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Abstract

Giant cell arteritis (GCA) is a systemic vasculitis in individuals older than 50 years, characterized by headaches, visual distur-
bances, painful scalp, jaw claudication, impairment of limb arteries, and systemic inflammation, among other symptoms. GCA
diagnosis is confirmed by a positive temporal artery biopsy (TAB) or by imaging modalities. A prominent acute phase response
with inflammation is the hallmark of the disease, predominantly targeting large- and medium-sized arteries leading to stenosis or
occlusion of arterial lumen. To date, there are no reliable tissue markers specific for GCA. Scarce reports have indicated the
importance of epigenetics in GCA. The current systematic review reports significantly changed candidate biomarkers in TABs of

GCA patients compared to non-GCA patients using qPCR.
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Introduction

Giant cell arteritis (GCA) or temporal arteritis is a granuloma-
tous vasculitis affecting large- and medium-sized arteries, pre-
dominantly the aorta and its major branches [1]. GCA is the
most common systemic vasculitis, occurring in individuals
older than 50 years, reaching a peak between 70 and 80 years.
GCA classically presents with headache, scalp tenderness, jaw
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claudication, and visual disturbances accompanied by an in-
tense acute phase response [2]. Patients with GCA mostly
exhibit elevated serum erythrocyte sedimentation rate, C-
reactive protein, and serum amyloid A. However, no GCA-
specific cell or tissue markers have been identified to date. It is
projected that by 2050, more than 3 million people will have
been diagnosed with GCA in Europe, North America, and
Oceania, with 1/6th visually impaired [3].
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The diagnosis of GCA is confirmed either histologically
or by imaging techniques. Temporal artery biopsy (TAB)
shows segmental pan-arteritis with non-necrotizing granu-
lomatous inflammation. The arterial wall is infiltrated by T
lymphocytes, macrophages, and multinucleated giant cells
[4]. Knowledge of GCA pathogenesis and mechanisms has
recently progressed considerably. Guevara et al. empha-
sized three phases of the immune system in GCA patients.
The first phase is the activation of adventitial dendritic
cells via toll-like receptors, production of cytokines/
chemokines that are responsible for the second stage,
e.g., recruitment of CD4" T cells and their subsequent po-
larization towards Thl and Th17. Treg cells were reported
to be decreased in the blood, suggesting a Th17/Treg im-
balance in GCA. Inhibition of IL-6 with tocilizumab cor-
rects the imbalance by decreasing Th17 and increasing
Treg cells, as opposed to corticosteroids, which strongly
inhibit Th17 cell responses, without affecting Treg cells.
Once Th1/Th17 cells infiltrate the arterial wall, they pro-
duce large amounts of IFN-y and IL-17. In the third phase,
IFN-y, via chemokines (such as CCL2, CXCL9, CXCL10,
CXCLI11) produced by vascular smooth muscle cells
(VSMC), recruits monocytes, which merge into multinu-
cleated giant cells, representing the hallmark of GCA.
Stimulated monocytes differentiate into macrophages that
produce IL-6, IL-1f3, and TNF-«, amplifying local inflam-
mation. Activated macrophages and VSMC produce nitric
oxide that triggers destruction of cellular matrix proteins
via matrix metalloproteinases (MMPs), such as MMP-2
and MMP-9. Lastly, stimulated macrophages and injured
VSMCs produce growth factors, leading to intimal hyper-
plasia [5].

Zhang et al. also reported that transcriptome analysis of
GCA-affected temporal arteries exhibited low expression of
coinhibitory ligand programmed death ligand-1 on dendritic
cells (PD-L1'), concurrent with enrichment of programmed
death-1 (PD-1) receptor on T cells (PD-1") [6]. A breakdown
of tissue-protective PD-1/PD-L1 checkpoint leads to
dysrupted vascular immunoprivilege. Consequently, PD-17
CD4" T cells enter the otherwise immunoprivileged arterial
walls and secrete IFN-y, IL-17, and IL-21, which drive
inflammation-associated angiogenesis and facilitate intimal
hyperplasia [7, 8].

B cells have also been found in TABs [9] with recent evi-
dence indicating a disturbed distribution of B cells in GCA,
suggesting their potential role in the pathogenesis of the dis-
ease [10]. Tertiary lymphoid organs are found in up to 50% of
GCA-positive arteries and could represent sites where im-
mune responses against viral antigens are organized [11].

Although obtaining TABs is a relatively small and safe
procedure, this is an invasive technique and could be falsely
negative. Just recently, evidence-based recommendations and
guidelines have been developed and published for the use of
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imaging modalities, such as ultrasound, in primary large ves-
sel vasculitis, including GCA, advocating their use in daily
clinical practice [12].

Genetic, as well as environmental factors are known to be
involved in GCA pathogenesis [4]. Until recently, the most
important genetic association with GCA has been reported for
the human leukocyte antigen (HLA) region, mainly the alleles
of HLA-DRB1*#04 (DRB1*0401 and DRB1*0404), IL-10
and vascular endothelial growth factor [13]. A recent
genome-wide association study confirmed the association of
HLA class II with GCA and identified several single-
nucleotide polymorphisms (SNPs) in the gene encoding plas-
minogen [14]. Interestingly, an association of GCA with SNPs
in the gene coding for tyrosine phosphatase non-receptor type
22 (PTPN22), involved in T and B cell receptor signaling
pathways, was observed in four analyzed populations of
GCA patients [15].

At the interface of genetic and environmental factors, there
is the growing field of epigenetics, which influences gene
expression without involving changes in the underlying
DNA sequence. Bird A. refined the definition of epigenetics
as “the structural adaptation of chromosomal regions so as to
register, signal or perpetuate altered activity states” [16].
Epigenetic events include DNA methylation, histone modifi-
cations, nucleosome remodeling [17], and regulation by non-
coding RNAs [18]. DNA methylation is an epigenetic mech-
anism involving the addition of a methyl group to cytosines,
primarily within CpG dinucleotides. In general, DNA meth-
ylation regulates gene expression by recruiting proteins in-
volved in gene repression or by inhibiting the binding of tran-
scription factors to DNA. This reaction is catalyzed by a fam-
ily of DNA methyltransferases (DNMTs). DNMT3a and
DNMT3b can establish new methylation pattern to unmodi-
fied DNA and are therefore known as de novo DNMTs, while
DNMT1 is primarily responsible for maintaining DNA meth-
ylation pattern from cell to cell [19].

Alterations in cellular epigenetic states are a hallmark of
human disease, including cancer and autoimmune diseases
[20, 21]. A number of enzymes exists that act as writers,
erasers, and readers for DNA methylation and histone marks
as reviewed in [22]. This makes chromatin marks reversible
and targetable by epigenetic drugs. In 2006, the first epigenet-
ic drugs (decitabine and vorinostat) were approved for the
treatment of cancer [22]. Besides, a new class of small mole-
cule inhibitors was developed, which inhibits binding of BET
family of histone readers to acetylated histones [22]. These
inhibitors have demonstrated potent anti-inflammatory activi-
ties [23, 24].

Response to environmental factors is often mediated by
non-coding RNAs, in particular, by microRNAs (miRNAs)
[25]. miRNAs are short non-coding RNAs with 18-25 nucle-
otides in length that can regulate gene expression post-
transcriptionally by inhibiting translation or inducing mRNA
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degradation and can contribute to different physiological and
pathological processes. miRNAs target the 3’ untranslated re-
gion of their target mMRNA molecule and control their stability
and protein interactions. A single miRNA can regulate the
expression of various different target mRNAs [26].
Deregulated miRNAs have been reported in GCA as well as
in other systemic vasculitides, such as in antineutrophil
antibody-associated vasculitis, Behcet’s disease, Kawasaki
disease, and IgA vasculitis [18].

Recently, our group reviewed significantly modified pro-
tein levels of serological biomarkers in GCA [27], exposing
IL-6 as the most highly elevated analyte in the circulation of
GCA patients, as well as confirmed this experimentally, along
with serum amyloid A and IL-23 [28].

In the present study, we targeted studies showing altered
gene expression, DNA methylation, and miRNA expression
in patients with GCA, with the aims to identify significantly
changed tissue biomarkers in GCA, to investigate most prom-
ising markers using analyte frequency and to elucidate their
effects on disease pathogenesis.

Selected studies and inclusion criteria

We performed a systematic review of publications reporting
on mRNA expression and epigenetics associated with GCA
and ultimately, produced a priority listing of most promising
tissue biomarkers involved in GCA. We searched for GCA
biomarkers in the electronic databases PubMed and Google
Scholar using the following search terms: [(‘Giant cell arteri-
tis’, OR ‘GCA’ OR “Vasculitis OR ‘Large vessel vasculitis”)
AND (‘Biomarkers’ OR ‘qPCR’ OR ‘mRNA’ OR ‘miRNA’
OR ‘“epigenetics’ OR ‘DNA methylation” OR ‘histone modi-
fication’)] and cross-checked them. The articles were
reviewed in a two-stage process (Fig. 1). In the first stage of
the review, abstracts of all identified articles were screened.
Editorials, case reports, and notes were excluded. In the sec-
ond stage of the review process, full texts of the remaining
studies were evaluated. A checklist of specified inclusion
criteria was used to ensure uniformity in the assessment of
the identified manuscripts. The final articles that were selected
(n=14 for mRNA, n=1 for miRNA, and n=1 for DNA
methylation) all fulfilled the following eligibility criteria: writ-
ten in English, compared tissues from patients with GCA with
a control group or compared tissues from GCA patients
before/after treatment, were informative about the type of
method used (qPCR studies) and provided details about the
biomarkers identified. Articles that did not meet two or more
of these criteria were excluded. Two independent reviewers
extracted data from the publications. Analyte frequency anal-
yses were performed based on 12 reports comparing mRNA
levels in cross-sectional studies of TABs from GCA patients
to non-GCA controls, using gPCR.

*Corbera-Belalta et al. and Visvanathan et al. were exclud-
ed due to not comparing TABs from GCA/non-GCA patients,
but rather using 5-day cultured biopsies of GCA/non-GCA
patients and longitudinal comparison of TABs before/after
treatment, respectively.

Overview of the results

In total, we found 14 reports using qPCR with designated
mRNA changed levels of analytes in TABs of patients with
GCA (Table 1), from which we then excluded the longitudinal
and biopsy-culturing reports. From the remaining 12 mRNA
studies and 2 reports on DNA methylation and miRNAs, we
extracted data for 52 unique analytes. An overview is provid-
ed of the significantly changed tissue biomarkers from TABs
of GCA patients (Fig. 2), as well as the analyte frequency
calculated for the mRNA studies (Fig. 3).

Gene expression

A variety of significantly modified candidate tissue bio-
markers important for GCA has been reported in the literature.
Significantly changed mRNA expression levels in TABs of
GCA patients vs. non-GCA controls were observed for cyto-
kines and chemokines (IL-1f3, IL-6, IL-17, IFN-y, IL-8,
CXCLI13), enzymes involved in tissue degradation (e.g.,
MMP-2, MMP-9), their tissue inhibitors (e.g., TIMP-1,
TIMP-2), and molecules involved in regulation of lympho-
cytes, such as a proliferation-inducing ligand (APRIL) and B
cell activating factor (BAFF) (Fig. 2 and Table 1).

Cytokines and chemokines

In the pathogenesis of GCA, activated and mature dendritic
cells produce chemokines and cytokines, such as CCLI18,
CCL19, CCL20, CCL20, and IL-18, which recruit CD4* T
cells to the arterial wall. The pro-inflammatory cytokines IL-
1, IL-6, and IL-23 shift T cell differentiation towards the
Th17 lineage, whereas IL-12 and IL-18 are responsible for
differentiation of Thl cell lineage. Th17 and Thl cells pro-
duce IL-17 and IFN-y, respectively. Production of several
other chemokines (CCL2, CXCL9, CXCL10, CXCL11) leads
to CD8* T cells and monocyte recruitment [4]. Cytokines and
chemokines are extensively produced at the site of inflamma-
tion and it is therefore not surprising that most studies identi-
fied their deregulated mRNA expression in TABs from GCA
patients.

As early as 1994, Weyand et al. reported the presence of IL-
13, IL-2, IL-6, IFN-y, and TNF-ox mRNA in significantly
higher percentage of TABs from GCA patients as compared
to non-GCA controls. Similar percentages were also shown
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Fig. 1 Selection process for
studies analyzing mRNA
frequency in GCA patients

Potentially relevant records from literature
search of abstracts
(n=34; PubMed, Google Scholar)

Excluded editorials, case
reports (n=5)

Full text articles evaluated (n=29)

Records excluded for
reviews, descriptive
publications without
significant changes
indicated (n=13)

Original biomarker reports assessed for

eligibility (n=16)

- mRNA experimental studies (n=14, TableI)
- Epigenetic studies (n=2)

4 reports excluded:

2 epigenetic studies are
described separately and

2 reports excluded due to
differential specifics of the
studies *

Analyte frequency analysis (n=12, Fig. 3)

for patients with polymyalgia rheumatica, except for [FN-y,
suggesting that this Th1-related cytokine might be involved in
the progression of overt vasculitis [29].

Deng et al. reported in 2010 on significantly higher mRNA
expression of IL-1(3, IL-6, IL-12p35, IL-12p40, IL-23p19, IL-
17, IFN-y, and Foxp3 in TABs of untreated GCA patients
compared to controls (suspected GCA with negative TAB).
Interestingly, in TABs of GCA patients obtained 3—9 months
after glucocorticoid therapy, a marked decrease in the expres-
sion of all above mentioned parameters, except for [FN-y and
Foxp3, was observed as compared to the TABs of untreated
patients. Moreover, the frequencies of circulating Th17 and
Thl cells were significantly expanded in the circulation of
untreated GCA patients with frequencies of only Th17 cells
decreasing after therapy. The study therefore concluded that
glucocorticoid therapy selectively suppresses Th17 responses
in circulation as well as in vasculitis lesions. Th1 responses are
spared, indicating that glucocorticoids effectively treat the
acute manifestations of GCA, associated with excessive pro-
duction of Th17 promoting cytokines (e.g., IL-17) while fail
to abrogate vasculitis, mediated by Thl cells and correspond-
ing cytokines [30]. However, this was not confirmed in a
study performed by Visvanathan et al., showing a nonsignif-
icant decrease in IL-1, IL-6, IL-23, or IL-17 when comparing
matched paired TABs from untreated and treated patients,
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while confirming persistently elevated IFN-y expression.
The limitation of this study was the low number of included
TABs from GCA patients (n =4) [42]. The same authors also
showed higher expression of TNF-« in patients with active
disease, which was previously also shown for IL-1f3 and IL-6
[31]. Just recently, Manku et al. reported that IL-6 may con-
tribute to the accumulation of CD4* T cells in GCA by
supporting their proliferation and survival within the arterial
wall, through mechanisms that are independent of effects on
local Treg expansion. This provides insight both, into how IL-
6 contributes to disease pathology, as well as to the importance
of tocilizumab therapy in GCA patients [43].

The levels of another cytokine, IL-9, are not influenced
by glucocorticoid therapy. Higher expression of IL-9 was
accompanied by overexpression of its receptor on neutro-
phils, thus emphasizing their role in GCA pathogenesis.
Moreover, IL-9 could play an important role in GCA chro-
nicity and tissue damage in glucocorticoid-resistant GCA
patients [32].

A number of studies later confirmed higher expression of
Th17-associated cytokines, e.g., IL-13, IL-6, and IL-17
[32-34, 36, 37] as well as IFN-y, produced mainly by Thl
cells [33, 35, 37].

Increased expression of IL-22 and IL-22R1 in inflamed
TABs of GCA patients (as opposed to TAB negative controls)
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Table 1 Studies investigating mRNA gene expression in TABs of GCA patients

Reference # GCA/control group Significantly changed analytes Determined not significant
Weyand et al. [29] 15/10 IL-1B, IL-6, TGF-B, TCR Ca, IL-2, IFN-y TNF-&, GM-CSF, IL-4, IL-5
Deng et al. [30] 8/8 IL-17, IFN-y, Foxp3, IL-1, IL-6, IL-12p35, -

IL-12p40, IL-23p19

/8" IL17,1L1 B, IL-6, IL-23 IFN-y, IL-12

Hernandez-Rodriguez et al. [31] 36/11 IL-13, TNF-a¢ IL-6
Ciccia et al. [32] 35/15 IL-8, IL-9, IL-9R, IL-17, TSLP, TGF-f3 IL-4
Ciccia et al. [33] 18/15 1L-32, IL-6, TGF-, IL-13, TNF-«, -

IFN-y, IL-27p28
Ciccia et al. [34] 50/30 CXCL13, CXCRS5, LT-33, BAFF, CCL21, CCR7

APRIL, IL-7, IL-7R, IL-17
Ciccia et al. [35] 20/15 IFN-y, IL-33, STAT6 IL-4, IL-5, IL-25
Espigol-Frigolé et al. [36] 57/19 IL-17A -
Corbera-Bellalta et al. [37] 28/22° IL-1p3, IFN-y, CCL3, CCL4, CCL5, MMP9 IL-6, TNF-, CCL2, MMP2,

IL-8, TIMP-1, TIMP-2,COL 1,
COL I1I, PDGF-A, PDGF-B

Lakota et al. [38] 6/6 Ferritin, MMP2, MMP9, TIMP1, MMP12, ICAM-1, IL-6, TNF-«

TIMP2, MMP2/TIMP2, MMP9/TIMP1,

VCAM-1, MARCO, IL-8, IL-12, ApoAl
Segarra et al. [39] 35/12 MMP9, MMP14, MMPY/TIMP1, MMP2

MMP2/TIMP2, TIMP1, TIMP2
Rodriguez-Pla et al. [40] 19/13 MMP9, MMP12 MMP2
Lozano et al. [41] 35/19 ET-1, ECE-1,ETAR, ETgR -
Visvanathan et al. [42] 4/4° PDGF-A, TGF-f3, ICAM-1 TNF-«, IL-12, MMP9, PDGF-B,

IL-1PB, IL-6, IL-23, IFN-y, IL-17

mRNA expression levels as determined by qPCR. The number of study subjects, the analytes found significantly regulated and the ones showing no
statistically significant change are reported. The control group was non-GCA, suspected GCA with negative TAB, unless otherwise indicated. Biopsies

were analyzed at the time of diagnosis, except in cases below:
*Biopsy cultured for 5 days prior to assay

® Longitudinal observation before/after treatment in paired TAB

was recently shown by immunocytochemistry and confirmed
by real-time PCR on primary cultures obtained from TABs, as
well as peripheral blood mononuclear cells. IL-22 protein was
significantly increased, also in plasma of TAB positive GCA
patients. All this exposes IL-22, as a potential player in GCA
pathogenesis [44].

Significantly higher expression of mRNA for IL-32 was
observed for biopsy-proven GCA patients (n=11) com-
pared to non-GCA controls (n=5), which was the first
study to show IL-32 overexpression in inflamed arteries
of GCA patients. The expression of IL-32 was associated
with the Thl inflammatory response and occurred mainly
in neovessels of inflamed arteries indicating a role of IL-32
in the organization of the vascular inflammatory response
[33]. The same group also observed increased expression
of IL-33, a member of IL-1 cytokine family, in TABs of
GCA patients as compared to non-GCA controls, decreas-
ing after glucocorticoid therapy. IL-33 positively correlat-
ed with the number of neovessels in TABs and the number
of inflammatory parameters, suggesting a role for IL-33 in
inflammation and angiogenesis [35].

No elevated expression of Th2-related cytokines, such as
IL-4, IL-5, IL-25, was observed in TABs of GCA patients
compared to controls [29, 32, 35].

Higher expression of chemokines and chemokine recep-
tors, e.g., CCL3, CCL4, CCL5, CXCL13, CXCRS, and IL-
8 has also been reported in different studies [34, 37, 38].
Interestingly, Ciccia et al. observed higher expression of
CXCL13 and CXCRS, together with IL-7 and IL-17,
which are all involved in lymphoneogenesis in TABs from
GCA patients. These patients were characterized by artery
tertiary lymphoid organ aggregates with a well-defined organiza-
tion of separated T and B cell-rich areas. The presence of these
aggregates correlated with a strong inflammatory response but not
with the duration of clinical symptoms and signs specific for
GCA [34].

Enzymes involved in tissue degradation
Ischemic manifestations of GCA are related to the narrowing

of the artery and are a consequence of the remodeling process
taking place in the arterial wall. In the media, IFN-y-activated
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DNA methylation regulation
Hypomethylated TNF-a, LT-a, LT-p,
CCR7, RUNX3, CD 6, CD40LG,
IL-2, IL-6, NLRP1, IL-1B, IL-18,
IL-21, IL-23R, INF-y

Changed DNA methylation pattern
of NFAT

miRNA expression

miR-21, miR-146-a,

miR-146b-5b, miR-150,

miR-155, miR-299-5p

ppigenetic

Fig. 2 Significantly modified tissue biomarkers in GCA patients at the
mRNA, miRNA, and methylation levels. Legend: biomarkers measured
in TABs of GCA as compared to non-GCA patients. Abbreviations: Apo
Al apolipoprotein Al; APRIL, a proliferation-inducing ligand; BAFF, B
cell activating factor; CCL, chemokine (C-C motif) ligand; CXCL,
chemokine (C-X-C motif) ligand; CXCR, C-X-C chemokine receptor;
ECE-1, endothelin-converting enzyme-1; ET-1, endothelin-1; ETAR,
endotelin receptor A; ETgR, endotelin receptor B; FOXP3, forkhead
box P3; ICAM, intercellular adhesion molecule-1; IL, interleukin; IFN-

macrophages produce mediators, detrimental to the arterial
tissue as well as MMP, enzymes with the ability to degrade
elastin causing destruction of the media layer and digestion of
internal elastic lamina. MMP-2 and MMP-9 both possess
gelatinase activity and MMP-9 also plays a role in migration
of VSMCs from media to the intima, which leads to intimal
hyperplasia [4]. Segarra et al. observed significantly higher

Expression in

GCA

TABs

APRIL, Apo AL BAFF, CCL2, CCL3,
CCL4, CCL5, CXCLI3, CXCRS,
ECE-1, ET-1, ET,R, ET:R,
FERRITIN, FOXP3, ICAM- 1, TL-1,
1L-2, IL-6, IL-7, IL-7R, IL-8, IL-9,
IL-9R, IL-12p35, IL-12p40, IL-17,
1L23p19, 1L-27p28, IL-32, IL-33,
IFN-y, LT-B, MARCO, MMP9,
MMP12, MMP14, MMP2/TIMP2,
MMPY/TIMP1, PDGF-A, STAT6,
TGF-, TCRCq, TIMP1, TIMP2, TNF-,
TSLP, VCAM

7, interferon y; LT-3, lymphotoxin-f3; MARCO, macrophage receptor
with collagenous structure; MMP, matrix metalloproteinase; NFAT,
nuclear factor of activated T cells; NLRP3, NOD-like receptor family,
pyrin domain containing 3; PDGF, platelet-derived growth factor;
RUNX3, runt-related transcription factor 3; STAT6, signal transducer
and activator of transcription 6; TCRC«x, T cell receptor Cax; TGF-f3,
transforming growth factor-3; TIMP, tissue inhibitor of
metalloproteinase; TNF-«, tumor necrosis factor-; TSLP, thymic
stromal lymphopoietin, VCAM-1, vascular adhesion molecule-1

expression of MMP-9 and MMP-14 in TABs of GCA patients
compared to non-GCA controls, whereas MMP-2 was also
expressed in non-inflamed arteries and negatively correlated
with MMP-9 expression. Similarly, in GCA TAB samples,
tissue inhibitor of MMP-9 (TIMP-1) mRNA was significantly
upregulated, whereas TIMP-2 mRNA was significantly de-
creased compared to controls. Moreover, MMP-9 expression

B found sigificant
O not found significant

Analyte

MMP2
MMP2/TIMP2
MMP9
MMPO/TIMP1
STAT6

|
3 4 5 6

# of studies

Fig. 3 Analyte frequencies in 12 GCA tissue biopsy studies (52 unique analytes)
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tended to decrease after therapy, but was not significantly
modified. The authors have also proposed to calculate
mRNA expression ratios of MMPs/TIMPs, specifically
MMP-9/TIMP-1 and MMP-2/TIMP-2, which were signifi-
cantly changed in GCA patients compared to controls [39].
This has been confirmed by Lakota et al. in 2015 [38]. MMP-
9 mRNA expression levels were also found to be significantly
elevated in GCA patients in a different study in 2014 [40] and
in supernatants of cultured arteries of GCA patients [37].
Interestingly, the MMP-12 gene has also been shown to be
overexpressed in TABs of GCA and could also be important
in disease pathology [40].

Endothelial-related proteins

Lozano et al. aimed to prove that endothelin axis might play a
role in inflammation-induced vasospastic phenomena that can
lead to development of disease-related ischemic complica-
tions. In their study, decreased mRNA expression of
endothelin-1, endothelin-converting enzyme-1, and
endothelin receptors A and B were observed in TABs of
GCA patients compared to non-GCA controls; however, no
differences were found between patients with or without is-
chemic complications [41].

Analyte frequency

Frequency of analytes was calculated from the 12 cross-
sectional studies indicated in Table 1 (excluding longitudinal
and culturing studies), based on the number of reports avail-
able for a particular analyte (Fig. 3). The highest analyte fre-
quency (n=5) was obtained for IL-6; however, only 3/5 re-
ports indicated significantly changed levels of IL-6. Three
analytes (IFN-y, IL-1f3, and TNF-&) were measured in four
reports; however, only IFN-y and IL-13 were found consis-
tently significantly elevated in all reports, while TNF-o was
found without a significant change in two reports.

IL-17, TGF-3, and MMP-9 were all found to be signifi-
cantly changed in three studies in TABs of GCA patients; on
the other hand, both IL-4 and IL-5 consistently showed no
significant change in 3/3 and 2/2 studies in TABs,
respectively.

Microarray studies

Published transcriptome studies reporting on microarray gene
expression data in TABs of GCA patients are scarce, with a
report in GEO DataSet repository (#GSE63425) on VSMCs
isolated from TABs of suspected GCA patients [45] which
highlighted increased VSMC proliferation during GCA con-
tributing to vessel wall remodeling and arterial obliteration.
Inhibition of endothelin-1 and specifically, its receptor with
macitentan could reverse this phenotype, and was offered as

promising therapy, in addition to glucocorticoids. Another re-
port compared two GCA positive TABs versus 2 GCA nega-
tive TABs, with differential expression of over 2000 genes
and chitinase-3-like protein 1 as most up-regulated, followed
by macrophage receptor with collagenous structure
(MARCO) and the serine proteinase inhibitor SERPIN A1l
[40]. MARCO was also confirmed to be significantly upreg-
ulated in TABS of GCA versus non-GCA patients [38].
Among the MMPs, only MMP-12 and MMP-9 showed sig-
nificant upregulation in microarrays [40].

Epigenetics

Only one study aimed to assess DNA methylation status [46].
Equally, only one report investigating miRNA expression in
TABs of GCA patients exists to date [47]. Identified factors
were mainly associated with Th1l and Th17 cell responses,
inflammation, and cellular senescence. An overview is pro-
vided in the left panel of Fig. 2.

DNA methylation

Coit et al. identified 1555 hypomethylated CG sites in 853
genes in TABs of GCA patients (n = 12) compared to non-
GCA age-, sex-, and ethnicity-matched controls (n =12),
many of which were associated with Th1l and Th17 cells
[46]. Pro-inflammatory hypomethylated genes included
TNF-«, lymphotoxins-« and -f3, chemokine receptor CCR7,
runt-related transcription factor 3 (RUNX3), cluster of differ-
entiation (CD) 6, CD40LG, IL-2, IL-6, inflammasome com-
ponent NOD-like receptor P1 (NLRP1), IL-1f3, IL-18, IL-21,
IL-23R, and IFN-y. Changes in DNA methylation patterns
were also shown for the nuclear factor of activated T cells
(NFAT), a critical factor mediating production of proinflam-
matory cytokines, including IL-23. A role was suggested for
increased activity of NFAT signaling pathway in GCA. This
was confirmed by immunohistochemistry, which showed in-
creased expression and nuclear localization of NFAT1. NFAT
signaling downstream targets, such as interleukin (IL)-21/IL-
21R and CD40L, were found overexpressed in GCA-affected
arteries. Therefore, the regulation of NFAT expression at the
DNA methylation level could promote activation of the Th17
cell response in GCA. It was proposed that a specific NFAT
inhibitor (e.g., dipyridamole) would be well tolerated and,
with added beneficial anti-platelet activity, could have thera-
peutic potential in GCA [46].

miRNA expression
One report of dysregulated miRNAs in GCA has been pub-

lished by comparing inflamed TABs from GCA patients, non-
inflamed TABs from GCA patients, and non-inflamed TABs
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from non-GCA patients [47]. miR-21, -146-a, -146b-5p, -150,
-155, and -299-5p were found to be significantly more
expressed in inflamed TABs from GCA patients. On the other
hand, negative TABs from patients with GCA or non-GCA
had a similar miRNA expression profile. Expression of miR-
146b-5p was the most promising diagnostic biomarker, dis-
criminating inflamed from normal TABs with 100% specific-
ity and sensitivity. However, mRNA expression levels of the
known protein targets did not negatively correlate with
miRNA expression levels. Interestingly, a comparison of the
same miRNAs using peripheral blood mononuclear cells de-
rived from the same donors across the groups demonstrated no
differences in their miRNA profiles. These data suggest that
the deregulation of these miRNA levels is tissue specific.
miR-146-a, -146b-5p, -21, and -155 can be induced by cellu-
lar senescence. Indeed, low-grade, systemic inflammation per-
sistent in the elderly and age represent considerable risk fac-
tors for GCA development. The observed miRNA profiles
might indicate a premature cellular senescence, contributing
to inflammation, and might be involved in disease pathogen-
esis. The main limitation of this study is that most patients
were not steroid-naive when miRNA analysis was performed
[47].

Conclusion

Judging from the analyte frequency data, IFN-y, IL-13, IL-
17, TGF-3, and MMP-9 are the most promising, significantly
elevated tissue markers that could aid clinicians in their eval-
uation of GCA pathogenesis, as well as potential therapy. This
also goes well in line with the experimental data shown re-
cently by Weyand et al. that PD-1* CD4" T cells in GCA
secrete IFN-vy, IL-17, and IL-21, thereby driving
inflammation-associated angiogenesis and intimal hyperplasia
[7].

The current report also exposes 3/5 studies showing IL-6
mRNA to be significantly elevated in TABs of GCA patients
as compared to non-GCA patients, while 5/6 studies reported
significantly elevated circulatory IL-6 in GCA patients versus
healthy blood controls [27]. Studies to date have shown effi-
cacy of anti-IL-6 antagonists in GCA [48].

There is a limited number of studies on epigenetics in
GCA. To date, only a few reports have addressed the epige-
nome in GCA indicating that epigenetics could underpin the
variable clinical course of GCA [49]. So, investigating epige-
netic mechanisms in GCA could crucially contribute to the
understanding of disease complications, as well as promote
the development of novel targets for therapies in the future.
Taken together, the data presented requires validation by mul-
tiple groups on larger populations of patients.
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