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Abstract
An increased risk of atherosclerotic and thrombotic complications characterizes connective tissue diseases. Endothelial 
dysfunction is the basis for the initiation and progression of atherosclerosis and thrombosis. We present systemic lupus 
erythematosus (SLE) as a model rheumatic disease with endothelial dysfunction and discuss its mechanisms, factors that 
influence the early onset and rapid progression of atherosclerosis, and the increased risk of thromboembolic events. We 
focus on established methods to improve endothelium function, including statins, antiplatelet, and antithrombotic therapy. 
Hypercoagulable and hypofibrinolitic states and a hyperinflammatory response characterize severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection. Several pathogenic mechanisms are typical for an acute phase of Covid-19 
post-Covid syndrome and connective tissue diseases: endothelial dysfunction, elevated antiphospholipid antibody titer, 
activation of the complement system, and formation of extracellular neutrophil traps (NET). The current review discusses 
the mechanisms underlying SLE and the COVID-19 in the context of endothelial function, atherosclerosis, and thrombosis 
(Graphical abstract).

Key Points
• The pathophysiology of systemic lupus erythematosus (SLE) and Covid-19 shows some similarities, such as endothelial cell activation and 

dysfunction, the activation of complementary systems, the presence of antiphospholipid antibodies, and the formation of extracellular neutro-
phil traps.

• Autoimmunity in both diseases creates the basis for hyperinflammatory, hypercoagulable, and hypofibrinolitic states and their thromboembolic 
complications.

• This paper presents our perspective on the mechanisms behind the cardiovascular manifestations of SLE and COVID-19, with a particular 
emphasis on endothelial dysfunction.
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Introduction

Connective tissue diseases were defined as a separate group 
in 1941 as systemic pathology with a wide range of clini-
cal symptoms, but with similar histopathological changes 
based on fibrillar necrosis of the connective tissue [1]. We 

may now include in this group systemic lupus erythematosus 
(SLE), systemic sclerosis, dermatopolymyositis, rheumatoid 
arthritis (RA), and systemic vasculitis.

Urowitz et al. [2] observed in 1976 that the frequent cause 
of death in SLE patients suffering from the disease for more 
than a year was myocardial infarction, but not the direct con-
sequences of autoimmunity. Further research has shown that 
one of the most important prognostic factors in SLE is heart 
pathology caused by the rapid development of coronary artery 
atherosclerosis and thrombosis, and emboli of the heart ves-
sels. In the era of steroid therapy, hemodynamically signifi-
cant endocardial morphologic changes (especially heart valve 
leaflets) decreased, but the problem of cardiovascular inci-
dences caused by atherosclerosis remained. It is noteworthy 
that steroids, in a healthy heart and SLE, increase the amount 
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of fatty tissue in the heart, stimulate muscle hypertrophy, and 
accelerate atherosclerosis [3]. In published studies, the per-
centage of cardiovascular deaths in SLE patients (mainly due 
to myocardial infarction) was as high as 40 [4, 5]. The risk of 
myocardial infarction in women with SLE aged 35 to 45 years 
is 50 times higher than in the general population [6]. In most 
cases, coronary atherosclerosis develops subclinically and the 
first symptom may be myocardial infarction [6, 7]

SLE and endothelial dysfunction

These data led to the research’s interest to vascular endothe-
lium in SLE and other rheumatic diseases: Endothelial dys-
function forms a ground for atherosclerosis onset and pro-
gression, as well as thrombosis. Furthermore, endothelial 
dysfunction may be considered a local inflammation directly 
related to general inflammation in rheumatic diseases. Dur-
ing the inflammatory process, the phenotype of endothelial 
cells becomes activated [8]. Nuclear transcription factor-κB 
(NF-κB) regulates the expression of adhesion molecules, 
such as intercellular adhesion molecule-1 (ICAM-1), vascu-
lar cell adhesion molecule-1 (VCAM-1), and E-selectin that 
play a pivotal role in leucocyte-endothelium interactions [8].

Several mechanisms have been proposed to understand 
endothelial dysfunction in rheumatic diseases. Impaired 
clearance of apoptotic cells, oxidative stress, activation of B 
cells with different circulation autoantibodies, subtypes of T 
lymphocytes or cascade of cytokines [9], or monocyte stimu-
lation [10] have been proposed as the main pathogenic way. 
Recently, the role of anti-endothelial cell antibodies has also 
been suggested [11]. Furthermore, circulating endothelial 

cells were associated with thromboembolic events in patients 
with antiphospholipid antibodies [12].

Endothelial dysfunction with abnormal vascular reac-
tivity was shown in pediatric-onset SLE patients [13] and 
adult-onset SLE patients, although they were treated with 
modern protocols [13, 14]. Endothelial dysfunction is pre-
sent in patients with SLE that are naive to cardiovascular 
diseases, and diabetes mellitus, renal disease, or hyperten-
sion are only additional contributors [15].

As stated above, the most important clinical features of 
endothelial dysfunction are the onset and progression of ath-
erosclerosis, together with vascular thrombosis.

SLE and early onset atherosclerosis

Image studies showed that coronary atherosclerosis develops 
rapidly in young patients despite the stable stage of SLE 
and maintenance therapy with low doses of steroids [16]. 
Figure 1 shows the progression of coronary atherosclero-
sis seen on multidetector computed tomography (CT) in a 
patient with SLE without cardiovascular complications at a 
1-year follow-up.

Atherosclerotic plaques in the arteries are detected in 
almost half of young asymptomatic SLE patients. The most 
frequently affected are the coronary arteries (42% of patients 
with calcifications seen on CT) and the carotid arteries 
(24%) [17].

The high risk of symptomatic ischemic heart disease 
in young patients with SLE shows that the classical risk 
factors for atherosclerosis do not constitute the main etio-
logical factor in this group. According to expectations, 

Fig. 1   Progression of atherosclerosis in an SLE patient with no car-
diovascular complaints at 1  year of follow-up. Multidetector CT 
calcium score examination. A Two calcified plaques are seen in the 
left anterior descending artery (red) and one  calcified plaque in the 

circumflex artery (blue): plaque volume 156.4 mm3, calcium score 
138.9. B After 1 year, the volume of the previously observed plaques 
increased with the new calcification in the distal part of the left ante-
rior descending artery: plaque volume 223 mm3, calcium score 202.5
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no significant influence of obesity, arterial hypertension, 
smoking, hypercholesterolemia, or diabetes on the pres-
ence of atherosclerosis or myocardial perfusion was found 
in young patients with SLE [7]. General inflammation 
manifested by an increase in the level of C-reactive protein 
(CRP) and the decrease in complement C3c and C4 levels 
also does not intensify the progression of atherosclerosis 
in young people [7] if only CRP does not permanently 
increase to at least 20 mg/l [18].

In SLE patients with myocardial perfusion defects or 
atherosclerotic plaques detected in CT-derived calcium 
score, high autoimmunity was proved, manifested by an 
increased level of antiphospholipid antibodies, mainly 
anticardiolipin (aCL) IgG and anti-β2-glycoprotein  I 
(antiβ2GPI) IgG antibodies [7, 19]. These antibodies may 
initiate and accelerate lipid deposition and plaque forma-
tion [20]. In in vitro studies, antiβ2GPI antibodies were 
shown to accelerate the binding of aCL to endothelial 
cells, leading to thrombosis [21]; antiβ2GPI may also bind 
directly to oxidized low-density lipoprotein (LDL), form-
ing highly immunogenic complexes [21]. On the other 
hand, in young patients under 45 years of age, with pre-
mature ischemic heart disease, who underwent myocar-
dial revascularization, aPL levels were significantly higher 
than in healthy young subjects [22]. More recent studies 
show a significant association between the IgM class of 
anticardiolipin and antiβ2GPI antibodies with vascular 
endothelial activation and prothrombotic status of patients 
[16]. Substantially higher ICAM-1 concentration, indicat-
ing increased vascular endothelial activation, observed in 
patients with SLE, is correlated with elevated levels of 
IgM class antiphospholipid antibodies (aCL IgM > 30 
MPL and β2GPI IgM > 20 SMU). Interestingly, endothe-
lial activation, also associated with serum markers of the 
inflammatory process of SLE (low C4; increased CRP or 
IL-6), appears not to be associated with the SLE activity 
index (Systemic Lupus Erythematosus Disease Activity 
Index [SLEDAI]) [23]. Interactions between platelets and 
vascular endothelial cells are believed to occur in athero-
sclerosis, with increased expression of adhesion molecules 
and their ligands [24–27]. Activation of CD40 in vascular 
endothelial cells results in increased expression of ICAM 
on their surface, increasing the instability of atherosclerotic 
plaques in the coronary arteries, increasing the risk of their 
rupture, and thus initiation of thrombotic process clinically 
manifesting itself as unstable angina and even sudden car-
diac death [28, 29]. In patients with SLE aPL-positive with 
clinical episodes of thrombosis, soluble CD40L is elevated 
[30]. Therefore, increased ICAM-1 levels may be a marker 
of the severity of the atherosclerotic process [31–33].

Several studies suggest that, in addition to the role of type 
I interferons (INFs) in the pathogenesis of lupus, they may 
be important contributors to premature atherosclerosis in 

SLE [34]. Type I INFs promote an antiangiogenic signature, 
foam cell formation, and platelet activation [35].

Elevated concentrations of von Willebrand factor (vWF) 
are another marker of endothelial activation and damage 
[36]. Increased vWF is associated with the risk of throm-
botic events and possibly coronary heart disease [37]. How-
ever, contrasting opinions are presented on whether elevated 
vWF values influence the progression of the atherosclerotic 
process [38, 39]; even claims negate this association [40]. It 
has also been suggested that vWF is not causally related to 
atherosclerosis, but rather that the development of athero-
sclerosis leads to elevated plasma vWF, which favors arterial 
thrombosis [41]. A reliable assessment is hampered by the 
fact that many nonspecific factors, such as age, hyperlipi-
demia, and hypertension, affect the concentration of vWF in 
plasma [42]. Furthermore, the methodology for measuring 
the vWF concentration is not fully standardized.

Recently, an increased risk of thromboembolic complica-
tions associated with autoimmune diseases, such as SLE, 
outside of the context of antiphospholipid syndrome, has 
been documented [43]. Plasma thrombin-antithrombin com-
plex (TAT) concentrations represent a short-lived marker of 
this prothrombotic tendency. Inflammation and thrombosis 
processes are interconnected, and an association between 
elevated CRP and IL-6 values with the thromboembolic pro-
cess was also shown in the literature [44]. Elevated plasma 
TAT concentrations were observed in patients with elevated 
levels of aCL IgM (> 30 MPL) [23]. However, recent analy-
ses show that antiphospholipid antibodies of the IgG class, 
and not of the IgM class, are generally associated with 
venous and arterial thromboembolic in patients with SLE 
[43, 45]. Nevertheless, the clinical significance of IgM class 
aPL in antiphospholipid syndrome (APS) has also been doc-
umented [46]. We may speculate that elevated levels of the 
aCL IgM class may appear as an early marker that influences 
the risk of future thromboembolic events, and then the IgG 
class follows, as described in the literature, serving as the 
late marker of chronic vascular pathologies.

The measurement of D-dimers is the screening test for 
thromboembolic events in everyday practice. However, the 
assessment of D-dimers is characterized by low specific-
ity: Their elevated levels are often present in hospitalized 
patients, particularly in the elderly, in people with cancer, 
after recent surgical procedures, in the course of renal fail-
ure, and in many other conditions, including the second and 
third trimesters of normal pregnancy [47–49].

The correlation between elevated levels of IgM class 
antiphospholipid antibodies and two factors that may 
enhance atherosclerosis, endothelial activation/damage 
(ICAM) and prothrombotic stage (TAT), may be of great 
importance. SLE patients are classified as being in remis-
sion according to disease activity indexes (e.g., SLEDAI), 
in which low complement or increased DNA binding are 
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the parameters included in the assessment. Antiphospholipid 
antibody levels are not included in these scales, although 
they may contribute to the gradual progression of athero-
sclerosis and, as a result, the prognosis of patients with SLE.

In patients with coronary calcifications, higher anti-
nuclear antibody titers were also detected [7]. Only a few 
papers have been published on the possible atherogenic 
action of antinuclear antibodies (ANA). In vitro studies, 
immune complexes composed of anti-dsDNA, DNA, and 
LDL lead to increased cholesterol deposition in the artery 
walls and reveal cytotoxic action [50]. ANA have been 
shown to have a prognostic value for the development of 
clinically significant ischemic heart disease, even in people 
without autoimmune disease [51].

A high level of antiphospholipid antibodies may influ-
ence pathological changes in heart valve leaflets [52, 53]. 
In more than 30% of patients with SLE with high concen-
trations of aPL IgG concentration (> 80 IU/ml), the nod-
ules are observed in valve leaflets and the frequency of this 
pathology decreases with lower levels of aPL IgG levels 
(16–80 IU/ml, 20% of patients) and in patients without aPL 
IgG (4% of patients) [52]. The pathology of heart valve leaf-
lets correlates with the general intensity of inflammation 
manifested by an increase in the CRP level and the levels 
of the C3c and C4 components of the complement system 
decrease [7]. Complement system activation has also been 
shown to enhance atherosclerosis progression [54].

The activation or damage of the vascular endothelium is 
manifested by the elevation of ICAM-1 and vWF [55, 56]. 
In patients with coronary calcifications, the levels of these 
molecules are significantly higher compared to those without 
calcium deposits in the coronary arteries [57]. Furthermore, 
the connection between the presence of calcified coronary 
plaque and the levels of selectin E, VCAM, or tumor necro-
sis factor-alpha (TNFα) levels was shown [55].

SLE and thromboembolism

Feinstein and Rapaport used the term “lupus anticoagulant” 
(LA) for the first time in 1972 [58] as an in vitro coagulation 
inhibitor in patients with SLE. Further research revealed that 
in vivo LA may cause thrombosis. The term “antiphospho-
lipid syndrome” was implemented in 1987 [59, 60], with the 
following laboratory criteria: LA presence (positive twice 
on a distance of at least 12 weeks) together with aCL or 
anti-ß2GPI [61].

Although antiphospholipid syndrome has been known 
for 35 years, the exact mechanism of clot formation is 
not well understood. The reaction of antiphospholipid 
antibodies with C protein and components of the com-
plement system is postulated, with a decrease in the pro-
tective anticoagulation role of annexin A5, activation of 

platelets, monocytes, and endothelial cells, which change 
their phenotype to procoagulant [62]. In patients with high 
aPL titers, endothelial damage leads to significantly higher 
thrombin generation than in patients without aPL [63]. The 
antibacterial plasma protein ß2GPI increases phagocyto-
sis of phospholipid-exposing microparticles and apoptotic 
cells, inhibits platelet adhesion and aggregation mediated 
by vWF, and prevents protein S inactivation by the C4b-
binding protein. These antithrombotic functions of ß2GPI 
are affected by antiß2GPI antibodies [64]. Furthermore, 
ß2GPI antibody complexes bind to cellular receptors on 
endothelial cells, monocytes, neutrophils, and platelets, 
activating these cells and enhancing their thrombogenic-
ity [64].

The most frequent clinical manifestation of antiphos-
pholipid syndrome is venous thrombosis, especially in the 
deep veins of the lower extremities (Fig. 2).

Arterial thrombosis is rare and is detected mainly in the 
brain arteries (Fig. 3) but may be present in the coronary 
and other arteries [65].

In patients with antiphospholipid syndrome after the 
first thromboembolic episode, the risk of the new episode 
is especially high if LA is present together with high IgG 
aCL titers, as shown in the meta-analysis of 25 studies 
[66], or in triple positive patients (LA + IgG aCL + IgG 
antiß2GPI) [67, 68]. In addition to clinically seen vascular 
thrombotic episodes, microthrombosis may form a substan-
tial prognostic factor. Increased antiß2GPI titers for aCL 
or IgG were shown to correlate with the right ventricle 
systolic pressure (Fig. 4) [68].

SLE patients with diagnosed pulmonary hypertension 
have higher frequency of aCL positivity than in SLE peo-
ple with normal pulmonary pressure [69]. In mixed con-
nective tissue disease (MCTD), pulmonary hypertension 
was shown to be related to antiß2GPI levels [70]. Higher 

Fig. 2   Femoral vein thrombosis in a patient with antiphospholipid 
syndrome. There is no flow in the vein (arrow), with normal flow in 
the artery (below)
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systolic pulmonary pressure (or/and higher pulmonary 
vascular resistance) in SLE results from aCL-mediated 
microthrombosis and microembolization. It is noteworthy 
that the relative risk of clinically significant pulmonary 
embolism in the first year after SLE diagnosis is very high, 
estimated at 10.2 [71].

The connection between myocardial perfusion abnor-
malities detected in heart perfusion scintigraphy (SPECT) 
and high levels of aCL of IgG class and antiß2GPI was 
described [68]. Such abnormalities may also be due to 
microthrombosis in small coronary arteries that causes 
permanent (rest) perfusion defects in limited myocardial 

areas [7]. SPECT shows myocardial perfusion defects in 
half of patients with SLE [72, 73], despite normal rest 
ECG recordings, lack of left ventricle contractility distur-
bances, and clinical symptoms of myocardial ischemia [7]. 
In the study with 380 patients with SLE [74], a high level 
of aCL was associated with a high risk of myocardial 
infarction rather than classic atherosclerotic plaques (focal 
necrosis arises independently of atherosclerotic plaques 
but is a base for intravascular thrombosis). The non-ath-
erosclerotic pathogenesis of myocardial ischemia explains 
why calcified atherosclerotic plaques are detected in SLE 
much less frequently than perfusion defects.

Fig. 3   A young patient with 
antiphospholipid syndrome 
and ischemic stroke at the age 
of 21 years. Mitral leaflets are 
thickened with round nodules at 
the edges seen in the parasternal 
(A) and apical (B) echocar-
diographic window. Nodules 
may serve as the base for clot 
formation and increase the risk 
of embolization

Fig. 4   A Elevated right ventricle systolic pressure in SLE patient 
and high levels of aCL IgG (26.11 RU/ml) and antiß2GPI IgG (3.66 
RU/ml). The risk of pulmonary hypertension in SLE increases when 
aCL IgG > 20  RU/ml, antyß2GPI IgG > 3  RU/ml  [62]. The tricuspid 
regurgitation gradient is 27 mmHg, the systolic pressure of the right 

ventricle 37  mmHg. B Despite increased RV systolic pressure, the 
function of the right ventricle remains: on examination of TDE, the 
velocity of the tricuspid annulus in systole (13 cm/s) and early dias-
tole (18 cm/s) is normal



2696	 Clinical Rheumatology (2023) 42:2691–2702

1 3

Pharmacotherapy of endothelial 
dysfunction in SLE

Statins (hydroxymethylglutaryl-coenzyme A reductase 
[HMG-CoA] inhibitors) reveal an anti-atherosclerotic action 
by lowering total cholesterol, LDL cholesterol, and triglyc-
erides and increasing high-density lipoprotein cholesterol 
(HDL). However, especially in connective tissue diseases, 
the more interesting action of statins manifests itself is an 
anti-inflammatory and immunomodulatory action. Statins 
decrease the expression of adhesion molecules on leuco-
cytes and endothelial cells (ICAM-1, macrophage-1 antigen 
[MAC-1], lymphocyte function-associated antigen 1 [LFA-
1]), decrease inducible expression of class II major histo-
compatibility complex (MHC) antigens on macrophages 
and other cells, lower expression of receptors for cytokines 
produced by Th1 lymphocytes, leading to decreased activ-
ity of T lymphocytes, and decrease their infiltration into 
inflammatory tissues. Additionally, statins block the syn-
thesis of inducible nitric oxide and decrease the synthesis 
of pro-inflammatory cytokines (Il-6, TNFα, IFNγ), and, as a 
consequence, decrease the synthesis of CRP [75–78].

The beneficial immunomodulatory effect of statins has 
been proven in RA [79]. However, the first data on statins 
in SLE were controversial. Atorvastatin has been shown to 
reduce the progression of atherosclerosis, decrease proteinu-
ria, and lower anti-dsDNA titers in mice [80]. Lower pro-
teinuria after statins was also shown in humans [81]. Statins 
in RA decrease arterial stiffness [82, 83], improve endothelial 
function [84], and decrease disease activity measured by the 
DAS28 score [79]. On the other hand, simvastatin has been 
shown to produce lupus-like syndrome [85], and atorvastatin 
has been shown to produce dermato-polymyositis [86].

Two randomized, placebo-controlled studies on the role 
of statins in SLE-induced atherosclerosis were conducted. In 
the first study [16], atorvastatin (40 mg/day) was shown to 
significantly lower CRP and reduce coronary atherosclerotic 
plaque volume, while the volume of coronary plaques sig-
nificantly increased in the 1-year observation in the placebo 
group. A 1-year increase in coronary calcium score in the 
placebo group was 85.4% [16]. It should be noted that in a 
large trial with 3745 participants, a lower CRP obtained dur-
ing statin treatment was associated with a better prognosis, 
independent of the LDL cholesterol level [87]. In The Lupus 
Atherosclerosis Prevention Study (LAPS) [88], 40 mg/day 
atorvastatin slowed not significantly atherosclerosis progres-
sion, but CRP decreased in the placebo group, more than in 
the atorvastatin group, which may be a crucial confounder.

The limitation of statin treatment is the risk of lupus-
like syndromes [85, 90, 91]. Skin changes are similar to 
those present in subacute cutaneous lupus. Two pathogenic 
mechanisms are suggested. At first, statins may aggravate 

cell apoptosis and leakage of nuclear antigens may lead to 
higher autoantibody production [92]. This is the mechanism 
of action of environmental factors, for example, ultraviolet 
rays. Second, statins may directly influence T lymphocytes, 
changing the balance between Th1 and Th2 on the Th2 side, 
increasing the response of B lymphocytes and overproduc-
tion of autoantibodies [93]. However, the risk of post-statin 
lupus-like syndrome is low [16, 88].

Prophylactic anticoagulation is not recommended in 
patients diagnosed with antiphospholipid syndrome with-
out thromboembolic episodes, despite the level of antiphos-
pholipid antibodies. According to the guidelines, antico-
agulation is required in patients after thrombotic events 
[94]. Atherosclerotic plaques in the coronary arteries, 
SPECT-detected myocardial perfusion defects, or elevated 
right ventricle systolic pressure, often seen in patients with 
connective tissue disease [7, 68], are risk factors for death 
[95, 96]. The possible microthrombotic pathogenesis of 
these complications in autoimmune diseases directs the 
researcher’ attention to thrombosis prophylaxis in asymp-
tomatic patients with high levels of antiphospholipid anti-
bodies. In asymptomatic patients, aspirin or low molecular 
weight heparin was shown to efficiently reduce the number 
of thromboembolic complications in periods of higher risk 
(surgery, immobilization) [97]. Prophylaxis with aspirin and 
hydroxychloroquine was also efficient [98].

SARS‑CoV‑2 infection, endothelial 
dysfunction, and thromboembolism

The main cause of death from acute Covid-19 infection is 
adult respiratory distress syndrome (ARDS) and thrombo-
embolic complications, despite steroid treatment and anti-
coagulation [99–102]. In laboratory assessment, the acute 
phase of SARS-Cov-2 infection is characterized by hyper-
coagulable and hypofibrinolitic state (manifested mainly 
by high levels of D-dimers, fibrinogen, factor VIII, vWF, 
and high thrombin generation) [103, 104] together with the 
hyperinflammatory state (manifested for example, by high 
levels of interleukin [Il] 6 and 10, granulocyte–macrophage 
colony-stimulating factor and TNFa) [105].

The National Institute of Health and Care Excellence 
(NICE) defines the long-Covid or post-Covid syndrome 
as “signs and symptoms that develop during or after an 
infection consistent with Covid-19 and persist for more 
than 12 weeks and are not explained by an alternative 
diagnosis” [106]. In the study of nearly 50,000 people 
hospitalized in the UK for Covid-19 infection and dis-
charged alive, the half-year frequency of hospital read-
mission was 29.4%, and 12.3% of the patients died after 
discharge [89]. Hospital readmissions were 3.5 times 
higher and deaths were 7.7 times higher than those of 
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matched controls [107]. In the study of hospitalized 
Covid-19 infected patients in the USA, 20% were read-
mitted and 9% died within 60 days after discharge [108]. 
In the study of 767 patients who survived acute Covid-19 
infection in Bergamo, 6% had a pulmonary embolism or 
deep vein thrombosis during the first 81 days after dis-
charge [109].

In a study of 150 post-Covid patients, sustained eleva-
tion in D-dimers was a common finding after infection 
for up to 4 months (25.3% of patients) and occurred more 
frequently in those with severe acute diseases [110]. This 
was observed despite normalization of prothrombin time, 
activated partial thromboplastin clotting time, and the 
lack of evidence of hypofibrinogenemia or thrombocy-
topenia [110]. In 384 patients followed for a median of 
54 days after discharge, 30% had elevated D-dimer [107]. 
It is speculated that post-Covid thromboembolic compli-
cations may be immunothrombotic consequences of recent 
infection [111]. In the study of 30 patients after Covid-19 
observed up to 90 days after infection, compared to non-
Covid subjects with or without cardiovascular risk factors 
[112], the counts of circulating endothelial cells increased 
significantly compared to non-Covid subjects without 
cardiovascular risk factors. In the same study, the levels 
of ICAM and pro-inflammatory cytokines (Il-1β, Il-17A, 
Il-2, Regulated on Activation, Normal T Cell Expressed 
and Secreted [RANTES]) remained elevated after Covid-
19 infection. The authors state that Il-17A, Il-8, and Il-18 
activate endothelial cells during atherogenesis, and their 
elevated levels may suggest chronic development of ath-
erosclerotic plaques in post-Covid patients. SARS-CoV-2 
has been shown to predispose to systemic autoimmunity. 
Reactive arthritis and connective tissue disorders such 
as lupus and inflammatory myositis have been reported 
after COVID-19 [113]. Regarding the clinically evident 
progression of coronary atherosclerosis, major adverse 
cardiovascular events (MACE) were diagnosed in post-
Covid patients after discharge in 126 (121 to 131) per 
1000 person-years [89].

There are many possible ways in which coagula-
tion may be stimulated and atherosclerosis progression 
increased in post-Covid patients. However, according to 
data from acute Covid-19 studies, four main pathogenetic 
mechanisms may be involved: (1) endothelial activation/
dysfunction, (2) presence of antiphospholipid antibodies, 
(3) activation of the complement system, and (4) forma-
tion of neutrophil extracellular traps (NET).

(1) Endothelial activation and dysfunction

The recruitment and activation of inflammatory cells depend 
on the expression of many inflammatory mediators, such as 
cytokines, chemokines, and adhesion molecules: ICAM-1 

and VCAM-1 [114]. Tong et al. [115] showed that ICAM-
1, VCAM-1, and vascular adhesion protein-1 (VAP-1) 
were elevated in patients with mild Covid-19 disease and 
increased dramatically in severe cases.

A higher number of circulating endothelial cells were 
described in Covid-19 patients, especially those admitted to 
the intensive care unit. Their level was positively correlated 
with the soluble VCAM-1 [116]. The other study described 
an increase in circulating endothelial cells and a higher level 
of soluble ICAM-1 and sVCAM-1 [117]. In the study of 30 
patients after Covid observed up to 90 days after infection, 
compared to non-Covid subjects with or without cardiovas-
cular risk factors [112], the counts of circulating endothelial 
cells increased significantly compared to non-Covid subjects 
without cardiovascular risk factors. In the same study of 
ICAM, the levels remained elevated after Covid infection.

Activated endothelial cells are likely to release cytokines, 
which trigger the extrinsic coagulation pathway, suggest-
ing that recovered patients may be susceptible to the risk of 
thrombotic complications [118].

Plasma vWF antigen (vWF: Ag), high molecular weight 
multimers, and propeptide levels of vWF (vWFpp) are estab-
lished markers of endothelial injury [119, 120], markedly 
elevated during COVID-19 and may be crucial in endotheli-
itis and pulmonary microvascular occlusion in the patho-
genesis of COVID-19 [121]. High molecular weight vWF 
multimers secreted in response to acute endothelium activa-
tion within the lungs may be directly involved in the trigger 
of lung microangiopathy [122]. Furthermore, the increase 
in the ratio of vWF antigen activity to ADAMTS13 was 
strongly associated with the severity of COVID-19 [123, 
124].

(2) Antiphospholipid antibodies

LA is found in approximately one in two patients with 
COVID-19, while the presence of aCL and aβ2GPI has been 
observed less frequently (mainly in the IgM subclass and 
low and medium titer), and in most cases, there are transient 
antibodies (no confirmation after 12 weeks) [125].

Furthermore, non-criteria antiphospholipid antibodies have 
been described in Covid-19. These include anti-phosphatidyl-
serine (aPS), antiprothrombin (aPT), and anti-annexin V anti-
bodies in IgG and IgM isotypes, as well as aCL and aβ2GPI in 
IgA. The high frequency and diversity of aPL strongly suggest 
that these antibodies are actively induced during acute SARS-
CoV-2 infection. Antiphospholipid antibodies in COVID-19 
are mainly directed against β2GPI but show an epitope speci-
ficity different from antibodies in antiphospholipid syndrome 
(directed against β2GPI domain one, which is strongly corre-
lated with the risk of thrombosis) [126, 127]. Moreover, aPLs 
are not necessarily associated with thrombosis, especially if 
they are not persistent over time.
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The question is: Are these aPLs associated with the devel-
opment of vascular thrombosis, or are at least these antibod-
ies present in a specific clinical setting? Transitory aPLs are 
likely to be clinically irrelevant in patients with COVID-19, 
as in other infections, but detecting aPLs may help identify 
patients potentially at risk of thrombosis.

(3) Complement system activation

Complement system hyperactivation has been proposed as 
a potential driver of adverse outcomes in Covid-19 patients, 
given previous research of complement deposits found in 
tissue and blood samples and evidence of clinical improve-
ment with anticomplement therapy [128].

Complement C3 activation products (C3a, C3b, iC3b, 
C3c, and C3dg) were observed in the lung even 1 day after 
SARS-CoV-2 infection [129]. Furthermore, C5a and soluble 
C5b-9 that cause endothelium damage are elevated during 
infection [129].

It is tempting to speculate that complement has a positive 
effect during the first week of infection and then (2–3 weeks 
of infection and in long-Covid) could induce critical hyper-
coagulation and hyperinflammation.

(4) Formation of extracellular neutrophil traps (NET)

Complement activation through C3a and C5a induces the 
recruitment and activation of neutrophils, monocytes, 
eosinophils, and NETs. NETs are beneficial in host defense 
against viruses, but sustained NET formation—as seen in 
Covid-19 can trigger a cascade of inflammatory reactions 
that damage tissues and may enhance atherosclerotic plaque 
formation [129]. Complement activation in conjunction with 
neutrophilia and dysregulated NET formation is linked to 
ARDS, pulmonary inflammation, and thrombotic events. 
NETs initiate arterial and venous thrombosis by activating 
the contact pathway of coagulation, resulting in excessive 
generation of thrombin and C5a [130].

Elevated NET-specific markers, myeloperoxidase DNA 
and citrullinated histone H3, were found in infected patients 
[131].

Conclusions

Endothelial dysfunction related to general inflammation in 
SLE creates the basis for the onset and progression of ath-
erosclerosis and vascular thrombosis. Autoimmunity con-
tributes to the early development of atherosclerotic plaques, 
myocardial ischemia, and thromboembolic complications. 
The acute phase of SARS-Cov-2 infection is characterized 
by hyperinflammatory, hypercoagulable, and hypofibrinolitic 
states. Patients with SLE and Covid-19 share similarities in 

endothelial activation/dysfunction, presence of antiphos-
pholipid antibodies, activation of the complement system, 
and formation of extracellular neutrophil traps. This article 
presents our perspective on mechanisms underlying SLE and 
Covid-19, particularly endothelial dysfunction.
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