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qualitative transformations associated with several metabo-
lites generated by the gut microbiota are implicated in the 
pathophysiological dimensions of illnesses such as meta-
bolic syndrome, inflammatory bowel disease, diabetes mel-
litus (types 1 and 2), asthma, colon cancer, obesity, major 
depression, and autism (Diaz Heijtz et al. 2011; Vijay-Kumar 
et al. 2010; Uronis et al. 2009; De Filippo et al. 2010).

A fundamental function of the gut microbiota that has 
long been understood by the research community is the 
metabolism of indigestible matter consumed by the host, 
thereby contributing to optimal energy production. In this 
context, as a prominent part of the human diet, amino acids 
play a crucial role not simply by serving as the basic ele-
ments of proteins and peptides, but more importantly in driv-
ing the production of numerous bioactive molecules that 
contribute to the maintenance of signaling pathways and 
metabolism (Sato et al. 2006; Wu 2013; Wu et al. 2014). 
Researchers have compared germ-free mice and convention-
alized mice and found that the latter possessed an altered 
distribution of free amino acids in the gastrointestinal (GI) 
tract, importantly indicating that the resident species of the 
gut microbiota are crucial to host amino acid homeostasis 
and health (Mardinoglu et al. 2015). The purpose of the 
present review is to outline how host nutritional status and 
physiological health are prominently influenced by amino 
acid metabolism in the gut microbiota.

Microbial amino acid metabolism

Gut microbiota and the regulation of amino acid 
catabolism and utilization

The gut microbiota performs a crucial function in facilitat-
ing the regulation of the amino acid pool and profile over 

Abstract New evidence has emerged in recent years to 
suggest a strong link between the human gut microbiota, its 
metabolites, and various physiological aspects of hosts along 
with important pathophysiological dimensions of diseases. 
The research indicates that the gut microbiota can facilitate 
metabolite production in two ways: first, the resident spe-
cies of the gut microbiota use the amino acids produced 
from food or the host as elements for protein synthesis, and 
second, conversion or fermentation are used to drive nutrient 
metabolism. Additionally, the gut microbiota can synthesize 
several nutritionally essential amino acids de novo, which is 
a potential regulatory factor in amino acid homeostasis. The 
primary objective of this review is to summarize the cur-
rent literature relating to the ways in which microbial amino 
acids contribute to host amino acid homeostasis.

Keywords Amino acids · Gut microbiota · Dietary · 
Tryptophan · Obesity · Type 2 diabetes mellitus

Introduction

Host homeostasis with respect to issues of physiology and 
metabolism is crucially underpinned by the gut microbiota 
and its metabolites (Human Microbiome Project C 2012). 
Recent literature indicates that various quantitative and 
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the course of amino acid digestion and absorption. It should 
be noted that the amino acid pool refers to the overall num-
ber of amino acids, whereas the amino acid profile refers to 
the compositional features of amino acids on an individual 
basis. It is also noteworthy that a comparative examination 
of germ-free and conventionalized mice demonstrated that 
the resident bacterial species of the gut influenced the free 
amino acid distribution in the GI tract (Mardinoglu et al. 
2015).

Using the standard microbiological technique of plate 
counting, studies in the literature have also reported that 
the bacterial species that predominate in using single 
amino acids or pairs of amino acids are effectively distinct. 
Research showed that in milk-fed piglets the microbiota of 
the small intestine draws on lysine (Han et al. 2017). Fur-
thermore, the researchers determined that lysine catabolism 
inside the intestinal mucosa occurs at a higher rate than 
lysine absorption through the mucosa. Evenepoel et  al. 
(1999) determined the efficiency of protein breakdown prior 
to amino acid absorption in the small intestine, and noted 
that significant quantities of amino acids are not assimi-
lated in humans. In recently conducted research address-
ing the resident bacterial species within the human colon, 
the findings indicated substantial quantities of protein- and 
amino acid-fermenting bacteria. Specifically, bacteria of the 
Clostridium genus located in the large intestine (the funda-
mental bacteria for lysine or proline utilization) are the key 
driver of amino acid fermentation, whereas bacteria of the 
Peptostreptococcus genus are the key driver of glutamate 
or tryptophan use. Nevertheless, it is important to note that 
several species could play a prominent role in amino acid 
metabolism in the large intestine, such as bacteria of the 
genera Fusobacterium, Bacteroides, and Veillonella and the 
species Megasphaera elsdenii and Selenomonas ruminan-
tium (Dai et al. 2011).

In view of this, the fundamental consideration is that 
amino acid utilization can be directed toward the production 
of bacterial cell components and, furthermore, that amino 
acids can be catabolized through distinct pathways. Moreo-
ver, the diverse nature of amino acid metabolism in the resi-
dent species of the gut microbiota can result in beneficial or 
adverse impacts on the host.

The impact of dietary protein on the gut microbiota

The overall profile of the gut microbiota is influenced by 
numerous variables, including the following: (1) host-based 
factors (genetics, digestive secretions, digestive physiology, 
diet, health, drug use, and innate and adaptive immunity); 
(2) microbiological factors (nutrient and adhesion site com-
petition, metabolic cooperation, and bacterial antagonism); 
and (3) environmental factors (local pH, the presence of 
substrates, redox potential, and geography). One of the 

fundamental variables in this respect is the host diet, which 
has been shown to have a profound impact on the profile and 
operation of the microbiota of the GI tract (Rist et al. 2013). 
Moderating dietary proteins or amino acids could represent 
a strategic approach for the control of amino acid-fermenting 
bacterial species and their metabolic pathways, which in turn 
could have an impact on the metabolism of the host. In view 
of this, it is important to consider the previous research pro-
jects that have sought to determine the effects of dietary 
protein sources on the overall profile of the gut microbiota.

Shen et al. (2010) examined human fecal batch cultures 
and revealed a significant rise in Clostridium perfringens 
combined with a significant fall in bacteria of the Bifido-
bacteria genus after 2 days of incubation with beef protein. 
Milk-fed piglets that after weaning were sustained on a diet 
of dried skimmed milk powder consumed a greater amount 
of feed than their counterparts fed a diet of soybean meal 
(SBM), thereby resulting in a corresponding increase in 
body weight (BW) and a favorable feed conversion ratio 
(Rist et al. 2013). Despite the good health status of the pig-
lets in both the milk-fed and SBM diet categories, those in 
the latter group, owing to the buffering effect of the protein, 
exhibited a higher gastrointestinal pH and a lower lactoba-
cillus-to-coliform ratio (Partanen and Mroz 1999). A higher 
lactobacillus-to-coliform ratio indicates a favorable propor-
tion of advantageous lactobacilli relative to coliforms, which 
can incorporate coliform pathogens (Rist et al. 2013). It is 
also notable that interventional research projects have been 
conducted to comparatively examine the bacterial profile 
modifications in certain sample groups depending on dietary 
protein content (Vital et al. 2014). For example, a sample 
of individuals in full health was examined over a period of 
42 days with one group consuming a high-protein diet and 
the other consuming a low-protein diet. The results revealed 
no change in the proportions of bacteria in the Clostridium 
and Bacteroides genera, or sulfate-reducing bacterial spe-
cies, although a reduction in the pool of bacteria belonging 
to the Bifidobacteria genus and others was observed (Brink-
worth et al. 2009; Duncan et al. 2007). It is clear that dietary 
factors (specifically, protein consumption) can enhance gas-
trointestinal health by shaping the nature of the gut micro-
biota (Fig. 1).

The biosynthesis of microbial amino acids

Amino acids are the fundamental elements of proteins and 
peptides and are crucial for the production of numerous 
bioactive molecules that play regulatory roles in signaling 
pathways and metabolism (Dai et al. 2015). In addition to 
the utilization of amino acids, the gut microbiota performs 
a key function in producing amino acids, and this includes 
de novo biosynthesis. For instance, several in vitro research 
projects have indicated that ruminal bacterial species, such 
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as Streptococcus bovis, Selenomonas ruminantium, and 
Prevotella bryantii, engage in the de novo synthesis of amino 
acids in the presence of physiological peptide concentrations 
(Hullar and Fu 2014). In addition, other in vivo research 
projects have demonstrated that microbially derived lysine 
is absorbed and integrated into the host proteins (Ciarlo et al. 
2016; Hullar and Fu 2014). Consistent with these animal-
based research projects, the oral consumption of 15N in the 
form of 15NH4Cl by a sample of six males in full health was 
associated with the labeling of microbial proteins and threo-
nine from intestinal microbial origin, which was present in 
the portal bloodstream in vivo (Metges et al. 1999). In addi-
tion, Metges et al. (1999) examined a sample of humans over 
the age of 18 who were supplied with nitrogen-adequate 
diets and revealed that microbially derived lysine and threo-
nine contribute significantly to the free plasma lysine and 
threonine pool. Moreover, Gill et al. (2006) reported that 
the enrichment of the microbiota in the large intestine takes 
place via genes implicated in essential amino acid (EAA) 
biosynthesis, which occurs based on precursors generated 
from the human plasma pool.

Amino acids as precursors for microbially derived 
short‑chain fatty acids

It has been demonstrated in the literature that short-chain 
fatty acids (SCFAs) constitute the fundamental output of 
fermentation (Hijova and Chmelarova 2007; Wong et al. 
2006). In this context, it is notable that undigested pro-
teins and amino acids within the colon have the potential 

to operate as a supplemental substrate for SCFA genera-
tion, in addition to indigestible carbohydrates (Ciarlo et al. 
2016). In terms of the roles played by microorganisms 
within the colon and, moreover, the biological mecha-
nisms that they moderate, a central and crucial physi-
ological process is SCFA synthesis, where several amino 
acids generated from microbial protein fermentation in the 
large intestine function as synthetic precursors to SCFAs 
(Ciarlo et al. 2016; Mu et al. 2017). Numerous amino acids 
employed by anaerobic bacteria have the potential to be 
metabolized to acetate, including glycine, threonine, gluta-
mate, and ornithine (Neis et al. 2015), whereas threonine, 
lysine, and glutamate can be utilized for butyrate synthe-
sis. Davila et al. (2013) reported that propionate is pri-
marily synthesized from threonine. These results indicate 
that of all of the amino acids utilized for SCFA synthesis, 
threonine—as it produces each of the three fundamental 
SCFAs—possesses the greatest adaptability.

As the literature indicates, SCFAs—the most abun-
dant of which are acetate, propionate, and butyrate—play 
numerous biological roles: (1) they constitute an energy 
source for muscles, the kidneys, the cardiovascular sys-
tem, and the brain; (2) they facilitate hepatic control of 
lipids and carbohydrates; (3) they are implicated in the 
transportation and metabolism of epithelial cells; and (4) 
they influence epithelial cell growth and differentiation 
(Macfarlane and Macfarlane 2012). The other SCFAs that 
are generated by resident species in the gut microbiota 
include valerate, isovalerate, 2-methyl butyrate, and for-
mate, but it is important to note that their production is 
comparatively lower.

Fig. 1  The fate of protein 
catabolism associated with the 
gut microbiota
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The gut microbiota and amino acid perturbations 
in the progression of obesity and type 2 diabetes 
mellitus

Evidence is beginning to mount to support the hypoth-
esis that changes to the profile and operation of the gut 
microbiota can lead to the onset and progression of various 
diseases, including insulin resistance, obesity, and type 2 
diabetes mellitus (henceforth, type 2 DM). For sufferers 
of type 2 DM, it is important to recognize that a modified 
Firmicutes-to-Bacteroides ratio is correlated with higher 
levels of energy harvesting and, subsequently, the onset 
of insulin resistance (Tilg and Kaser 2011; Tremaroli 
and Backhed 2012). Obesity affects the profile of the gut 
microbiota (Turnbaugh et al. 2009), with one of the key 
differences being greater and lesser proportions of Firmi-
cutes and Bacteroidetes, respectively (Ley et al. 2006; Ley 
2010). Taken together, these results indicate that certain 
bacterial genera are related to an individual’s BMI, which 
in turn suggests that gut dysbiosis is connected to the pro-
gression of disease, in particular, type 2 DM. Research-
ers have reported a strong correlation between type 2 DM 
and increased and decreased proportions of Clostridium 
clostridioforme and Roseburia 272, respectively, in Chi-
nese and European sample groups (Karlsson et al. 2013; 
Qin et al. 2012).

In view of these findings, it is clear that more in-depth 
investigations should be performed into the possible roles of 
the gut microbiota in amino acid and SCFA perturbations. 
Nevertheless, despite the need for more data regarding the 
physiological processes involved, relatively concrete con-
clusions can already be drawn. The functional products of 
the gut microbiota (especially bacterial metabolites such as 
SCFAs and amino acids) play a critical role in mediating 
the physiological aspects of the host (Sridharan et al. 2014). 
It is possible to conclude that dysbiosis, which contributes 
to a downscaling of SCFA synthesis, can result in obesity 
and the translocation of lipopolysaccharides into the sys-
temic circulation, which probably explains the appearance 
of metabolic endotoxemia in metabolic syndrome patients, 
in addition to those with type 2 DM and insulin resistance. 
Research focused on humans over the age of 18 suggests that 
obesity, insulin resistance, and type 2 DM are associated 
with high systemic concentrations of branched-chain amino 
acids (BCAAs) (Wang et al. 2011). Amino acid changes of 
this kind, according to the available evidence, are implicated 
in metabolic disorders; for example, lower insulin sensitivity 
was induced in one male patient by applying 18 amino acids 
(such as the BCAAs leucine, isoleucine, and valine) (Trem-
blay et al. 2005). Additionally, Do et al. (2014) revealed that 
a significant rise in the portal concentrations of a range of 
EAAs occurs for subjects with obesity and glucose intoler-
ance stemming from a high-fat diet.

It is also notable that elevated Roseburia levels after fecal 
transplants from healthy weight individuals to those with 
metabolic syndrome appear to have contributed to favora-
ble insulin sensitivity (Vrieze et al. 2012). Other prominent 
results include those from clinical research projects in which 
the direct supplementation of advantageous microbes was 
found to have the potential to mediate host hepatic and sys-
temic lipid metabolism (Christ et al. 2015), energy homeo-
stasis (Backhed et al. 2007), and glycemic control (Mazloom 
et al. 2013). Each of these advantages is also associated with 
fecal microbial transplants (Vrieze et al. 2012), and they are 
associated with decreased risks of diet-based obesity, insulin 
resistance, and type 2 DM.

Microbially derived tryptophan catabolites 
in central nervous system function

Research has indicated that the profile of the gut microbiota 
is the key determinant of the levels of tryptophan catabolites 
(TRYCATs) in the systemic circulation. Consequently, the 
profile of the gut microbiota is an indirect contributor to 
the degree to which serotonin is present in the brain. In the 
course of illnesses linked to microbiota dysbiosis (e.g., ile-
itis), the utilization of tryptophan in the GI tract is affected, 
resulting in elevated luminal tryptophan levels and a concur-
rent decrease in tryptophan metabolites (Hisamatsu et al. 
2012; Schicho et al. 2010). Consequently, the dominant 
capacity of the microbiota to facilitate the regulation of tryp-
tophan metabolism throughout the TRYCAT pathway results 
in the following: (1) the activity reduction of pathways 
implicated in serotonin synthesis; and (2) an increase in the 
production of quinolinic acid and kynurenic acid, along with 
various neuroactive metabolites (Stone et al. 2013; Mawe 
and Hoffman 2013). As serotonin is a fundamental neuro-
transmitter at every signaling terminus of the gut–brain axis 
(O’Mahony et al. 2015), this is a consequential fact. Moreo-
ver, in addition to serving as a building block for proteins, 
tryptophan, as an amino acid, is a substrate for host-based 
metabolic biotransformation into numerous chemoeffectors 
(e.g., the neurotransmitters serotonin and melatonin, trace 
quantities of niacin, and indoleamine-2,3-dioxygenase 
[IDO)-dependent kynurenines (AhR ligands)] (Nguyen et al. 
2014). Aberrances regarding TRYCATs are known to play 
a role in the onset and progression of depression, chronic 
fatigue syndrome, and somatoform disorder (Maes et al. 
2007, 2011; Maes and Rief 2012), and aberrances in the 
levels of neurotoxic and immunomodulatory TRYCATs have 
been observed in several neurodegenerative and neuroim-
mune diseases (Morris et al. 2016). In addition to the host-
based metabolism of tryptophan, the gut microbiota facili-
tates distinctive catabolic biotransformations of tryptophan 
that are involved in the production of a series of bioactive 
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metabolites. In addition, the microbiota has been implicated 
in influencing the levels of γ-aminobutyric acid (GABA), 
brain-derived neurotrophic factor (BDNF), and noradrena-
line and dopamine (Diaz Heijtz et al. 2011; Keightley et al. 
2015). It should be noted that these are important metabo-
lites with respect to the interface between the GI tract and 
the brain. Ultimately, the existence of neuroactive metabo-
lites of this kind in the systemic circulation has explanatory 
power in accounting for the importance of the microbiota in 
the operation and evolution of the central nervous system. 
Furthermore, it can help to elucidate the various ways in 
which the microbiota plays a role in affecting brain function 
in such a way as to produce neurological disorders.

Amino acid‑metabolizing bacteria and pregnancy

The capacity of the GI tract to adapt over the course of 
pregnancy is crucial in allowing the female to accommo-
date the evolving requirements of the fetus. Researchers 
have found that for mammalian species, the profile of the 
gut microbiota transforms during pregnancy in line with the 
overall modification of the body’s metabolic status (Koren 
et al. 2012; Collado et al. 2008; Santacruz et al. 2010). In 
human females, over the course of the first trimester, the 
profile of the gut microbiota is comparable to that observed 
in a healthy female who is not pregnant. However, by the 
third trimester, the key characteristics of the gut microbiota 
include elevated levels of Proteobacteria and Actinobacteria 
(in particular, bacteria of the Streptococcus and Enterobac-
teriaceae genera) (Koren et al. 2012). Other changes dur-
ing late pregnancy include a reduction in the quantity of 
bacteria of the Faecalibacterium genus (Haro et al. 2016). 
Following birth (specifically, during preliminary lactation/
postpartum), the level of bacteria of the Streptococcus genus 
usually falls, although it remains elevated in relation to the 
first trimester (Koren et al. 2012; Jost et al. 2014). Hence, it 
is possible to conclude that the GI microbiome of a human 
female is subject to significant modification over the course 
of pregnancy, and the overall reduction in microbial diver-
sity is comparable to that observed during obesity (Qin et al. 
2010; Greenblum et al. 2012). The defining characteristic of 
the microbiome of an obese individual is a higher capacity 
for energy utilization, which is mainly due to the increased 
level of bacteria that can drive fermentation. Ultimately, this 
increases the degree to which usually indigestible sugars are 
available.

In view of these observations, it is evident that the wealth 
of bacterial species associated with intestinal amino acid 
metabolism is subject to a further increase in late gestation 
and, furthermore, in pregnant women who weigh more than 
they should. Several explanations for this have been sug-
gested in the literature: (1) the control of protein and amino 

acid digestion and absorption in the small intestine; (2) the 
degree to which dietary amino acids are available for utiliza-
tion by the reproductive organs; (3) long-term modifications 
in the profile and total bacterial count of the microbiota over 
the course of pregnancy; (4) modifications to uterine capac-
ity and operation, along with the metabolic nature of the 
body; (5) the implementation of metabolic transformations 
in the gut microbiota of both the female and the child; and 
(6) modifications in the synthesis of amino acid metabo-
lites implicated in reproductive processes (e.g., NO and 
glutathione). Note that this last effect takes place in a direct 
or indirect way in line with the physiological aspects of the 
host’s reproductive system. Nevertheless, it should not be 
overlooked that the underlying mechanisms through which 
such modifications occur are not yet understood, emphasiz-
ing the necessity of further research in this field.

Conclusion

As evidence regarding the impact of the human gut micro-
biota on the health of the gastrointestinal tract continues 
to grow, the significant correlation between these factors 
is becoming indisputable (Klose et al. 2010). Moreover, it 
is becoming clear that a highly responsive and mutual con-
nection exists between the resident species of the gut micro-
biota and the host, primarily insofar as the host metabolome 
status is regulated by the microbiota locally and systemi-
cally (Zhang et al. 2015). In view of this, the present review 
summarizes the existing literature relating to the ways in 
which microbial amino acids contribute to host amino acid 
homeostasis.

In this active field of research, numerous findings have 
been reported in recent years regarding the impact that resi-
dent bacterial species in the gut have on the metabolism 
and recycling of dietary amino acids. It has become clear 
that these bacteria influence the entry of amino acids into 
the portal circulation for whole-body use (Hullar and Fu 
2014). In addition, it has been demonstrated that bacteria 
colonizing the intestine have the capacity to facilitate the de 
novo synthesis of EAAs, which are implicated in amino acid 
homeostasis in the host (Collins et al. 2012).

Disruptions to the human gut microbiota have widespread 
implications. For instance, they are associated with diseases 
external to the intestine, including the systemic immune 
system, the genital system, the central nervous system, and 
adipose tissues (Ciarlo et al. 2016). In view of this, it is 
clear that more complete knowledge of microbiota metabo-
lite diversity and operation will be crucial for developing 
new treatment interventions for relevant diseases. Neverthe-
less, the difficulty in discerning microbiota metabolites, and 
the complex nature of the procedures and processes through 
which the physiological aspects of a host are regulated by the 
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microbiota are fundamental obstacles. Future research must 
concomitantly examine the metabolome and microbiome 
relating to health and illness to completely illuminate the 
connection between microbiota composition and function.
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