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cells kg−1 diet) for 7 days. At the end of the experiment, all 
piglets were slaughtered to collect jejunum and ileum sam-
ples. Western blotting and immunofluorescence experiments 
were used to determine the expression levels and histologi-
cal locations of ERS and its downstream signaling proteins. 
The intestinal porcine epithelial cell line J2 (IPEC-J2) was 
used as in vitro model to investigate the possible mecha-
nism. The results showed that E. coli supplementation in 
the diet increased the GRP78 expression in the jejunum and 
ileum, especially in the jejunal epithelium and ileac germinal 
center, and elevated the expression levels of CHOP (in both 
the jejunum and ileum) and caspase-11 (in the ileum), indi-
cating that ERS and CHOP–caspase-11 dependent apoptosis 
were activated in the porcine small intestine. Moreover, as 
demonstrated by in vitro experiments, the CHOP inhibitor 
4-phenylbutyrate alleviated the damage to IPEC-J2 cells 
induced by LPS derived from E. coli. Taken together, these 
data strongly suggest that ERS can be triggered in the small 
intestine by dietary supplementation with E. coli and that 
CHOP–caspase-11 dependent apoptosis may play a key 
role in maintaining normal homeostasis of the intestine in 
response to pathogenic factors.
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Abbreviations
LPS	� Lipopolysaccharide
ERS	� Endoplasmic reticulum stress
CHOP	� C/EBP homologous protein
GRP78	� Glucose-regulated protein78
E. coli	� Escherichia coli
IPEC-J2	� Intestinal porcine epithelial cell line J2
4-PBA	� 4-phenylbutyrate

Abstract  Intestinal cells can sense the presence of patho-
gens and trigger many important signaling pathways to 
maintain tissue homeostasis and normal function. Escheri-
chia coli and lipopolysaccharides (LPS) are the main path-
ogenic factors of intestinal disease in pigs. However, the 
roles of endoplasmic reticulum stress (ERS) and its mediated 
apoptosis in intestinal malfunction induced by E. coli or LPS 
remain unclear. In the present study, we aimed to evaluate 
whether ERS could be activated by E. coli fed to piglets and 
whether the underlying mechanisms of this disease process 
could be exploited. Eighteen weaned pigs (21 days old) were 
randomly assigned to one of two treatment groups (n = 9 per 
group). After pre-feeding for 1 week, the diets of the piglets 
in one group were supplemented with E. coli (W25 K, 109 
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Introduction

The intestines play key roles in the processes of digestion 
(Kondo et al. 2017), absorption (Ajakaiye et al. 2004), and 
immunity (Ren et al. 2014b). Maintaining intestinal tissue 
homeostasis and normal function is closely linked to animal 
health (Bloemendaal et al. 2016), growth (Yoda et al. 2014), 
and development (D’Alessio et al. 2014). However, weaning 
piglets are challenged by many pathogenic factors (Pluske 
2013), including the malignant proliferation and coloniza-
tion of the gastrointestinal tract by Escherichia coli (Zhang 
et al. 2015). These factors lead to gastrointestinal disorders 
(Mroz 2001), increased disease susceptibility (Prapasarakul 
et al. 2010), and pathological diarrhea (Yang et al. 2014a), as 
a result of the undeveloped intestinal and immune systems 
of the weaning piglets.

The endoplasmic reticulum (ER) is the primary intracel-
lular organelle responsible for protein and lipid biosynthesis 
(Fryer et al. 2014), protein folding and trafficking (Sriburi 
et al. 2004), calcium homeostasis (He et al. 1997), and sev-
eral other vital processes in cell physiology. There is grow-
ing interest in endoplasmic reticulum stress (ERS) and its 
signaling pathways, which mediate cell survival (Senft and 
Ronai 2015) or apoptosis (Fernandez et al. 2015). Distur-
bance in ER function results in ERS, and many downstream 
signaling pathways of ERS are triggered (Sovolyova et al. 
2014). For example, moderate ERS can activate IRE-1α and 
XBP-1 signaling and protect cells from injury (Ling et al. 
2012), whereas prolonged or excessive ERS may lead to cell 
death via the C/EBP homologous protein (CHOP), c-Jun 
N-terminal kinase (JNK), and other signaling pathways 
(McGuckin et al. 2010). Specifically, CHOP can mediate the 
mRNA expression of caspase-11 and activation of its effec-
tor, molecular caspase-1 (Fradejas et al. 2009). The cleav-
age of caspase-1 controls the maturation of proinflammatory 
cytokine IL-1 family members and induces cell apoptosis 
(Yang et al. 2014b). A previous report showed that lipopoly-
saccharide (LPS) failed to stimulate caspase-11 expression 
and activity in the lung tissue and macrophages of CHOP 
knockout mice (Endo et al. 2006). The connection between 
XBP-1 signaling and inflammatory bowel disease in mice 
has also been revealed (Kaser et al. 2008). However, the 
roles of ERS and its downstream signaling CHOP-dependent 
apoptosis in intestinal malfunction induced by E. coli still 
remain unclear. Therefore, we investigated the alteration of 
ERS-related protein expression both in vivo in the intestines 
of weaning piglets challenged with E. coli and in vitro in 
intestinal epithelium cells challenged with E. coli derived 
LPS. The roles of ERS and CHOP-mediated apoptosis in 
intestines infected with E. coli were verified by treating 
intestinal cells with an ERS inducer (tunicamycin, positive 
control) and a CHOP inhibitor (4-phenylbutyrate, 4-PBA). 
Here we report, for the first time, that ERS is a normal event 

in the developing intestine and that E. coli infection aggra-
vates this stress and cell apoptosis via the CHOP–caspase-11 
signaling pathway.

Materials and methods

Experimental diets and procedure

This study was conducted with the approval of the Animal 
Welfare Committee of the Institute of Subtropical Agri-
culture, Chinese Academy of Sciences. Eighteen cross-
bred pigs (Duroc × Landrace × Yorkshire) were randomly 
assigned to two groups, of which one group was fed a diet 
supplemented with E. coli (E. coli group, n = 9) and the 
other received a normal diet (control group, n = 9). The 
diets were formulated according to the National Research 
Council (NRC 2012) to meet the nutrient requirements for 
growing and finishing pigs. The E. coli strain W25 K, the 
draft genome sequence of which was reported previously 
(Ren et al. 2014a), was mixed with the experimental diet 
at a concentration of 109 cells kg−1. A 7-day acclimatiza-
tion period was allowed prior to the commencement of each 
experiment. After pre-feeding for 1 week, the experimen-
tal piglets were administered diets with or without E. coli 
(109 cells kg−1 diet) supplementation for 7 days. The pigs 
had free access to feed and drinking water throughout the 
experimental period. The experiment lasted 14 days. The 
composition of the basic diet used here was described in our 
previous study (He et al. 2013).

Sample preparation

At the end of the experiment, the pigs were anesthetized with 
an intravenous injection of sodium pentobarbital (50 mg/kg 
body weight) and then euthanized. The entire intestines and 
viscera for each pig were rapidly removed. After washing the 
enteric cavity with phosphate buffer solution (PBS), the jeju-
num and ileum samples were immediately frozen in liquid 
nitrogen and stored at −80 °C for subsequent analysis of pro-
tein expression by western blotting. The tissue samples for 
immunofluorescence were fixed with 4% paraformaldehyde 
for 24 h, and then embedded in paraffin for the subsequent 
analysis. Each sample was sliced into 5 μm sections and all 
of the experiments were performed in triplicate.

Cell culture

Intestinal porcine epithelial cell line J2 (IPEC-J2) cells 
were cultured by serial passage in uncoated plastic culture 
flasks (25 cm2) in DMEM-H medium containing 10% fetal 
bovine serum (FBS), 5 mM l-glutamine, 100 U/mL penicil-
lin, and 100 μg/mL streptomycin. At confluence, the cells 
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were trypsinized and seeded in six-well culture plates with 
approximately 8 × 103 cells per well and then maintained 
at 37 °C in a 5% CO2 humidified incubator. After overnight 
incubation, the cells were cultured in basal medium (blank 
control), basal medium + tunicamycin (0.5 μg mL−1), basal 
medium + LPS (2.0 μg mL−1), or basal medium + LPS 
(2.0 μg mL−1) + 4-PBA (1.0 μg mL−1) for 24 h. All of the 
treatments were performed in triplicate. Further analysis was 
performed after the treatments described above.

Cell viability assay

The cell viability was assessed using a cell counting kit-8 
(CCK-8, Dojindo, Osaka, Japan). After the treatments 
described previously, the culture medium was replaced with 
100 μL of fresh medium containing 10 μL of reagent from 
the kit. After incubation for 45 min at 37 °C, the absorbance 
at 450 nm was measured for each well using an ELISA plate 
reader (Bio-Tek, Winooski, VT, USA). The results were 
expressed as optical density (OD450) values.

Immunofluorescence

After antigen retrieval using a citric acid working solu-
tion, the samples were incubated overnight at 4 °C with 
rabbit anti-GRP78 and mouse anti-CHOP polyclonal pri-
mary antibodies. After three washing cycles, the samples 
were incubated for 1 h with Alexa Fluor 488-conjugated 
goat anti-rabbit and Alexa Fluor 647-conjugated goat anti-
mouse secondary antibodies (Life Technologies, NY, USA). 
After washing three times, the nucleus was stained with the 
4ʹ,6-diamidino-2-phenylindole (DAPI) working solution for 
5 min according to the instructions. After a further three 
washing cycles, anti-fluorescence quenching solution was 
used as the mounting medium. The images were captured 
using a laser confocal microscope. The antibodies against 
GRP78 and CHOP/GADD153 used in this experiment were 
obtained from Abcam (Cambridge, USA).

Western blotting

After lysing the samples for 10 min in ice-cold buffer 
with a complete protease inhibitor cocktail, immunoblot-
ting assays were performed as described previously (Jiang 
et al. 2016). The protein concentration in each sample was 
determined by the bicinchoninic acid (BCA) method, as 
described in the previous study. The blots were examined 
using the ECL Plus detection system (Thermo, Waltham, 
USA) under conditions recommended by the manufacturer, 
before visualizing the signals on Fujifilm (LAS-3000, Fuji, 
Tokyo, Japan). The protein band densities were normal-
ized to the β-actin signal and quantified using the Quantity 

One software (Bio-Rad, California, USA). The antibodies 
against p-PERK, PERK, ATF6, IRE-1α, GRP78, XBP-1, 
CHOP/GADD153, caspase-11, and β-actin were obtained 
from Abcam (Cambridge, USA).

Statistical analysis

The data shown represent the mean ± SD of a minimum 
of three independent experiments. Two-tailed paired and 
unpaired Student’s t tests were performed by comparing 
the data to the corresponding reference point or as indi-
cated, and p values of less than 0.05 were considered sta-
tistically significant; in the figures, P < 0.05 is denoted by 
“*” and P < 0.01 is denoted by “**”.

Results

Expression of ERS marker proteins in the intestine

The protein levels of GRP78, CHOP, caspase-11, and 
β-actin were determined by western blotting. Representa-
tive bands of the matched proteins in the jejunum and 
ileum are shown in Fig. 1a, c, respectively. Figure 1b, d 
shows the relative abundance of the proteins, using β-actin 
as the internal control. Compared to the control group, 
the piglets fed a diet supplemented with E. coli exhib-
ited higher (p < 0.05) expression levels of GRP78 (3.1-
fold in the jejunum and 3.3-fold in the ileum) and CHOP 
(2.1-fold in the jejunum and 4.2-fold in the ileum) in both 
of the intestinal regions tested. The level of caspase-11 
protein was significantly (p < 0.05) increased by 2.2-fold 
in the ileum by the dietary supplementation with E. coli, 
although it was not significantly (p = 0.75) altered in the 
jejunum.

To verify the western blotting results, immunofluo-
rescence experiments were performed on the jejunum 
and ileum tissues. Representative photographs captured 
with the laser scanning confocal microscope are shown 
in Fig. 2a, c for the jejunum and ileum, respectively. In 
this experiment, the CHOP protein, GRP78 protein, and 
nucleus (DNA) are indicated by red fluorescence, green 
fluorescence, and blue fluorescence, respectively. The fluo-
rescence intensity of each color was considered to repre-
sent the color-matched protein level. Figure 2b, d shows 
the relative fluorescence intensities of each protein, using 
the intensity in the control group as the reference. Con-
sistent with the western blotting results, the dietary sup-
plementation with E. coli significantly elevated the protein 
levels of CHOP and GRP78 in both the jejunum and ileum.
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Histological location of ERS marker proteins 
in the intestine

The immunofluorescence results were also used to determine 
the specific histological location of ERS in the intestines. 
As shown in Fig. 2a, the GRP78 protein was uniformly 
distributed (expressed) in the jejunum within the normal 
milieu, but distributed (expressed) at higher concentrations 
in the epithelial tissue in response to the E. coli infection. 
The CHOP protein was not observed in the jejunum within 
the normal milieu, whereas the E. coli infection triggered its 
expression mainly in the epithelial tissue.

As shown in Fig. 2c, similar to the results for the jeju-
num, the GRP78 protein was also uniformly distributed 
(expressed) in the ileum within the normal milieu. How-
ever, it was distributed (expressed) at higher concentrations 
in the germinal center of the ileum in response to the E. coli 
infection. The CHOP protein was not observed in the ileum 

within the normal milieu, whereas the E. coli infection also 
triggered its expression mainly in the germinal center of the 
ileum. A specific amplification of this germinal center is 
shown in Fig. 2e.

Expression of ERS downstream signaling proteins 
in the intestine

The previously discussed results have revealed that ERS 
was triggered by the E. coli infection, and we next deter-
mined the expression of its downstream signaling proteins 
to investigate the regulatory mechanisms. The proteins 
p-PERK, PERK, ATF6, IRE-1α, XBP-1, and β-actin were 
determined by western blotting. Representative bands of the 
matched proteins in the jejunum and ileum are shown in 
Fig. 3a. Figure 3b, d–f shows the relative abundances of the 
proteins using β-actin as the internal control. Compared to 
the control, the piglets fed diets supplemented with E. coli 

Fig. 1   Western blot analysis of ERS marker proteins in the jejunum 
and ileum with or without E. coli infection. a Representative bands 
of GRP78, CHOP, and caspase-11 proteins in the jejunum. b Rela-
tive abundance of GRP78, CHOP, and caspase-11 in the jejunum. c 
Representative bands of GRP78, CHOP, and caspase-11 in the ileum. 

d Relative abundance of GRP78, CHOP, and caspase-11 in the ileum. 
β-Actin was used as the internal control. Data are the mean ± SD of a 
minimum of three independent experiments. “*” and “**” indicate p 
values of p < 0.05 and p < 0.01, respectively, in the t test
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exhibited higher (p < 0.05) expression levels of PERK in 
both the jejunum (1.4-fold) and ileum (1.5-fold). The level 
of IRE-1α protein was significantly (p < 0.05) decreased 
in the ileum but not affected in the jejunum by the dietary 
supplementation with E. coli. Apart from these two proteins, 
no significant differences in the protein levels of p-PERK, 
ATF6, or XBP-1 were observed in the intestines infected 
with E. coli compared to the healthy intestines.

Cell death induced by LPS from E. coli was attenuated 
by a CHOP inhibitor

All of the data from the animal experiments indicated that 
CHOP-mediated apoptosis by activating caspase-11 may 
play a vital role in the intestines during the infection process 

with E. coli. To verify this specific role of CHOP in the 
response of the intestines to E. coli, an in vitro experiment 
using IPEC-J2 was performed. In this experiment, 4-PBA 
was used as a CHOP inhibitor, tunicamycin was used as 
an ERS inducer (ERS positive control), and the effect of 
the presence of E. coli in animal feed was replaced by LPS 
derived from E. coli. Figure 4a shows representative photo-
graphs of different samples captured by optical microscopy. 
The cell vitality analysis determined using a CCK-8 kit is 
shown in Fig. 4b. Compared with the tunicamycin-induced 
ERS milieu group, the addition of 4-PBA improved the cell 
vitality. A similar effect of 4-PBA in attenuating cell death 
induced by LPS derived from E. coli was also observed. Fig-
ure 4c shows the representative bands of matched proteins in 
the treated cells. Figure 4d–f show the relative abundances 

Fig. 2   Immunofluorescence analysis of GRP78 and CHOP proteins 
in the jejunum and ileum tissues with or without E. coli infection. a 
Representative immunofluorescence photographs of the jejunum with 
or without E. coli infection. b Relative fluorescence intensities of 
CHOP and GRP78 in the jejunum with or without E. coli infection. c 
Immunofluorescence photographs of the ileum with or without E. coli 
infection. d Relative fluorescence intensities of CHOP and GRP78 

in the ileum with or without E. coli infection. The CHOP protein, 
GRP78 protein, and nucleus (DNA) are indicated by red fluorescence, 
green fluorescence, and blue fluorescence, respectively. The intensity 
of the control group was considered to be 1. e Specific amplification 
of the “germinal center”. Data are the mean ± SD of a minimum of 
three independent experiments. “*” and “**” indicate p values of 
p < 0.05 and p < 0.01, respectively, in the t test
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of the proteins, using β-actin as an internal control. The 
addition of 4-PBA to the culture medium decreased the 
expression of CHOP and caspase-11 in IPEC-J2 within both 
the tunicamycin-induced ERS milieu and the E. coli LPS-
induced infectious milieu, as shown in Fig. 4e, f.

Discussion

E. coli infection is the main cause of intestinal malfunction 
and diarrhea in weaning piglets (Deitmer and Parra 2017). 
Previous studies have shown that inflammation (Bucker 
et al. 2014) and cell apoptosis (Pietzak and Chakraborty 
2004) are induced by this infection, and many pathways (Wu 

et al. 2016; Kim et al. 2003) are involved during the anti-
disease process. ERS is thought to underlie many pathogenic 
progressions of the intestine (Kaser et al. 2008; Ringseis 
et al. 2016). However, the precise regulatory mechanisms 
of ERS signaling in response to intestinal infection are 
poorly understood. Here, for the first time, we have shown 
that E. coli infection can induce overloaded ERS and trigger 
CHOP–caspase-11 mediated apoptosis in the jejunum and 
ileum of weaning piglets. Moreover, the overloaded ERS 
was mainly triggered in the epithelial tissue of the jejunum 
and the germinal center of the ileum. Furthermore, the 
results suggest that overactivated ERS followed by activa-
tion of the CHOP–caspase-11 signaling pathway may play 
key roles in maintaining intestinal homeostasis.

Fig. 3   Western blot analysis of ERS downstream signaling proteins 
in the jejunum and ileum with or without E. coli infection. a Rep-
resentative bands of p-PERK, PERK, ATF-6, IRE-1α, XBP-1, and 
β-actin proteins in the jejunum and ileum with or without E. coli 
infection. b Relative abundance of phosphorylation level of PERK in 
the jejunum and ileum with or without E. coli infection. c–f Relative 

abundances of PERK, ATF6, IRE-1α, and XBP-1 proteins in the jeju-
num and ileum with or without E. coli infection. β-Actin was used as 
the internal control. Data are the mean ± SD of a minimum of three 
independent experiments. “*” and “**” indicate p values of p < 0.05 
and p < 0.01, respectively, in the t test
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The GRP78 protein is a central regulator of the unfolded 
protein response (UPR) and is considered a representative 
ERS marker (Ron and Hubbard 2008). When this stress 
occurs, GRP78 is released from UPR branches of the PERK, 
IRE-1α, and ATF6 and binds misfolded proteins, thereby 

activating the UPR (Kaira et al. 2016). In addition, CHOP 
is a major stress-inducible pro-apoptotic gene that partici-
pates in ERS-induced apoptosis (Wali et al. 2009; Guo et al. 
2015). The activation of CHOP can be regulated by all three 
branches. Based on these considerations, we used GRP78 as 

Fig. 4   4-PBA attenuated LPS-induced cell death by inhibit-
ing CHOP and caspase-11. IPEC-J2 cells were treated with basal 
medium (blank control), basal medium + tunicamycin (0.5 μg mL−1), 
basal medium  +  LPS (2.0  μg  mL−1), or basal medium  +  LPS 
(2.0  μg  mL−1)  +  4-PBA (1.0  μg  mL−1) for 24  h. a Representative 
photographs of cells in the different groups captured using an optical 
microscope. b Cell vitality analysis determined using a CCK-8 kit. c 

Representative bands of the GRP78, CHOP, and caspase-11 proteins 
in cells from the different groups. d–f Relative abundances of GRP78, 
CHOP, and caspase-11 proteins in cells from the different groups. 
β-Actin was used as the internal control. Data are the mean ± SD of a 
minimum of three independent experiments. “*” and “**” indicate p 
values of p < 0.05 and p < 0.01, respectively, in the t test
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an ERS marker and CHOP as an ERS-mediated cell-death 
marker, and analyzed their expression levels and distribu-
tions in the jejunum and ileum in the presence or absence of 
E. coli infection. An increase of GRP78 in the jejunum and 
ileum was found to be induced by E. coli infection. Increased 
GRP78 expression has also been reported in human inflam-
matory bowel disease patients (Kaser et al. 2008), where the 
specific impairment of the ERS response was suggested to 
induce inflammation in the gut. In contrast, our data pointed 
to overloaded ERS and ERS–CHOP signaling mediated cell 
death being the result of infection, rather than a reason for 
E. coli induced inflammation. The recent studies on ERS 
have mainly focused on the mammary gland (Zhong et al. 
2017) and colon tissue (Ma 2008), aiming to explore the 
regulatory mechanisms of ERS signaling in controlling the 
apoptosis of cancer cells (Verfaillie et al. 2013; Zou et al. 
2015). One recent report concerning ERS in pigs revealed 
that ERS can be triggered in the porcine duodenal mucosa 
by supplementation of the diet with frying fat (Ringseis et al. 
2016). Moreover, the present study has supplied extra data 
on the ERS signaling activation in the jejunum and ileum. 
Of particular interest, we found that the intestinal locations 
of ERS signaling activation in response to E. coli infection 
are different for the jejunum and ileum, that is, high levels of 
GRP78 and CHOP were mainly expressed in the epithelial 
tissue of the jejunum and the germinal center of the ileum. 
Here, we surmised that the different locations of ERS acti-
vation are attributable to the different functions and E. coli 
colonization of the jejunum and ileum. In support of this 
hypothesis, recent studies have shown that the ileum has a 
larger accommodation for the microbiota and a higher rela-
tive abundance of E. coli than the jejunum of the weaning 
piglets (Li et al. 2017; Liu et al. 2016). As reported previ-
ously (Gitlin et al. 2014), the germinal centers of the ileum 
mainly consist of T cells and B cells and are responsible for 
the proliferation of lymphatic tissue and maturation of B 
cells. In this regard, we surmised that the ERS and CHOP-
mediated pathway may participate in the initial activation of 
the immune response in the ileum, and our further work will 
address this interesting finding.

When cells respond to damage, the inactive pre-caspase-1 
will be recruited into the cytoplasm (Jin et al. 2017), fol-
lowed by formation of the activated caspase-1. Caspase-11 
is an upstream regulator of caspase-1 and mediates its activ-
ity by direct cleavage of the cysteine protease-1 (Broz et al. 
2012). Recent studies (Man et al. 2017) have shown that 
caspase-11 can activate caspase-1 under the coordination 
of NLRP3 inflammatory cells and induce an independent 
pathogenic role of caspase-1. As a key transcription fac-
tor in ERS, CHOP also regulates caspase-11 (Fradejas et al. 
2009). A previous report showed that LPS failed to stimulate 
caspase-11 expression and activity in the lung tissue and 

macrophages of CHOP knockout mice (Endo et al. 2006). In 
addition, cell apoptosis in lung epithelial cells was reduced 
in the CHOP-deficient mice, and the inflammatory response 
of the lung tissue was alleviated (Endo et al. 2006). Along 
these lines, the same tendency of CHOP and caspase-11 
alteration was observed in the ileum after E. coli infection. 
Of particular interest, this caspase-11 in the jejunum tissue 
and IPEC-J2 line was differently altered by E. coli and LPS; 
we propose that this phenomenon may be attributable to 
the different cell types and compositions between intesti-
nal epithelial cell lines and intestinal tissues. To verify the 
exact mechanism of CHOP and caspase 11 in regulating 
the intestinal response to E. coli, we treated IPEC-J2 cells 
with 4-PBA (a CHOP inhibitor). To verify the results of the 
in vivo experiment, in the in vitro experiment, the IPEC-J2 
cells were treated with LPS derived from E. coli. Consistent 
with the in vivo data, the altered tendency of CHOP expres-
sion was similar with the levels of caspase-11. The GRP78 
level in IPEC-J2 cells was not altered by this inhibitor, which 
is in accordance with a previous report in human glioblas-
toma stem cells (Liu et al. 2015). Moreover, the inhibition of 
CHOP by 4-PBA significantly suppressed the protein expres-
sion of caspase-11 as well as mediated cell death in IPEC-J2 
cells subjected to treatment with LPS from E. coli. These 
data strongly suggest that the CHOP–caspase-11 signaling 
pathway may play a key role in determining the final fate of 
intestinal epithelial cells infected with E. coli.

In summary, our results suggest that E. coli infection 
triggers ERS and CHOP–caspase-11 mediated apoptosis 
in both the jejunum and ileum, indicating that the activa-
tion of the CHOP–caspase-11 axis by E. coli or LPS is 
crucial in the infection process. These novel findings have 
important implications for the development of new inter-
ventions to ameliorate diseases induced by E. coli. Fur-
ther research is warranted to investigate whether CHOP/
caspase-11 inhibition or conditional knockdowns can help 
the cells in the small intestine of weaning pigs survive E. 
coli infection without any malfunction.
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