined in Eq. 1, by evaluating it on the
test set at the optimal threshold for the ensemble (the
optimal threshold being determined on the validation
set). However, each online step produces an optimal
threshold for the classification of the elements belonging
to the current sliding window. This intrinsic dynamicity of
the system must be taken into account. In order to obtain
a performance index involving the complete dataset, all
the cost indexes, each one corresponding to a single
online epoch, have been summed over all the steps, so

as to obtain an integrated global cost index for the ensemble
applied to the dataset. On the resulting 77 sliding steps, a
global cost index of 92.89 has been obtained on the test set
and of 77.39 on the validation set. Regarding the mean
execution time on the considered dataset, in terms of
elapsed CPU seconds, for a single online epoch, this
resulted to be 5.52 s, on AMD Athlon X2 2.6 GHz processor,
with 2 Gb RAM.

5.2 Experiment with concavities repair

The application of the concavity repairing technique
described in previous section (step 3) results in a modification
of the convex hull, which brings to an increase in the area
below the convex hull. In order to estimate the effect of
repairing concavities, the corresponding function has been
applied at each online step, and the area under the convex hull
has been computed. On the 77 online epochs, the obtained
mean area under the convex hull was of 0.70, while repairing
concavities at each step resulted in a mean area under the
convex hull of 0.72, thus increasing the area of about 3%.
Moreover, the increase in the area corresponds to a de-
crease in the global cost index of the 2% on the test set
and of the 5% on the validation set. Figure 9 shows an
example of the effect of repairing concavities in the convex
hull. In the figure, the variation in the area is highlighted in
grey; the optimum computed on the improved convex hull
is represented by a red square mark, while the old optimum
is represented by a black square mark. From the theoretical
point of view, such an improvement is even more signifi-
cant because it demonstrates that combining classifiers pro-
vides better results, in this case, than performing a classifier
dynamic selection.

Despite concavity repairing, the SVME misclassifies
some ROIs. Figure 10 shows an example of misclassifica-
tion, on a particularly difficult setting.

6 Summary and discussions

In this study, a dataset made of 157 oil spills and 147 natural
phenomena has been collected from MODIS images in the
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Fig. 8 Time varying cost functions C(Y, n)(t) and C(N, p)(t), repre-
sented as a function of the online epoch number
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Fig. 7 ROC curves for the ensemble of online COID-SVMs. The
violet curve represents the convex hull, whereas the black line repre-
sents the iso-performance line. The black square mark is the optimum
(it corresponds to the optimal threshold t)

Table 6 Misclassification costs associated to each COID-SVM in the
ensemble

M(Y, n) M(N, p)

COID-SVM 1 1.0 1.0

COID-SVM 2 1.5 1.5

COID-SVM 3 2.0 2.0

COID-SVM 4 2.5 2.5

COID-SVM 5 3.0 3.0
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Mediterranean Sea during 2008 and 2009. Then, a powerful
supervised classification algorithm, called SVME, has been
built to automatically classify them.

It is interesting to notice that the SVME system can be
alternatively used in two ways: (a) as a module of an auto-
matic oil spill detection system for MODIS images and (b) as
a decision support tool. To use it in the first way, a further

module is needed: a ROI generator aimed at making the
procedure, described in Section 3, fully automatic. Unfortu-
nately, building a reliable and automatic ROI generator is a
challenging task and its implementation is still under study.
However, the system can be used in the second way to assist a
junior operator (JO), who has some photo-interpretation
knowledge, in making more reliable decisions (see Fig. 11).

The role of the JO is to manually select the ROIs from an
incoming MODIS image (if the ROI generator does not
exist) and to ask the SVME system to classify them. Then,
he can decide whether to confirm or discard the classifica-
tion result. If he is confident enough with his final decision,
he can also ask the system to learn the new ROIs, in order to
extend the knowledge base, and optionally, to unlearn the
eldest ones (to make the system time varying and thus more
adaptive to changes). Otherwise, the new ROIs are not
learned by the SVME, until a more reliable label can be
assigned after an in situ verification by the coast guard or
after checking a SAR image or even after consulting a
skilled operator. The ultimate goal of the SVME when used
as a decision support tool is to bias the decision of the JO
towards more correct classifications, ideally trying to reach
those of a skilled operator.

7 Conclusions and future work

The conclusions that can be drawn from this study are: (a)
automatic classification of ROIs identified on MODIS
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Fig. 9 Effect of repairing
convex hull concavities

Fig. 10 During phase 2, the system is able to correctly identify the red
region as an OS and the regions in the yellow area as look-alikes, but it
misclassifies some of the regions in the orange area. This is tolerable,
since even for a skilled operator it is difficult to classify the ROIs in the
orange area. Only by considering the context, beside geometric and
grey level features, the skilled operator can correctly identify the ROIs
in the orange area as look-alikes, by recognising the contribution of
marine currents
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images is possible, with promising performance, and (b)
the proposed classification algorithm, based on an ensem-
ble of SVMs, is flexible and powerful enough to accom-
modate some important characteristics that have been put
as requirements.

In the future, dataset extension is planned, especially
aimed at collecting more verified oils spills and more
sunglint-contaminated ROIs. The availability of a signifi-
cant dataset of sunglint contaminated cases, in particular,
might allow to develop an independent classifier, tailored to
handle such cases. This would increase the reliability of the

overall system, by exploiting the fact that in the presence of
sunglint, the smoother oil tends to reflect more than the
more corrugated water.

The implementation of an automatic ROI detection soft-
ware from MODIS images is planned as well: the availabil-
ity of such module will allow to run a processing chain that
will automatically download the latest MODIS image, pro-
cess it and possibly generate an oil spill alert, at no cost,
since MODIS images are free of charge. Investigating how
to combine optical and SAR data is another planned activity,
to be run in parallel with the above ones.

None, one or more ROIs are generated either:
i) manually, by a Junion Operator (JO), or ii) automatically, by a ROI generator

A new Full Resolution MODIS image of the Mediterranean Sea becomes available

Does the JO feel confident
with the final decision made?

End

NoYes

The new collected ROIs are taken apart, until reliable
labels can be assigned to them, after

i) an in situ verification, or
ii) the judgment provided by a skilled operator, or

iii) the double check on a related SAR image

A feature vector is automatically extracted from each ROI

The SVME assigns a temporary label (either OStmp or LAtmp) to each ROI (if any),
according to current cost functions C(Y, n)(t) and C(N, p)(t)

The JO desides wheter agree or not with the classification suggested by SVME
and assigns a final label OSfin or LAfin to the ROI on hand

Update the SVME with the new
ROIs and their final labels.

Unlearn an equal number of labeled
ROIs, chosen among the eldest ones

(this step is optional)

Georeferentiation, land masking, and calculus of ratio between band 2 and band.
Contrast enhancement techniques can also be applied (either manually or automatically)
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2 is shown (online use and system update)
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Appendix 1 Properties of crude and refined oils

Crude oils are complex mixtures of various hydrocarbons
(aromatic and aliphatic), resins and asphaltenes. Refined
products contain only a subset of these compounds each.
The relative proportion of the various constituents deter-
mines both physical properties and optical characteristics
of any given oil.

1.1 Chemical composition

Crude oils can be classified according to the relative amount
of n-alkanes, branched alkanes, cycloalkanes, aromatic
hydrocarbons and NSO compounds:

– Paraffinic oils: mainly composed of acyclic alkanes.
These oils have a low sulphur content.

– Paraffinic–naphthenic (or mixed-base) oils are com-
posed of both cyclic and acyclic alkanes. These oils
have a low sulphur content. The majority of crude oils
belongs to this group.

– Aromatic-intermediate oils: These oils contain more
than 50% aromatic hydrocarbons and usually have a
higher content of NSO compounds, particularly those
containing sulphur.

Refined oils are distillation products of crude oils and are
classified according to the number of carbon atoms contained
in the molecules making up the mixture. In decreasing the
order of volatility (increasing density and viscosity), these are:

– Petrol and naphtha with benzene and other volatile oils
(C4–C10).

– Kerosene and lamp oils (C11–C13).
– Diesel and light gas oils (C14–C18).
– Heavy gas oils and home heating oils (C19–C25).
– Lubricating oils and light fuel oils (C26–C40).
– Residual and heavy fuel oils (>C40).

1.1.1 Density and specific gravity

Oil density is often measured relative to water, in order to
obtain a dimensionless quantity, specific gravity (SG). Most
oils are lighter than water, and in particular, crude oils are
often divided into light, medium and heavy, on the basis of
American Petroleum Institute (API) gravity measurements
(Killops and Killops 2005):

�API ¼ 141:5

SG60F

� �
� 131:5 ð2Þ

where SG60 is the specific gravity of the oil at 60°F (i.e. the
ratio between oil density at 60°F and pure water density at
the same temperature). The API scale is thus inversely
proportional to density. According to API definition, the
following classes have been specified:

– Light crudes: API gravity ≥30°API (SG ≤0.87).
– Medium crudes: API gravity between 22 and 30°API

(0.87<SG≤0.92).
– Heavy crudes: API gravity between 10 and 22°API

(0.92<SG≤1.00).
– Tars or tar sands: API gravity <10°API, (SG ≥1.00).

1.1.2 Viscosity

The viscosity of oil is a measure of the oil’s resistance to
shear, so it is a measure of its resistance to flow. When
viscosity is determined by directly measuring shear stress
and shear rate, it is expressed in centipoises (cP) or in
Pa s (1 cP01 mPa s) and is referred to as the absolute or
dynamic viscosity. For instance, water at 20°C has a
dynamic viscosity of 1 cP. The viscosity of single com-
pound hydrocarbons increases with the number of carbon
atoms contained in a molecule. High molecular weight
hydrocarbons are generally soluble in low molecular
weight alkanes or aromatics, and the viscosity of the
mixture depends on the relative content of low and high
molecular weight compounds. Viscosity also varies with
density. Light oils have viscosities less than 30 mPa s at
20°C, while heavy asphaltic oils have viscosities mea-
sured in thousands of mPa s. For natural tars, viscosity is
usually greater than 104 mPa s (North 1985).

1.2 Oil optical properties

Inherent optical properties that are relevant for oil detection
are: absorption, fluorescence and refractive index. Scatter-
ing is a small effect at visible wavelengths and it usually has
a magnitude and spectral behaviour close to that of pure
seawater.

1.2.1 Absorption

Typical crude oil spectra show strong absorption at short
wavelengths that range from ultraviolet (UV) or violet for
the lightest oils to red or NIR for the heaviest crudes.
Absorption coefficients decrease exponentially towards lon-
ger wavelengths. Decay widths do not vary much within
crude oils. Actually, this behaviour is similar to that of
CDOM, so that it may be difficult to distinguish the spectral
signature of dispersed oil from that of CDOM. Refined oils
have an anomalous behaviour, due to the process of frac-
tionation. In particular, the absorption coefficient of light
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refined oils decreases steeply towards visible wavelengths,
while heavy refined oils show lower absorption in the UV,
but larger decay widths extending to NIR wavelengths.

1.2.2 Fluorescence

Oil fluorescence is generally excited by light at UV to
blue wavelengths. The spectral fluorescence properties of
oils when excited by laser pulses can be used to distin-
guish between different oil types. Generally speaking, as
excitation wavelength increases, fluorescence is induced
in a smaller number of compounds, thus, light oils fluo-
resce at shorter wavelengths, from UV to green, while
heavy oils show broader fluorescence spectra which peak
at longer wavelengths (Ryder 2005). Solar radiance could
also induce oil fluorescence, but, since it is less intense
than excitation by laser, the fluorescence signal will be
weaker. However, solar-induced fluorescence may con-
tribute to solar reflectance on particularly bright days.
Fluorescence peaks vary in width and wavelength posi-
tion according to oil type and decay exponentially to-
ward the red and NIR.

1.2.3 Refraction

Oil refractive index is greater than that of seawater (≈1.34)
at visible and NIR wavelengths. There is a significant var-
iability between oil types, but usually, heavy oils have a
higher refractive index. For crude oils, the refractive index
lies between 1.57 and 1.67 in the UV and between 1.48 and
1.52 in the visible (Osadchy et al. 1994). Refractive index of
course influences light specular reflection at the air–sea
interface for clean and oil-covered sea surfaces.

Appendix 2 Oil–water contrast

The presence of an oil film on the sea surface implies some
modifications in the upwelling radiance, and thus, in the
remote sensing reflectance (Osadchy et al. 1994) measured
over the sea surface.

In particular, the optical properties of crude and refined
oils allow distinguishing them from water. More precisely,
as mentioned before:

– Oil refractive index is greater than that of seawater.
– Oil absorption coefficients are several orders of magni-

tude greater than that of water in the blue and decay
exponentially with wavelength.

– Crude and refined oils fluoresce when subjected to
bright natural light, with fluorescence peaks that vary
in width and wavelength position according to oil type,
and decay exponentially towards the red and NIR.

These characteristics contribute to the detectable oil–water
contrast. This can be described by analysing the contributions
to upwelling radiancemeasured above an oil film (Byfield and
Boxall 1999), which is represented in Fig. 12.

– Atmospheric path radiance (a): this contribution should
be removed, but for oil spill monitoring applications,
this is not essential.

– Specular reflection of sky radiance (b): this contribution
is greater from an oil-covered seawater surface due to
oil’s higher refractive index. Contributions due to re-
flection at the oil–water interface are two orders of
magnitude lower than at the air–oil interface, and may
thus be neglected.

– Water-leaving radiance (c): this contribution arises
from a portion of incident light that is transmitted
through the surface and scattered back up by the
seawater and its constituents. The presence of an
oil film has a double effect on this contribution: re-
duced transmittance through the air–oil interface and
absorption within the oil layer. When the oil is suffi-
ciently thick, all light is absorbed and further increases
in oil thickness are not detectable. This limiting thick-
ness depends on the oil absorption coefficient and the
wavelength of the light, from 0.02 mm for heavy crudes
at 440 nm to about 2 mm for light crudes at 750 nm
(Byfield 1998).

– Oil fluorescence and scattering (d): oil fluorescence ex-
cited by sunlight in the UV and scattering from water
entrained in the oil also contribute. In particular, in heavi-
er oils with high absorption coefficients throughout the

Sun

Sensor

Water

Oil

a

c
b

d

Fig. 12 Contributions to radiance measured above an oil-covered
seawater surface. a Atmospheric path radiance. b Specular reflection
of sky radiance. c Water leaving radiance. d Fluorescence and scatter-
ing contributions
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optical range, this contribution is low. The absorption
coefficient of light crudes decays more rapidly, so fluo-
rescence and scattering may make a significant contribu-
tion at longer wavelengths.

Oil–water contrast, C, can be defined as the difference
between the remote sensing reflectance, in the presence of
an oil film, and remote sensing reflectance of clean water,
normalised to remote sensing reflectance of clean water (in
the following angular and wavelength dependence are omitted
for simplicity):

C ¼ RðoilÞ
rs � Rðclean waterÞ

rs

Rðclean waterÞ
rs

:

Taking into account all the above-mentioned contribu-
tions, the contrast can be written as (Byfield and Boxall
1999):

C ¼ ro � rwð ÞRðskyÞ
rs � twtdw � totdoe� 1 μdþ1 cos θ 00==½ �a0z� �

Rrs þ Fo þ Bo

rwR
ðskyÞ
rs � twtdwRrs þ P

ð2Þ

where RðskyÞ
rs represents the sky remote sensing reflectance

(that is remote sensing reflectance, where the numerator is
only sky radiance), ro and rw are the specular reflection
(Fresnel) coefficients for oil and water, Rrs is the remote
sensing reflectance, to and tw are the Fresnel transmittance
coefficients for oil and water, tdo and tdw are the diffuse
transmittance coefficients for incident light, ao is the oil
absorption coefficient, z is oil thickness, μd is the average
cosine of downwelling irradiance within the oil, F rep-
resents oil fluorescence, B represents scattering by water
in the oil and P is the atmospheric contribution. It is
clear from Eq. 2 that oil–water contrast depends on many
factors (oil type, oil thickness and water constituents),
which affect scattering and absorption in the seawater
and atmosphere contribution. Thus, contrast can be positive
or negative depending on water type and on environmental
conditions, but it also vary according to wavelength, since
absorption and fluorescence have a strong spectral depen-
dence. Thus, for a given oil on a seawater surface, C can be
positive in some spectral regions and negative in others. In
particular, from Eq. 2, it can be observed that C is positive
when:

ro � rwð ÞRðskyÞ
rs þ Fo þ Bo

> twtdw � totdoe
� 1 μdþ1 cos θ0 0==½ �a0z

� 	
Rrs:

For thin oils, this occurs at wavelengths where RðskyÞ
rs is

high, or where Rrs is low, usually the violet and blue (between
400 and 480 nm), and NIR (starting at 700 nm). As the
thickness increases, the exponential term approaches 0, and

contrast becomes negative throughout most of the visible
spectrum. In the NIR, Rrs is negligible, due to high water
absorption, and the contrast is positive, except when there is
a high concentration of scattering particles in water. However,
near the seawater reflectance peak, between 480 and 570 nm
in coastal waters, Rrs may be sufficiently high to give low or
negative contrast even for thin oils.

The change in contrast between oil spills and seawater,
depending on both oil type and water type, for different sun-
observer geometries, as also been investigated in Otremba
and Piskozub (2001) and Otremba and Piskozub (2003).
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