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Abstract
Dynamics of spin dimers in multiple quantum NMR experiment is studied on the 
5-qubit superconducting quantum processor of IBM Quantum Experience for the 
both pure ground and thermodynamic equilibrium (mixed) initial states. The work 
can be considered as a first step towards an application of quantum computers to 
solving problems of magnetic resonance. This article is dedicated to Prof. Klaus 
Möbius and Prof. Kev Salikhov on the occasion of their 85th birthdays.

1 Introduction

Quantum computers based on quantum phenomena such as superposition and entan-
glement [1] are expected to perform tasks which surpass the capabilities of modern 
classical digital computers [2]. First quantum computers arose quite recently and 
refer to noisy intermediate-scale quantum (NISQ) technology. Quantum calculations 
open new possibilities for solving problems in various fields of physics one of which 
is magnetic resonance including dynamics of many-body systems [3]. Although 
the accuracy of today’s calculations on quantum computers is insufficient owing to 
errors of quantum gates, it is still possible to perform quantum calculations for some 
relatively simple tasks [4–10]. Taking into account fantastic advantages of quan-
tum computers over their classical counterparts which is expected to be released in 
future, development of quantum algorithms is a challenging and useful task.

The primary problem to be explored in this paper is simulating the simplest 
algorithms associated with multiple-quantum (MQ) NMR experiments on a quan-
tum computer to compare the results obtained using contemporary tool with those 
obtained theoretically. This allows us to get start of implementing quantum com-
putation in algorithms of MQ NMR. To proceed, we investigate the MQ NMR 
dynamics of a spin dimer [11] on a quantum computer. The chosen initial state of 
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a spin dimer can be either the pure ground state or the thermodynamic equilibrium 
(mixed) one. We implement a method of generating a mixed quantum state (i.e., a 
state described by a density matrix rather then wave function) which serves as an 
input signal for a quantum computer. This step is essential for realization of different 
quantum protocols because a priori only a pure state can be generated as an input 
state of a quantum algorithm. To generate a mixed state, we use purification method 
which can be formulated as follows. For any mixed state �(A) of a quantum system A, 
there exists a system B and the pure state �Ψ⟩AB of the quantum system A ∪ B such 
that

Thus, to generate a mixed state of a 2-qubit system (dimer) we use a 4-qubit system 
only at input of a protocol. After that, two extra qubits are not used in further calcu-
lations. Although the method requires extra quantum resources (2 extra qubits in our 
case), this seems to be the only way of initiating a mixed state from the pure one.

We demonstrate a profit from quantum computation for magnetic resonance 
which can be formulated as follows. If the dynamics of a quantum system in MQ 
NMR experiment is described by the Hamiltonian including only nearest neighbor 
interactions, then the intensity profile for such system includes only intensities of 0- 
and ±2-order coherences, I0 , I±2 [12]. Performing quantum computation we meas-
ure certain probabilities as outputs which allows us to find the intensity of 0-order 
coherence I0 . Then, using the conservation law of the sum of intensities of MQ 
NMR coherences [13] in the evolution process ( I0 + I2 + I−2 = const , I2 = I−2 ), we 
can find I2.

The article is organized as follows. In Sect.2, the principles of quantum algo-
rithms and the main quantum gates are presented. The introduction to the theory 
of spin-dimer dynamics in the MQ NMR experiment is given in Sect.3 for different 
initial states of a dimer. In Sect.4, quantum calculation of the MQ NMR dynamics 
of a spin dimer with the pure ground and thermodynamic equilibrium initial states is 
given. We briefly discuss our results in the concluding section 5.

2  Main Quantum Gates and Quantum Algorithms

The states of a qubit can be written as �0⟩ or �1⟩ which correspond to spin ( s = 1∕2 ), 
respectively, up and down. Consequently, a two-qubit system considered below has 
four computational basis states denoted as �00⟩ , �01⟩ , �10⟩ and �11⟩ . A pair of qubits 
can also exist in superposition of these four states such that the state vector describ-
ing the two qubits is

where the amplitudes �00 , �01 , �10 and �11 are the complex numbers.
Different single qubit gates are considered in [1]. We will use below one-qubit 

rotations and two-qubit controlled NOT (CNOT) operation [1]. For example, the 

(1)�(A) = Tr B�Ψ⟩AB AB⟨Ψ�.

(2)
��⟩ = �00�00⟩ + �01�01⟩ + �10�10⟩ + �11�11⟩, ��00�2 + ��01�2 + ��10�2 + ��11�2 = 1,
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matrix representation of the rotation operator Rx(�) by an angel � about the axis x 
can be written as

where �x is the Pauli operator [1]. The rotation operators Ry and Rz are defined 
analogously:

where �y , �z are the corresponding Pauli operators. The CNOT is very important in 
quantum computing. It can be used to entangle and disentangle different quantum 
states. Moreover, according to the Solovay–Kitaev theorem [1] any quantum circuit 
can be simulated to an arbitrary degree of accuracy using a combination of CNOT 
gates and one-qubit rotations. Thus, one-qubit rotations and CNOT form the basis of 
an arbitrary quantum algorithm.

The CNOT gate operates on a quantum register consisting of two qubits. It flips 
the second qubit (the target qubit) if and only if the state of the first qubit (the con-
trol qubit) is �1⟩ . The action of the CNOT gate can be represented in the computa-
tional basis by the matrix

Below these gates are used for investigation of dynamics of spin dimer in the MQ 
NMR experiment.

3  MQ NMR Dynamics of Spin Dimers [14] with a Pure 
and Thermodynamic Equilibrium Initial States

MQ NMR dynamics of spin dimers in solids is described by either the Schrödinger 
equation

in the case of a pure initial state, or the Liouville–von Neumann equation for the 
density matrix �(t)

(3)Rx(�) = exp
(
− i

�

2
�x

)
=

(
cos

�

2
− i sin

�

2

−i sin
�

2
cos

�

2

)
,

(4)Ry(�) = exp
(
− i

�

2
�y

)
, Rz(�) = exp

(
− i

�

2
�z

)
,

(5)CNOT =

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠
.

(6)i
d��(t)⟩

dt
= H12��(t)⟩

(7)i
d�(t)

dt
= [H12, �(t)]
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in the case of a mixed initial state. In MQ NMR experiment [11], a spin system 
( s = 1∕2 ) in a strong external magnetic field with the dipole–dipole interactions is 
irradiated by the special pulse sequence. As a result, the system is described by the 
averaged nonsecular two-spin/two-quantum Hamiltonian governing MQ dynamics. 
This Hamiltonian for the dimer can be written as [13]:

where I+
i
 and I−

i
 , i = 1, 2 , are raising and lowering angular momentum operators of 

dimer’s spins and D is the dipolar coupling constant. The Hamiltonian (8) allows us 
to describe MQ spin dynamics in MQ NMR experiments [11] only under strobo-
scopic observation.

3.1  Pure Ground State

Let the spin system be in the pure ground state at t = 0,

Then the solution of Eq. (6) can be written as

Calculation with (8), (9), (10) leads to the simple result:

Presentation (11) is very useful for performing quantum calculation.
Now we find the intensities of MQ NMR coherences associated with state (11). For 

this purpose, we write the appropriate density matrix

By virtue of Eq. (12) and taking into account that the signal of the longitudinal mag-
netization is observed in the MQ NMR experiment [11], we find the intensity J0(�) 
of the 0-order MQ NMR coherence [14] using the definition of intensity of n-order 
coherence:

where superscript n means n-order coherence, �(0) , �(ht;0) are the diagonal parts of the 
matrices � and �ht , while �(±2) , �(ht;±2) are their non-diagonal parts and �(ht) is [15]

(8)H12 = −
1

2
D(I+

1
I+
2
+ I−

1
I−
2
),

(9)��(0)⟩ = �00⟩.

(10)��(t)⟩ = e−iH12t�00⟩.

(11)��(�)⟩ = cos
�

2
�00⟩ + i sin

�

2
�11⟩, � = Dt.

(12)

�(�) =��(�)⟩⟨�(�)�
= cos2

�

2
�00⟩⟨00� + sin2

�

2
�11⟩⟨11�+ i

2
sin ��11⟩⟨00�− i

2
sin ��00⟩⟨11�.

(13)Jn = Tr �(n)(�)�(ht;−n)(�), n = 0,±2,
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Iz is the operator of the projection of the total spin angular momentum on the direc-
tion of the external magnetic field (z-axis). The intensity J0(�) is

and the intensities J±2(�) of the ±2-order MQ NMR coherences,

3.2  Thermodynamic Equilibrium Initial State

We consider now a spin dimer in a strong external magnetic field [15]. The thermody-
namic equilibrium density matrix �(0) of the system is

where �0 is the Larmor frequency, T is the temperature, ℏ and k are, respectively, 
the Plank and Boltzmann constants, Iz = I1z + I2z , Ijz ( j = 1, 2 ) is the projection of 
the angular momentum operator of the spin j on the axis z, and Z is the partition 
function. Under condition of MQ NMR experiment, the dynamics is governed by 
Hamiltonian (8); therefore, the dimer density matrix �(t) can be written in the com-
putational basis as follows:

 The diagonal part of the density matrix (18) is responsible for the intensity J0(�) of 
the 0-order coherence matrix, and the off-diagonal elements, �±2 =

∓i sin � sinh �

2(1+cosh �)
 , are 

responsible for the intensities J±2(�) of the ±2-order coherence matrices. These 
intensities are following:

(14)�(ht) = e
−iH12

�

D Ize
−iH12

�

D =

⎛
⎜⎜⎜⎝

cos � 0 0 − i sin �
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0 0 0 0

i sin � 0 0 − cos �

⎞
⎟⎟⎟⎠
,

(15)J0(�) = cos2
�

2
cos � − sin2

�

2
cos � = cos2 �,

(16)J±2 =
sin2 �

2
.

(17)�(0) =
e�Iz

Z
, Z = Tr e�Iz , � =

ℏ�0

kT
,

(18)
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−

iH12

D
�
�(0)e
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D
�

=
1
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0 0 1 0

i sin � sinh � 0 0 cosh � − cos � sinh �

⎞⎟⎟⎟⎠
.

(19)
J0 = cos2 � tan

�

2
,
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1

2
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�

2
.



1126 S. I. Doronin et al.

1 3

 Notice that formulae (15) and (16) for the intensities J0 and J2 of the dimer with the 
pure ground initial state are the low-temperature limits � → ∞ of formulae (19).

4  Simulation of Spin‑Dimer Dynamics on Quantum Computer

To simulate the evolution operators on a quantum processor, they must be represented 
in terms of one-qubit rotations and CNOTs. We perform this simulation for both initial 
states considered above. All calculations are performed on the 5-qubit quantum proces-
sor of IBM QE.

4.1  Pure Ground Initial State

To simulate the evolution (10) (or (11)) of a pure ground state on a quantum computer, 
we remark that the evolution operator in (10) can be written in terms of a rotation oper-
ator and CNOT as follows:

Therefore, the initial pure state �00⟩ of a spin dimer allows us to describe the quan-
tum operations determined by Eqs. (10) and (11) in the following concentrated form 
:

This operation can be simulated on a quantum processor according to the scheme in 
Fig.1.

After the rotation of the first qubit by the angle � = −� about the axes x (see Eq.(3)) 
the initial state changes as follows:

After applying CNOT (5) to state (22) using the first spin as a control qubit, we 
obtain the following state of the system:

We see from (23) that the probabilities of states �00⟩ and �11⟩ are

(20)e
−iH12

�

D �00⟩ = C12Rx1(−�)�00⟩.

(21)��(�)⟩ = C12Rx1(−�)�00⟩.

(22)�00⟩ → cos
�

2
�00⟩+i sin �

2
�10⟩.

(23)cos
�

2
�00⟩+i sin �

2
�10⟩ → cos

�

2
�00⟩+i sin �

2
�11⟩ ≡ ��(�)⟩.

Fig. 1  The scheme for simulat-
ing the dynamics of the pure 
ground state of a spin-dimer on 
a quantum processor
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Using Eqs.(15), (16) and (24), we obtain via formulae (13) and (14) the intensities 
of 0- and ±2-order coherences in terms of the measured probabilities ai , i = 1, 2:

In Fig.2, we compare the theoretical intensities of MQ NMR coherences of the 0- 
and 2-order (see Eqs.(15) and (16)) with the intensities (25) found using results of 
calculation on the quantum processor. One can see a good agreement between both 
results.

4.2  Thermodynamic Equilibrium Initial State

The dimer’s thermodynamic equilibrium initial state (17) can be considered as a tensor 
product of 1-qubit states:

We shall emphasize that the state (27) is a mixed state, but we can simulate the evo-
lution only of a pure state on a quantum processor. Therefore, we have to purify the 
initial state (26) [1] in a way mentioned in the Introduction. It is simple to show that 
one additional spin is enough to purify the thermodynamic equilibrium state of a 
single spin. In fact, let ��12⟩ be the 2-qubit state of the form

(24)a1(�) = cos2
�

2
, a2(�) = sin2

�

2
.

(25)J0(�) = (2a1(�) − 1)2, J±2(�) = 2a1(�)a2(�).

(26)𝜌(0) = 𝜌1(0)⊗ 𝜌2(0),

(27)�k(0) =
e�Ikz

Zk
, Zk = Tr e�Ikz , k = 1, 2.

(28)��12⟩ = cos
�

2
�00⟩ + sin

�

2
�11⟩.

Fig. 2  Pure ground initial state. The evolution of the intensities of the MQ NMR coherences of the 0- 
and 2-order ( J

0
 and J

2
 ). Intensities obtained theoretically using Eqs.(15) and (16) (solid line) slightly dif-

fer from the intensities found using results of calculation on the quantum processor (circles), see Eqs.(25)
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Tracing the density matrix ��12⟩⟨�12� over one of qubits yields the following 1-qubit 
state:

which coincides with �k(0) (27), k = 1, 2 , if

Therefore, the purification of 2-qubit state (26) yields the following pure state of the 
4-qubit system:

which can be prepared on a quantum processor as follows:

where Cij , j > i, is the CNOT (5) and Rky(�) ( k = 1, 3 ) is the rotation operator by an 
angle � about the axis y. We consider the thermodynamic equilibrium state of the 
dimer consisting of the 2nd and 3rd qubits of the 5-qubit register assuming tracing 
over the 1st and 4th spins (the 5th qubit is not included into the scheme). Therefore, 
we apply the evolution operator to the 2nd and 3rd spins only:

By virtue of the result of Ref. [16], we can write

Using the scheme in Fig.3, we simulate the initial state (32) and evolution (34) on a 
quantum computer. As a result, we obtain the following pure state of four qubits

(29)diag (cos2
�

2
, sin2

�

2
)

(30)cos2
�

2
=

e�∕2

2 cosh �∕2
⇔ cos � = tanh

�

2
.

(31)�𝜓(0)⟩ = (cos
𝜃

2
�00⟩ + sin

𝜃

2
�11⟩)⊗ (cos

𝜃

2
�00⟩ + sin

𝜃

2
�11⟩),

(32)��(0)⟩ = C12Ry1(�)C34Ry3(�)�0000⟩,

(33)��(t)⟩ = e−iH23t��(0)⟩.

(34)e−iH23t = Rx2(
�

2
)Rx3(−

�

2
)C23Rx2(−�∕2)Rz3(−�∕2)C23Rx2(−

�

2
)Rx3(

�

2
).

Fig. 3  The scheme for simulating the dynamics of the dimer’s thermodynamic equilibrium initial state on 
a quantum processor
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Measurements over the 2nd and 3rd spins yield the probabilities pnm of their states:

 where the sum is over the states of the first and fourth spins. By virtue of Eq.(35), 
Eq.(36) yields:

which are the diagonal elements of the 2-qubit reduced density matrix of the 2nd 
and 3rd spins:

For the intensity J0 of the 0-order MQ NMR coherence, according to the standard 
rules [15] and taking into account (30), we obtain

The conservation low of the sum of MQ NMR coherences [15] allows to calculate 
the intensities of the ±2-order MQ NMR coherence:

We compare the intensities (39) and (40) found using the results of calculation on 
the quantum computer with the theoretical results (19). One can see a good agree-
ment between them in Fig.4.

(35)
��(�)⟩ = cos

�

2
cos2

�

2
�0000⟩ + 1

2
sin ��0011⟩ + i sin

�

2
cos2

�

2
�0110⟩

+ i sin
�

2
sin2

�

2
�1001⟩ + 1

2
sin ��1100⟩ + cos

�

2
sin2

�

2
�1111⟩.

(36)pnm =
�

k,l=0,1

�⟨knml��(�)⟩�2, n,m = 0, 1,

(37)

p00 =
1

8
(3 + 4 cos � cos � + cos(2�)),

p11 =
1

8
(3 − 4 cos � cos � + cos(2�)),

p01 = p10 =
sin2 �

4
,

(38)

�23 = Tr1,4��(�)⟩⟨�(�)�

=

⎛
⎜⎜⎜⎝

p00 0 0 �14
0 p01 0 0

0 0 p10 0

�∗
14

0 0 p11

⎞
⎟⎟⎟⎠
, �14 = −

i

2
sin � cos �.

(39)J0(�) = cos �(p00 − p11).

(40)J±2(�) =
1

2

(
tan

�

2
− J0(�)

)
.
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5  Conclusion

According to the existing theory of MQ NMR [13], intensities of MQ NMR 
coherences of the zero and second orders for the spin dimer are determined by 
probabilities of states �00⟩ and �11⟩ in the course of the spin system evolution. In 
our paper, these probabilities are calculated on the quantum computer. We use 
the theoretical relationships connecting these probabilities and intensities of MQ 
NMR coherences.

The main goal of our articles is to demonstrate the possibilities of present-day 
quantum computers and to estimate an accuracy of the used quantum gates. For 
this end we investigate the spin-dimer dynamics on a 5-qubit platform of IBM 
superconducting quantum computer. Two initial states are considered: the pure 
ground state and the thermodynamic equilibrium one. Intensities of the 0- and 
2-order MQ NMR coherences found on the basis of calculation on the quantum 
computer are compared with theoretically obtained intensities and a good agree-
ment between them is demonstrated.

We emphasize that, up to our knowledge, we first implement the purification 
method for creating the mixed state on the quantum computer. In our case, the 
thermodynamic equilibrium mixed initial state (26,27) of a subsystem A (qubits 
2 and 3 in Fig.3) is created using the additional subsystem B (qubits 1 and 4 in 
Fig.3) and the proper pure initial state (31) of the joined system A ∪ B (qubits 1, 
2, 3, 4) by tracing out the above pure state over the subsystem B, Eq.(1).

We believe that quantum computer calculations open large perspectives in 
solving problems of spin dynamics and magnetic resonance.

Acknowledgements The work was performed as a part of a state task, State Registration No. AAAA-
A19-119071190017-7. This work was partially supported by the Russian Foundation for Basic Research 
(project No. 20-03-00147).

Fig. 4  Thermodynamic equilibrium initial state with � = 2.12 . The evolution of the intensities of the MQ 
NMR coherences of the 0- and 2-order ( J

0
 and J

2
 ). Intensities obtained theoretically using Eqs.(19) (solid 

line) slightly differ from the intensities found using results of calculation on the quantum processor (cir-
cles), see Eqs.(39) and (40)
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