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Introduction

Pregnane X receptor (PXR; NR1I2) is a member of the 
nuclear receptor superfamily and has been valued primar-
ily as a crucial regulator of nutrient homeostasis and drug 
metabolic detoxification both at the cellular and whole 
organism level (Cheng et al. 2012; Ma et al. 2015). It is 
well-established that PXR as a xenobiotic sensor could 
structurally bind diverse chemicals, including clinical 
drugs, phytochemicals, dietary constituents, and endog-
enous substances (Dussault and Forman 2002; Jones et al. 
2002; Zhao et al. 2016). Previous studies have revealed 
that PXR is best characterized for its ability to modulate 
drug transport and metabolism through the regulation of 
the target genes that are responsible for the transport and 
conversion of chemicals (Beigneux et al. 2002; Gao and 
Xie 2010b). Recent studies have provided new insight into 
the role of PXR in self-detoxification in response to sev-
eral inflammatory diseases and endogenous or exogenous 
toxication (Austin et al. 2015; Azuma et al. 2015). Moreo-
ver, PXR as an initiator of alexipharmic signaling, plays a 
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vital role in the maintenance of intestinal and hepatic health 
(Cheng et al. 2012). Although the remarkable metabolic 
and regulatory versatility of PXR has been declared, it is 
just the beginning to understand the regulatory effect of 
PXR as an effective modulator of self-detoxification in ani-
mals and humans.

PXR, a xenobiotic sensor and effector

Nuclear receptors are members of a superfamily of ligand-
inducible transcription factors that mediate specific tar-
gets involved in metabolism, development, reproduction 
and other physiological processes in animals and humans 
(Blumberg et al. 1998). PXR, one of ligand-inducible 
transcription factors, is prominently expressed in hepato-
cytes and gut epithelium. The ligand (such as rifampicin, 
rifaximin, dexamethasone) binding domain of PXR has 
been shown to bind structurally diverse xenobiotics. Upon 
ligand binding, PXR forms a heterodimer with the retinoid 
X receptor (RXR) (Kliewer et al. 2002) and then the regu-
latory regions of PXR binds to the promoter of its target 
genes to regulate their expression (Chen 2008). Moreover, 
ligand binding to PXR recruits coactivators (i.e., bile acids, 
possibly other indirect activators such as amino acids, 
natural products) to activate the expression of target genes 
encode proteins (such as drug-metabolizing enzymes, 
immunoprotein and transporters) involved in xenobiotic 
detoxification and metabolism (Cecchin et al. 2016). PXR 
was also known as a steroid and xenobiotic sensor (Ma 
et al. 2015). It was originally identified in mice and shown 
to be activated by naturally occurring steroids such as preg-
nenolone and progesterone, as well as synthetic glucocor-
ticoid agonists and antagonists (Blumberg et al. 1998; Li 
et al. 2012). In addition, PXR is an essential component of 
the body’s self-detoxification system that helps to eliminate 
xenobiotic and endobiotic substances such as bile acids and 
their precursors (Johnson et al. 2006; Sonoda et al. 2003).

Modification of PXR protein

PXR is subjected to post-translational modifications which 
are important for the regulatory effects of PXR on xeno-
biotic metabolism (Smutny et al. 2013). These post-trans-
lational modifications include phosphorylation, SUMOyla-
tion, ubiquitination and acetylation (Fig. 1).

Firstly, it is well-known that phosphorylation modu-
lates the activities of PXR (Fig. 1). It has also been shown 
that various kinases, including p70S6K (Pondugula et al. 
2009a), PKA (Ding and Staudinger 2005a), PKC (Ding and 
Staudinger 2005b), Cdk1/2 (Lichti-Kaiser et al. 2009), can 
phosphorylate and regulate PXR transcriptional activity 

(Smutny et al. 2013). However, it is not clear whether phos-
phorylation at various sites of PXR protein has any physi-
ological significance in vivo, and future studies are needed 
to be done.

Secondly, regulatory mechanisms of PXR and PXR-
mediated pathways involved in the ubiquitination and deg-
radation have been investigated. Masuyama et al. firstly 
studied the connections between PXR and proteasome 
signaling using the yeast two-hybrid system (Masuyama 
et al. 2000). They found that progesterone-occupied PXR 
interacted with suppressor for gal 1 and then repressed 
ubiquitylation of PXR and the activity of NF-κB pathway, 
thereby inducing the inflammatory responses and activat-
ing cAMP-dependent protein kinase signaling. Moreover, 
an E3 ubiquitin ligase, (RING-B-box-Coiled-coil) protein 
interacting with PKC-1 (RBCC), is identified as a PXR-
interacting protein and targets PXR for degradation by the 
ubiquitin–proteasome pathway (Rana et al. 2013). Moreo-
ver, heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) 
could also regulate proteasomal degradation and immune 
responses through mediating PXR ubiquitination (Elton 
et al. 2015).

Furthermore, four potential sites with PXR for 
SUMOylation within PXR have been identified by bioin-
formatic analysis (Priyanka et al. 2016), and they have been 
confirmed to be a substrate for SUMOylation in an in vitro 
approach (Hu et al. 2010). There is also evidence that PXR 
is SUMOylated in vivo by SUMO-3 after the induction of 
tumor necrosis factor-α (TNF-α) in hepatocytes, leading to 
a PXR-mediated repression of NF-κB target gene expres-
sion (Treuter and Venteclef 2011). Tan et al.(2016) reports 
that SUMOylation of PXR exerts suppressive effect on 
rifampicin-induced expression and activity of cytochrome 
P450 3A4 (CYP3A4) and P-gp, suggesting that alteration 
in the SUMOylation status of PXR affects the CYP3A4-
mediated drug metabolism and P-gp-regulated drug trans-
port (Tan et al. 2016).

In addition, recent studies have focused on the role 
of acetylation in the regulation of PXR signaling path-
way (Biswas et al. 2011; Staudinger et al. 2011). It has 
been demonstrated that PXR is acetylated in vivo and the 
rifampicin-mediated activation of PXR leads to its deacety-
lation. Some report indicates that the histone deacetylase 
Sirtuin 1 (SIRT1) is associated with PXR and is partially 
involved in PXR deacetylation (Buler et al. 2011). Other 
reports have suggested that peroxisome proliferator-acti-
vated receptor γ coactivator 1 alpha (PGC-1α)-mediated 
PXR may regulate AMP-activated protein kinase (AMPK) 
and mammalian target of rapamycin (mTOR) pathways 
(Dong et al. 2016; Wada et al. 2009).

Collectively, the mutually competitive modifications 
of PXR protein are complicated and may involve multiple 
mechanisms. It has been suggested that phosphorylation 
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may initiate either a positive or negative regulatory signal 
that directs PXR to SUMOylation, ubiquitination or acet-
ylation (Pondugula et al. 2009b). However, it is not well-
known whether the phosphorylation of PXR can directly 
regulate its self modification.

Function of PXR in metabolism and diseases

Although PXR was initially considered as a xenobiotic 
sensing nuclear receptor, it is evident that PXR also plays 
a key role in regulating metabolism (Gu et al. 2006), 
inflammatory response (Zhou et al. 2006), cell prolif-
eration (Igarashi et al. 2007), glucose, cholesterol and fat 
metabolism (Buler et al. 2012), endocrine homeostasis 
(Zhai et al. 2007), and other processes (Gao and Xie 2010) 
(Fig. 2). Importantly, PXR serves as a self antidotal sensor 

Fig. 1  The crosstalks between PXR and NF-κB through PXR ubiq-
uitylation, phosphorylation, SUMOylation, and acetylation. Lipopol-
ysaccharide, TNF-α or other stimulating factors are used to activate 
the expression/activity of NF-κB pathway by germline-encoded pat-
tern recognition receptor (including TLR/NOD2) activation, which 
will lead to the modification of PXR. Firstly, some drug or natural 
products (e.g., rifampicin, dexamethasone, amino acids) activate the 
activity of PXR, the activated PXR should bind to its ligands [i.e., 
retinoid X receptor (RXR)], and then form PXR–RXR heterodimer. 
Secondly, the regulatory regions of PXR binds to the promoter of its 

target genes to regulate their expression, at this time, nuclear NF-κB 
will combine RXR to form NF-κB–RXR compound in the nuclear, 
thereby decreasing the inflammatory response. Finally, ligand bind-
ing to PXR recruits coactivators to activate the expression of target 
genes [such as drug-metabolizing enzymes (DMEs), immunoprotein 
and transporters] that encode proteins involved in xenobiotic detoxi-
fication. And the process affects ubiquitylation, phosphorylation, 
SUMOylation, and acetylation of PXR. In addition, PXR can also 
affect T/B lymphocyte proliferation by decreasing the phosphoryla-
tion of NF-κB and human T lymphocytes

Fig. 2  Functions of PXR in different kinds of metabolism
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(Staudinger et al. 2001), and involves in various signaling 
pathways (i.e., MAPK-ERK, Nrf2/Keap1) (Wada et al. 
2009), and regulates the coordinated expression of target 
genes in metabolic syndrome (Kodama et al. 2007).

Notably, PXR is shown to regulate energy metabolism. 
Spruiell et al. (2014) explored the function of PXR gene 
in obesity. They found that PXR played different roles in 
obesity and glucose homeostasis in hPXR transgenic, and 
PXR-knock-out (PXR-KO) mice (Spruiell et al. 2014). 
Specifically, PXR elevated energy metabolism and glucose 
levels, but severely impaired glucose tolerance. Buler et al. 
(2011) found that energy state modulated PXR and PXR-
mediated pathways and two major regulators (PGC-1a and 
SIRT1) modulated hepatic energy homeostasis through the 
activation of PXR pathway (Buler et al. 2011, 2012). Huk-
kanen et al. (2014) hypothesized that not only did PXR reg-
ulate glucose and hepatic lipid metabolism, but also there 
was a connection between PXR agonists and diabetes sus-
ceptibility (Hukkanen et al. 2014). Wahlang et al. (2016) 
demonstrated that PXR and constitutive androstane recep-
tor (CAR) jointly regulated inflammation responses and 
energy metabolism in polychlorinated biphenyls (PCB)-
mediated non-alcoholic-steatohepatitis (Wahlang et al. 
2016).

These findings support the notion that PXR plays an 
important role in metabolic syndrome and suggest that the 
PXR activators and antagonists might be potential for the 
prevention of metabolic diseases. Some reports suggest that 
ligand-activated PXR repressed key transcription factors 
and coactivators, that control gluconeogenesis, fatty acid 
oxidation, cholesterol and ketogenesis through the interac-
tions of protein–protein and drug–drug (Schupp and Lazar 
2010; Stedman et al. 2005; Wada et al. 2009). Zhai et al. 
(2007) found hypertrophy of the adrenal cortex and loss 
of glucocorticoid circadian rhythm in the PXR activated 
transgenic mice. These transgenic mice exhibited normal 
pituitary secretion of adrenocorticotropic hormone and an 
intact-corticosterone-suppressing effect of dexamethasone, 
suggesting the presence of a functional hypothalamus–pitu-
itary–adrenal axis (He et al. 2011; Zhou et al. 2006). Thus, 
PXR might also be a potential endocrine-disrupting factor 
that plays roles in steroid homeostasis and drug-hormone 
interactions.

Moreover, evidence of the clinical relevance of PXR 
expression continues to emerge and suggests that PXR is 
highly expressed in certain cancers, where it promotes cell 
proliferation and chemoresistance (Chen et al. 2007; Gupta 
et al. 2008). Additionally, rifamycin-mediated PXR activa-
tion may affect the outcome of tuberculosis therapy (Shehu 
et al. 2016). Since PXR involves in numerous signaling 
pathways to maintain cellular and whole body homeosta-
sis, targeting PXR is a promising subject of study in medi-
cine and nutrition. However, when PXR severs as a drug 

target, especially in cancer therapy, the activation of PXR 
can induce drug resistance because of its self detoxification 
function (Cecchin et al. 2016; Robbins and Chen 2014). It 
is important to note that nutritional regulation and medical 
therapy are mutually interconnected, so further analysis is 
warranted to obtain more evidence regarding the purpose of 
nutritional regulation and drug control in relation to PXR 
pathway and their interplay.

Functions of PXR in self‑detoxification

Role of PXR in self‑detoxification

When exogenous and endogenous toxins infect our body, 
self-detoxification system will make the corresponding 
change to self-regulate our own status, which is called 
“self-detoxification” (Cantwell and McBride 1998). 
Numerous studies demonstrated that the chemical defense 
conferred by xenobiotic receptor-regulated detoxification 
and the biological defense involved in self-detoxification 
are two indispensable functions that provide an organism 
with survival advantages (Ma et al. 2015). To date, increas-
ing attention is being paid to the mechanisms of PXR on 
the regulation of self-detoxification (Li et al. 2012). Some 
studies suggest that PXR interacts with NF-κB pathway in 
response to xenobiotics (Cheng et al. 2012). Other reports 
demonstrate that PXR play a protective role in chronic or 
acute liver diseases by regulating CYP450 (Haughton et al. 
2006). Moreover, these two pathways were suggested to 
interact with each other when they mediated the effects of 
PXR.

Recent data have given rise to a hypothesis of bidirec-
tional negative crosstalk between PXR and NF-κB path-
ways, which can also establish a connection between 
inflammatory response and self-detoxification (Fig. 3). 
Previous studies reported that the activation of PXR attenu-
ated NF-κB signals, leading to the lower expression of 
pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, and 
TGF-β) (Zhou et al. 2006). Some reports also indicated 
that PXR silenced by siRNA completely abrogated these 
anti-inflammatory effects of rifaximin, due to the reduced 
binding of NF-κB to PXR. Gu et al. (2006) showed that 
the p65 subunit of NF-κB interacted with PXR and RXR, 
which prevented the binding of PXR to the promoters of 
target genes. Thus, the decreased PXR activity increased 
the susceptibility to inflammatory response (Kubota et al. 
2015). Recent studies demonstrated that the PXR-medi-
ated induction of CYP450 enhanced APAP-induced acute 
liver disease by generating toxic metabolites (Li et al. 
2012). Notably, one of the most important responses fol-
lowing self-detoxification reaction is the rapid transcrip-
tion of CYP450 genes. Once activated, PXR regulates the 
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transcription of its up- and downstream genes, of which 
there are some response elements within the promoters 
(Kast et al. 2002), that encode drug metabolizing enzymes 
(e.g., SULT, UGT), drug transporter proteins (e.g., MRP2, 
MDR1, P-gp), and enzymes involved in drug metabolism 
(e.g., CYP3As, CYP2Bs, CYP2Cs) (Dixit et al. 2016; 
Skowronek et al. 2016; Ye et al. 2016).

Implication of PXR in intestinal detoxification

It is well-known that PXR is regarded as a target for the 
treatment of intestinal inflammatory diseases (IBD) and 
the beneficial effects of PXR activation was partly due 
to the inhibition of NF-κB pathway (Cheng et al. 2012) 
(Fig. 3a). Shah et al. found that PXR agonist pregnenolone-
16α-carbonitrile decreased the severity of IBD and mRNA 
expression of several NF-κB target genes in a PXR-depend-
ent manner using PXR-null mice model (Shah et al. 2007). 
Bioactive component such as notoginsenoside R1 and isor-
hamnetin extracted from natural plant were also proved 
to ameliorate IBD via PXR-mediated down-regulation 

of NF-κB signaling (Dou et al. 2014). These two natural 
bioactive component both could decrease the production 
of cytokines, the expression of pro-inflammatory genes, 
and the phosphorylation of IκB kinase, IκBα, and p65 in 
the colon in dextran sulfate sodium and trinitrobenzene 
sulfonic acid-induced colitis in mice via the activation of 
intestinal PXR pathway (Zhang et al. 2015). Moreover, 
TLR4/MyD88 was also supposed to help NF-κB signal-
ing mediate the effects of PXR activation (Esposito et al. 
2016). Another bioactive component [epigallocatechin gal-
late (EGCG)] of green tea polyphenol activated PXR and 
in turn decrease expression of cytochrome P450 3A, in 
which lithocholic acid produced by bacteria in the colon 
played an important role (Ikarashi et al. 2017). In addi-
tion, other mechanism of PXR signaling in IBD was also 
demonstrated. Gary et al. found that activation of the 
PXR protected the intestinal barrier and triggered zonula 
occludens-1 relocalization during inflammation by modu-
lating cytokine-induced expression of myosin light-chain 
kinase (MLCK) and JNK1/2 activation (Garg et al. 2016). 
Since bile acid malabsorption is an important marker of 

Fig. 3  The regulation of PXR in intestine and liver detoxification 
and inflammation. Lipopolysaccharide (LPS)-induced intestinal 
inflammation or liver injury destroys the structure and function of 
normal cells and has an effect on the expression of drug-metaboliz-
ing enzymes (e.g., CYP3A, CYP2B, CYP2C) in self-detoxification 
system and key genes involved in NF-κB pathway, thereby trigger-
ing PXR signaling pathway. This can be ascribed in part to PXR 
activation improves the activity of CYP450 and the suppression of 
NF-κB-mediated inflammatory pathway. In intestine (a), rifaximin-
induced PXR activation in intestinal epithelial cells represses the 
NF-κB signaling cascade, and then regulates cytokine production 
(e.g. TNF-α, IL-1β, IL-6, TGF-β), which is associated with sup-

pression of intestinal permeability through PXR activation. Thus, 
this restores the balance between the intestinal epithelial barrier and 
immune system, resulting in the reconstruction of cell structure and 
function. In liver (b), rifaximin-induced PXR activation in hepato-
cyte initially promotes the interactions between NF-κB and RXR, and 
then increases the transcription of CYP450, this is because p65 as a 
subunit of NF-κB components, can directly bind RXR. And then this 
binding could also interfere with the formation of pro-inflammatory 
cytokines and increase the expression of drug-metabolizing enzymes, 
and subsequent DNA binding and other favorable signaling pathway 
activating
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Crohn’s disease and bile acids are potential activators of 
PXR, the relationship between bile acid malabsorption and 
PXR pathway were studied. They found that the degree of 
bile acid malabsorption was closely related to the deacti-
vation of PXR and CYP3A4 a well-characterized target 
gene of PXR (Iwamoto et al. 2013), which indicated that 
PXR signaling pathway plays an important role in Crohn’s 
disease. Except that PXR mediates the protective effects 
against IBD, it was also involved in intestinal epithelial 
wound healing, because stimulation of the PXR by rifaxi-
min, rifampicin and SR12813 increased cell migration and 
proliferation which are both critical process of wound heal-
ing (Terc et al. 2014).

Implication of PXR in liver detoxification

PXR as a xenobiotic sensor could trigger self-detoxification 
system in the liver (Wallace et al. 2010) and the mechanism 
is shown in Fig. 3. Notably, many studies further empha-
sizes its key role in xenobiotic metabolism as they found 
that PXR was activated in liver injury (Zeng et al. 2016; 
Zhou et al. 2016). In primary human hepatocytes, PXR 
activated by rifampicin inhibited CYP3A4 and P-gp activ-
ity in the drug clearance (Holmstock et al. 2013). Clotri-
mazole as a PXR activator has shown to have a protective 
effect in an ischemia–reperfusion model in rats (Orr et al. 
2004). Furthermore, since PXR ligand activators are anti-
fibrogenic in human liver myofibroblasts in vitro (Fuchs 
et al. 2016) and in vivo animal models of liver fibrosis 
(Cave et al. 2016). PXR activators may be better drugs 
for the treatment of liver fibrosis than other non-PXR-
activating drugs (Wallace et al. 2010). Recently, acetylated 
deoxycholic (DCA) and cholic acids (CA) were proved to 
be potent ligands of PXR and they induced mRNA expres-
sion of PXR-target genes such as CYP3A4, CYP2B6 and 
ABCB1/MDR1 (Carazo et al. 2017). These results sug-
gested that endogenous ligands might have the potential to 
be a safe therapy in inflammatory and other liver diseases 
and further confirmed the involvement of PXR in hepatic 
detoxification system.

A previous study demonstrated that the anti-inflam-
matory actions of PXR agonists such as cyclosporine A 
are mediated by the inhibition of NF-κB activity (Harvey 
et al. 2000). In a recent study, Ye et al. (2016) examined 
the effect of PXR on tetrachloromethane (CCl4)-induced 
mouse liver disease. Their results indicated that anti-inflam-
matory effect of PXR activated by ginkgolide A might be 
mediated by the enhanced transcription level of I kappa B 
alpha (Ye et al. 2016). These observations may be impor-
tant for clinical therapy, because some liver disease patients 
can availably take PXR activators for prolonged periods, 
especially, primary biliary cirrhosis patients (Chiang et al. 
2014; Schmuth et al. 2014; Xie et al. 2016). Additionally, 

the marked increase in hepatic CYP3A11 and MRP3/4 
expression in a bile duct ligation model of cholestasis in 
mice suggests that PXR plays a protective role in choles-
tatic patients by increasing the hydroxylation and efflux of 
toxic bile acids from hepatocytes into blood, through its 
regulation of multiple self detoxification (Noll et al. 2016). 
Thus, PXR is considered to be a self-detoxification sensor, 
which may offer hope for the development of new therapies 
for liver diseases.

Interactions of PXR in intestine and liver detoxification

Currently, many researchers have gradually focused their 
attention on a correlation between metabolic and molecular 
expression, which links the gut-liver axis to the occurrence 
of self-detoxification (Cecchin et al. 2016; Fuchs et al. 
2016). It is reported that intestinal bacteria and their prod-
ucts (such as bacterial endotoxin, cytokines, etc.) in intes-
tinal inflammatory diseases could enter the liver through 
circulation (Taniki et al. 2015), and ultimately resulted 
in dysfunction of self-detoxification system (Brandl and 
Schnabl 2015).

Growing evidence suggests that PXR pathway plays 
a vital role in the maintenance of gut and liver homeosta-
sis through the inhibition of inflammatory response and 
improvement of self-detoxification. However, it is unclear 
whether the PXR signaling pathway has different associa-
tions with intestine and liver detoxification, and whether 
these conditions are connected with each other (Staudinger 
et al. 2013). Our research group has focused on the regula-
tion of PXR activity by nutrients (e.g., alpha-ketoglutarate, 
amino acids), in order to improve inflammatory response 
and self-detoxification. To data, He et al. (2017a) found 
that alpha-ketoglutarate (AKG) had potent effects on regu-
lating the PXR and its downstream targets such as CYP3As 
and CYP2Bs in vivo and in vitro, although AKG is not a 
known PXR ligand. One potential mechanism for the up-
regulation of the PXR pathway is through the down-reg-
ulation of NF-κB pathway which in turn de-represses the 
PXR-regulated target expression (He et al. 2017b). Other 
potential mechanism that AKG may be enhance the activ-
ity of the AMPK pathway to activate PXR signal (He et al. 
2017a).

Future perspectives

PXR is a critical regulator of nutrient metabolism and 
metabolic detoxification such as xenobiotic metabolism, 
inflammatory responses, glucose, cholesterol and lipid 
metabolism, which makes it a potential therapeutic tar-
get as many commonly prescribes drug and natural prod-
ucts could activate PXR pathway. Although studies have 
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showed that post-translational modifications of PXR 
protein mostly including phosphorylation, SUMOyla-
tion, ubiquitination and acetylation are important for the 
functions of PXR, works still need to be done in order to 
elucidate the interactions of different post-translational 
modifications. Since PXR-mediated NF-κB and CYP450 
signaling pathways mainly mediated the regulation effects 
of PXR on self-detoxification in both liver and intestine, 
the specific crosstalk between intestine and liver self-
detoxification mediated by PXR would be an interesting 
topic for future studies.
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