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Abstract
The Dobryakov–Lebedev relation (Sov Phys Doklady 13:873, 1969), which relates 
the line width of the first-derivative of a Gaussian–Lorentzian convolution to the 
line widths of its Gaussian and Lorentzian components for an unresolved EPR line, 
is extended to resolved lines. Applying this extension to nitroxide-free radicals in 
solutions of low-viscosity solvents offers an opportunity to study interactions of the 
spins with the microwave field and spin–spin interactions previously inaccessible 
except by tedious numerical methods.

Applied
Magnetic Resonance

Dedicated to Kev Salikhov and Klaus Möbius, the birthday brothers.

 *	 Barney L. Bales 
	 barney.bales@csun.edu

	 M. M. Bakirov 
	 pinas1@yandex.ru

	 I. T. Khairutdinov 
	 semak-olic@mail.ru

	 Robert N. Schwartz 
	 rnschwartz@msn.com

	 Miroslav Peric 
	 miroslav.peric@csun.edu

1	 Zavoisky Physical‑Technical Institute, Russian Academy of Sciences, Sibirsky trakt 10/7, 
Kazan 420029, Russian Federation

2	 Electrical and Computer Engineering Department, University of California, Los Angeles, 
Los Angeles, CA 90095, USA

3	 Department of Physics and Astronomy, The Center for Biological Physics, California State 
University at Northridge, Northridge, CA 91330, USA

http://orcid.org/0000-0002-0187-467X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00723-021-01433-z&domain=pdf


1152	 M. M. Bakirov et al.

1 3

1  Introduction

Spectral lines complicated by inhomogeneous broadening (IHB) by various factors in 
several branches of experimental physics have been studied for many years and their 
study still is an active field. See [1] and references therein. Lifetime broadening effects, 
approximated by the Lorentzian profile ( L ), are often of direct interest, while the IHB 
is often approximated by a Gaussian profile ( G ). Appeals to the convolution between L 
and G, the Voigt ( V ) [2, 3], are abundant in the literature [1]. The convolution offers a 
method to separate L and G, to study each separately. While V is a justifiable approxi-
mation to simulated or experimental spectra, it is computationally expensive; for each 
point in the line, the convolution integral must be calculated and repeated until a sat-
isfactory match between the experiment and fit may be found [4]. It is not surprising, 
therefore, that there has been a chronic and continuing interest in developing rapid, 
accurate methods to approximate V . See [1], and references therein. See Table 1 for a 
list of definitions, abbreviations, and acronyms.

In EPR studies of nitroxide free radicals (nitroxides), the weighted sum of G and 
L , the SumF, Eq.  (2) below, has proved to be an excellent approximation to experi-
ment line shapes [5, 6]. Both V and SumF provide exact descriptions of the line in both 
extremes, L or G , and differ from each other by less than 0.7%. Keeping in mind that 
both V and SumF are approximations, there are some reasons to prefer SumF to V for 
reasons as described in Sect. 4.3.

In this paper, we restrict ourselves to nitroxide-free radicals executing rapid tum-
bling and translation in solution; however, nitroxides tumbling in solids can show 
motionally narrowed spectra similar to these presented here; e.g., Ref. [7]. Color cent-
ers in solids [8] and trapped electrons in glasses [9] are also amenable to study with 
the DL . Furthermore, the methods developed here might find use in other organic-free 
radicals whose spectra are IHB. All nitroxides, except Fremy’s salt, are IHB and the 
vast majority of the spectra in the nitroxide literature are unresolved [4]. Therefore, in 
most cases, deconvolution of V is routine [4]. This contribution addresses the few, but 
important cases in which the spectra are partially resolved. In practice only protonated 
nitroxides show resolution.

We present experimental data derived from the nitroxide 4-hydroxy-2,2,6,6-tetra-
methylpiperidine-1-oxyl (Tempol). To refer to per-deuterated Tempol, which we do not 
investigate here, we use the acronym d-Tempol and for the 15N-enriched versions, we 
use 15N Tempol or 15N d-Tempol. We present theoretical results from a model nitroxide 
with hyperfine coupling to 12 equivalent protons which we call Tempone.

For readers who are not experts in EPR studies of nitroxides, please see the series 
edited by Berliner [10–12] and a recent textbook [13].

2 � Theory

In modern EPR, because magnetic-field modulation followed by phase-sensitive detec-
tion is used to increase the signal-to-noise ratio [14], the spectra are almost always pre-
sented as first-derivatives as they are in this paper. In a first-derivative spectrum, 
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defining the peak-to-peak line widths of G and L as ΔHG
pp

 and ΔHL
pp

 , respectively, we 
define the V-parameter as follows:

The shape of V  is uniquely defined by � [4].
EPR is one of the many fields that have benefited from evaluating V  by approxi-

mate methods. In common with other fields, its unresolved spectral lines may be 
modeled to high precision by a sum of L and G , denoted by SumF , Eq. (2) [5, 6]:

(1)� =
ΔHG

pp

ΔHL
pp

.

(2)SumF = I[�L + (1 − �)G],

Table 1   Definitions, abbreviations, notes, and acronyms

DL The Dobryakov–Lebedev relation, Eq. (1)

IHB Inhomogeneous broadening of the nitrogen manifold, principally due to hfs of 
protons, but also due to magnetic field modulation

L , G , V  , and SumF Line shape functions for Lorentzian, Gaussian, Voigtian, and the weighted sum of L 
and G , respectively

A0 , aj Nitrogen, proton or deuteron hyperfine coupling constants (G), respectively
I (a) Doubly integrated intensity of the first-derivative spectrum; (b) nitrogen nuclear 

quantum number
ΔH0

pp
,ΔHG

pp
,ΔHL

pp
Peak-to-peak line widths of a first-derivative IHB EPR line, G , and L , respectively

V-parameter Voigt parameter, � = ΔHG
pp
∕ΔHL

pp

η (a) Mixing coefficient of the SumF; (b) viscosity
HSE/DD Heisenberg spin exchange/dipole–dipole interactions
Fit Verb, performing a non-linear least-squares fit of the spectrum to the SumF, unless 

otherwise specified. Noun, the result of the fit
Map Refers to the mapping of the measured mixing constant, � , of the SumF to the V

-parameter, � = ΔHG
pp
∕ΔHL

pp

Line One of three (two) nitrogen hyperfine lines, IHB by protons (deuterons)
lf, cf, and hf Low-, center-, and high-field lines for 14N; low- and high-field for 15N
Tempol 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl. To refer to per-deuterated Tempol, 

we use the acronym d-Tempol and to the 15N enriched Tempol, we use 15N Tempol 
or 15N d-Tempol

H1 Amplitude of the circularly polarized magnetic induction of the microwave field
CWS Continuous-wave saturation curve where a measurable parameter of the spectrum is 

plotted against H1

ΔHL
pp
(C)

H1

ΔHL
pp

 for concentration C in units M, measured at H1 . ΔHL
pp
(C)

0
 intercept of CWS or 

one or more points measured where saturation is negligible
ΔHL

pp
(0)

0
Measured at H1,C → 0 ; i.e., where C and saturation are negligible. 
ΔHL

pp
(0)

0
 = 2∕

�
√

3�T2

�

� A constant, near unity to account for the small difference in line width between a 
hyperfine pattern and G

� The Voigt parameter � = ΔHG
pp
∕ΔHL

pp
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where, � , the mixing coefficient gives the fraction of the doubly integrated intensity, 
I , due to L . SumF makes no physical sense it is just a convenient, accurate fit func-
tion. The two functions are given as follows:

where ΔH0
pp

 , common to both G and L , is the peak-to-peak line width of the IHB 
line and:

where H is the swept magnetic field and H0 is the resonance field of one of the 
three (two) nitrogen hyperfine lines due to 14N (15N) nitroxides. We use the term 
“line” to mean one of these nitrogen hyperfine lines. The term “proton lines” refers 
to resolved or unresolved proton hyperfine lines.

Figure 1 shows such an IHB line defining ΔH0
pp

 and Vpp , the peak-to-peak height. 
Vpp may be found by observing that at � = 1 , SumF = Vpp/2. Evaluating the constants, 
we find:

Equations (2)–(6) refer to each of the three (two) lines of an EPR spectrum. In 
this paper, we restrict our development to 14N nitroxides at low values of the con-
centration, C . This implies that the lines overlap negligibly and spin–spin interac-
tions that yield spin–spin induced dispersion lines [15] are small. Furthermore, we 
limit our theory and experimental results to small values of H1 , the amplitude of 
circularly polarized magnetic induction of the microwave field, so that saturation 
effects are small. Our software, Lowfit, to analyze IHB includes line overlap explic-
itly and dispersion terms so that future work is not limited to low C and H1 . See Ref. 
[16] for details.

In one important aspect, EPR is quite different from other fields. In practice, with 
modern spectrometers, ΔHG

pp
 , is dominated by (a) magnetic field modulation and (b) 

hyperfine structure. For (a), see Ref. [17] where a simple expression is developed to 
express ΔHG

pp
 induced by field modulation. For alternative treatments, see Refs. [18] 

and [19].
For (b), accurately known proton hyperfine coupling constants, aj , perhaps cor-

rected for slight solvent and temperature dependences, are used to construct 

(3)L =
−8

√

3

�

�

ΔH0
pp

�2

�
�

3 + �2
�2
,

(4)
G =

−4
√

2�
�

ΔH0
pp

�2
�e−�

2∕2,

(5)� = 2
H − H0

ΔH0
pp

,

(6)
Vpp =

I
(

ΔH0
pp

)2
[1.936 − 1.384�].
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hyperfine patterns of “sticks’ upon which L are imposed as described in Ref. [4]. 
For these patterns, and others complicated by hyperfine coupling with magnetic 
nuclei other than protons, ΔHG

pp
 is twice the square-root of the second moment [4] 

computed from the following:

where aj is the hyperfine coupling constant for the jth set of Nj equivalent nuclei 
of nuclear spin Ij and � is a constant, near unity, to account for the small difference 
between the hyperfine pattern and G [4]. For most nitroxides, the only important 
nuclei are protons and deuterons. Here, we are considering only protons, thus:

(7)ΔHG
pp

= 2

√

∑

�Ij
(

Ij + 1
)

Nja
2
j
∕3,

Fig. 1   a Simulated total spectrum, the superposition of 13 Lorentzian proton hyperfine lines of binomial 
intensity, of which only 9 are perceptible on this scale. Parameters of the simulation: a1 = 0.400 G and 
N1 = 12. ΔHL

pp
 = 0.72 G displayed with a magnetic field sweep-range of 10.00 G. ΔHG

pp
 = 1.44 G is found 

from Eq.  (8), thus � = 1.44 G/0.720 G = 2.00 b The residual, defined to be the spectrum minus the fit, 
amplified by a factor of 10, shows broad lines with overlying narrower lines in the center. c The residual 
for a simulation (not shown) with the same pattern but ΔHL

pp
 = 0.98 G, � = 1.465 amplified by a factor 

of 10, shows broad lines and no overlying narrower lines. The measurable parameters from the fit, ΔH0
pp

 
and Vpp , are defined. The DL predicts ΔH0

pp
 = 1.844  G, while the fit yields 1.842 ± 0.001  G. The true 

ΔH0
pp

 = 1.864 G
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The task of extracting ΔHL
pp

 from the larger ΔH0
pp

 for nitroxides undergoing rapid 
tumbling in fluids was rendered routine 32 years ago for most spin probes in most 
experiments. Unlike some other fields, in EPR we require only about 2.5 digits of 
accuracy, modest compared with higher accuracies needed in other fields [1].

In employing SumF, confusion may arise because of the use of the words “Gauss-
ian” and “Lorentzian” in two entirely different contexts. First, they are used to form 
the fit function SumF, where the line width of both is the overall width ΔH0

pp
 . Sec-

ond, they are used to describe the widths of the two components of V  where the 
widths are ΔHG

pp
 and ΔHL

pp
 , respectively. In the first context, the functions are used to 

define the line shape but are not meaningful physically.
In summary, ΔHG

pp
 may be calculated from known values of aj [4] and the meas-

ured value of the amplitude of the field modulation [17].
Although not strictly required, the simple analytical relationship between the line 

widths discovered by Dobryakov and Lebedev [20] has facilitated investigations tre-
mendously over the last 32 years [13, 21]. For a discussion of why this is so, see 
Ref. [4]. Curiously, the simplicity of the Dobryakov–Lebedev relation (DL) [20], 
Eq. (9), is fortuitous because they measured first-derivative spectra and formulated 
the DL in terms of the equivalent of ΔHL

pp
 and ΔHG

pp
 . For the non-derivative presen-

tation or higher harmonics of the field modulation, DL is more complicated [6, 22]. 
It has been 52 years since the publication in English of the, DL [20], and its utility 
continues unabated to this day [1]:

2.1 � Theoretical Nitroxide Spectra IHB by Protons

Figure 1a shows a simulation of one of three 14N lines for Tempone assuming no 
interactions between the spins. The pattern is defined by a1 = 0.400 G and N1 = 12 
with the spectrum displayed on a magnetic field sweep of 10.00 G. Of the 13 proton 
lines of binomial intensity, only 9 are perceptible on this scale. At X-band, the spac-
ing of the proton lines is negligibly different from 0.400 G. From Eq. (8), the input 
values yield ΔHG

pp
 = 1.44 G assuming 

√

� = 1.04 [4]. Each L proton line is assumed 
to have the same peak-to-peak width ΔHL

pp
 = 0.720 G; i.e., each has the same value 

of T2 . Although one might expect different values of ΔHL
pp

 would result for different 
proton lines due to anisotropic proton coupling tensors; the difference has been 
found to be small; for example, [23–26]. For examples of simulations compared 
with experimental lines, see, for example, Figs. 2 and 3 of [4]. Experimentally, in 
solution, the lack of interactions is traditionally assured by lowering C until no fur-
ther line width change may be measured. This is denoted C → 0 . From the input 

(8)ΔHG
pp

=

√

∑

�Nja
2
j
.

(9)

(

ΔHG
pp

ΔH0
pp

)2

+

(

ΔHL
pp

ΔH0
pp

)

= 1.
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parameters, � = 2.00 and from the DL, the predicted ΔH0
pp

 = 1.844  G. The fit to 
SumF yields � = 0.59292 and ΔH0

pp
 = 1.842 ± 0.001  G, and direct measurement, 

1.864 G.
Overlying the line in Fig. 1 is the fit to the SumF; however, the two are impercep-

tibly different on this scale. The residual, defined to be the spectrum minus the fit, 
amplified by a factor of 10, is displayed in Fig. 1b. At the lower end of the sweep, 
the residual is negative; i.e., the spectrum is less intense (more G ) than the fit, in this 
case by 0.3%. The residual from another simulation with the same pattern, but 
ΔHL

pp
 = 0.98 G which results in � = 1.465, appears in Fig. 1c. The residual in Fig. 1b 

is characterized by broad lines with overlying narrower lines in the central region, 
while, for the more L spectrum, Fig. 1c, the broad lines persist, but the narrow lines 
do not. The narrow lines presage incipient resolution as � increases and, as we shall 
see, begin to dominate the residual as � increases. The ratio of maxima of the broad 
residual lines to Vpp are 0.3%, well within the criterion for an excellent fit [15]. Fit-
ting the same spectrum to V  would yield almost the same results because the V  and 
the SumF differ by, at most, 0.7% [6]. The problem with this latter fit is, despite 
being an excellent fit, the value of � = 2.58 is in error by 29%. From Eq. (9), we find 
ΔHL

pp
 = 0.590 G, rather than the input value of 0.72 G, an error of − 18%. For those 

who would prefer to fit IHB with V  , excellent fits lead to large errors in ΔHL
pp

 above 
� = 2 which would have to be corrected by some scheme for careful work. As we 
move to values of � ~ 5, the errors incumbent with V  become worse. More discus-
sion of this is given in Sect. 4.3.

2.2 � Partially Resolved Nitroxide EPR Spectra

Figure 2 displays simulations of one of three 14N lines for Tempol with proton cou-
pling constants a1 = 0.460  G(6H), a2 = 0.290  G(2H), a3 = 0.430  G(2H), and 
a4 = 0.063  G(2H), where the numbers of equivalent protons, Nj , are given in the 
parentheses [4, 27]. For the 4th set, a4 = 0.063 G incorporates the small IHB due to 
one small coupling of 0.07 G and six of coupling 0.02 G, respectively [27]. From 
Eq. (8), ΔHG

pp
 = 1.400 G using the value of � = 1.08 [4]. In a ΔHL

pp
 = 0.1596 G and b 

0.1141  G, yielding from Eq.  (1) � = 8.77 and � = 12.2, respectively. Parameters 
defining the heights of the fits, the extremum values of the spectra and of the resid-
ual are indicated. Clearly, there is no way to apply the DL to these spectra: there is 
no ΔH0

pp
 and no clear way to study selected points on the spectra to approximate � in 

the manner of [4]. Nevertheless, we have discovered that these resolved lines may be 
fit to SumF. These simulations also assume no interactions between the spins.

Those fits to SumF are given by the solid lines through the spectra in Fig. 2a and 
b while c and d are the corresponding residuals. Let us define the peak-to-peak line 
width of the fit as ΔHfit

pp
 (not labeled) and ask what relationship it has to the DL pre-

diction of ΔH0
pp

 ? Following the procedure outlined for Tempone in the final para-
graph of the previous section, we find that ΔHfit

pp
 = a 1.51 G and b 1.50 G, respec-

tively, while the DL values are a 1.47  G and b 1.46  G, respectively. The spectra 
presented in Fig.  2 were designed to emphasize the features of resolved lines; 
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however, they are more resolved than the best resolved experimental spectrum in 
this study where the largest value of � = 4.7 ± 0.2. They are also outside of the range 
of the Tempol map given in Fig. 3.

2.2.1 � Maps for Unresolved and Resolved Nitroxide Spectra

By simulating a series of spectra at different values of � and fitting them with the 
SumF, one generates a series of pairs of values of � and � , i.e., the Tempol map. For 
unresolved spectra, this procedure reproduces the map that we have always used [4]. 
The same procedure produces the Tempone map where examples of spectra and fits 
are shown in Figs. 1 and 4a, below. These maps are displayed in Fig. 3, for Tem-
pone, dashed line, and for Tempol, solid line. The error bars are the estimated errors 

Fig. 2   Simulated spectra of one of three 14N lines for Tempol with proton coupling constants 
a1 = 0.460  G(6H), a2 = 0.290  G(2H), a3 = 0.430  G(2H), and a4 = 0.063  G(2H), where the numbers of 
equivalent protons are given in the parentheses. From Eq. (8), ΔHG

pp
 = 1.400 G using the known value of 

� = 1.08 [4] a ΔHL
pp

 = 0.1596 G and b 0.1141 G, yielding from Eq. (1) � = 8.77 and � = 12.2, respectively. 
The corresponding residuals are shown in c and d. The peak-to-peak line width of the fits are a 1.51 G 
and b 1.50 G, respectively, while the values of ΔH0

pp
 computed from the input values using the DL are a 

1.47 G and b 1.46 G, respectively
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from the fits in the usual manner [28]. The map for any nitroxide may be constructed 
in this manner that extends into the resolved region. Vfit may be taken equal to Vpp by 
assuring that its value yields the correct input value of I which is easily done follow-
ing the procedure in Sect.  8 of [4]. Briefly, I = 1

2
F(�)

(

ΔH0
pp

2
Vpp

)

 ; thus, F(�) is 
formed to give the correct (input) value of I . This ability to extract � and F gives us 
access to all of the correction procedures in Ref. [4]. Note that the maps in Fig. 3 
vary continuously across the transitions from unresolved to resolved lines. For Tem-
pol, the average discrepancy between ΔHfit

pp
 and ΔH0

pp
 is 17 mG or a percentage dis-

crepancy of 1%.
The maps and values of F are given in Tables  2 and 3. Although values of � 

for Tempone are given to cover a range of resolved spectra, as far as we know, a 
resolved spectrum has not yet been observed.

Theoretically, we may generate the maps by varying the input values of ΔHL
pp

 or 
aj or both. The DL makes it trivial to simulate a series of spectra that all have the 
same value of ΔH0

pp
 which is convenient for some purposes. For example, we simu-

lated the spectrum leading to Fig. 1c in one step, not having to simulate by trial and 
error. Any combination of these inputs yields the identical map.

2.2.2 � Effect of Small Saturating Powers

Figure 4 shows some simulated results of applying saturating microwave power to 
one of three 14N lines for Tempone with proton coupling constant a1 = 0.0996  G, 

Fig. 3   Maps from the SumF mixing parameter, � , to the Voigt parameter, � . Dashed line Tempone and 
solid line, Tempol. Error bars from estimated uncertainties in fits to simulations. The largest values of � 
in all of the experiments in this study are 4.7 ± 0.2
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N1 = 12, �T−1
1

 = 0.02300 and �T−1
2

 = 0.0500 G a H1 = 10–4, b 0.0201, c, 0.0401, and d 
0.0501 G. For H1 = 10–4, ΔHL

pp
(0)

0
 = 0.0577 G. These spectra were simulated using 

Eq. (13) of [15] in the absence of interactions. We observe that as ΔHL
pp

 increases 
and saturation sets in, the resolution becomes less as expected. Figure 4 was pre-
pared with a rather small value of ΔHL

pp
(0)

0
 = 0.577 G so that the effects may be vis-

ualized. See Table 4 for details. Reminder: ΔHL
pp
(C)

H1

 denotes the value of ΔHL
pp

 at 
C → 0 measured at H1 . The value of � is nominal [4]; all of the values in Table 4 
depend on the choice of that parameter. One minor problem with obtaining precision 
fitting to V  is that � is taken to be unity. Comparing the H1 = 0.0001 G with the input 
values shows that differences in input versus output for the unsaturated spectrum are 
found only in the 3rd digit. ΔHG

pp
 is produced to 4 digits, although in practice it is 

only measurable to 2.5 digits. This demonstrates that line shifts with H1 , which 
would be reflected in the values of ΔHG

pp
 , are negligible in the absence of spin diffu-

sion. Note that ΔH0
pp

 increases by only 6% while ΔHL
pp

 increases by 78%. Errors are 

Fig. 4   Simulated spectra, (Eq. (13) of [15]), of one of three 14N lines for Tempone with proton coupling 
constant ap = 0.0996 G (12H), �T−1

1
 = 0.02300 and �T−1

2
 = 0.0500 G a H1 = 10–4, b 0.0201, c, 0.0401, and 

d 0.0501 G. C → 0 . For H1 = 10–4 G, ΔHL
pp
(O)

0
 = 0.0577 G
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Table 2   Tempol map

*Partially resolved

� � F � � F

1 0 3.63 0.65365 1.58 1.78
0.99865 0.0600 3.60 0.59191 1.89 1.66
0.99633 0.100 3.57 0.55212 2.10 1.59
0.98584 0.200 3.45 0.51445 2.31 1.53
0.96962 0.300 3.29 0.47922 2.53 1.48
0.94869 0.400 3.09 0.41405 2.98* 1.40
0.89925 0.600 2.73 0.35634 3.44* 1.34
0.84592 0.800 2.43 0.33020 3.67* 1.32
0.79304 1.00 2.20 0.30492 3.90* 1.30
0.75052 1.17 2.05 0.28356 4.12* 1.28
0.73415 1.23 1.99 0.26112 4.35* 1.26
0.71985 1.29 1.95 0.24052 4.58* 1.24
0.70264 1.37 1.90 0.22051 4.82* 1.23
0.69346 1.41 1.88 0.18534 5.28* 1.21

Table 3   Tempone map

*Partially resolved

� � F

1 0 3.63
0.99950 0.037 3.61
0.98221 0.187 3.48
0.95991 0.374 3.17
0.93265 0.500 2.94
0.80334 1.00 2.23
0.68779 1.50 1.86
0.59292 2.00 1.65
0.45162 2.99* 1.43
0.41032 3.37* 1.38
0.37387 3.74* 1.34
0.34147 4.12* 1.31

Table 4   Variation of line widths 
and V-parameter with H

1
 , C = 0

Input: ΔHL

pp
(0)

0
 = 0.0577  G, ΔHG

pp
 = 0.355  G, � = 6.15, and 

√

� = 1.03

H1 , G � ΔH0
pp

 , G ΔHL

pp
(0)

H1

 , G ΔHG

pp
 , G

0.0001 6.21 0.390 0.0579 0.3595
0.0201 5.34 0.394 0.0673 0.3594
0.0401 4.03 0.405 0.0893 0.3594
0.0501 3.50 0.412 0.103 0.3593
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always inevitable in using changes in ΔH0
pp

 to estimate changes in ΔHL
pp

 , even in 
deuterated nitroxides [16], but this illustrates that moving into the resolved regime 
exacerbates the problem.

3 � Experimental

3.1 � Methods

The nitroxide spin probe 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) 
was purchased from Molecular Probes, Inc. Decane (99+%, Batch # 10417HB) was 
purchased from Sigma Aldrich. All the chemicals were used as received. A 5.0-
mM stock solution of Tempol was prepared by weight in decane which was then 
diluted to obtain 0.1- and 0.5-mM solutions. Samples were drawn into open-ended 
polytetrafluoroethylene (PTFE-ID: AWG21) tubing obtained from Zeus. The tubing 
was then folded in half, and the open ends were sealed with Seal-Ease plastic clay 
from Clay Adams, Inc. The tubing, folded end down, was then placed into a quartz 
tube made by Wilmad Glass Co, with a hole in the bottom. Finally, the quartz tube 
was inserted in the quartz dewar insert of a Bruker N2 temperature controller, that 
is placed in the microwave cavity (ER 4119HS, TE011) of a Buker EMXPlus EPR 
spectrometer. The microwave source was a 200-mW Gunn dual oscillator. In this 
arrangement, N2 was used to control the sample temperature and displace the oxy-
gen, reducing the line width [29]. The temperature of the samples was elevated to 
45 °C to hasten the exchange of oxygen until no further line-width reduction was 
noted, typically requiring about an hour, before setting the temperature to the desired 
values. Field modulation was applied at 100 kHz with an amplitude of 0.1 G.

3.2 � Preview of Some Possible Experimental Applications

The purpose of the following preliminary experimental measurements is twofold: 
(a) demonstrate that fitting real spectra to SumF leads to viable results that are in 
keeping with what is expected, and (b) provide insight into possible experimental 
programs. To simplify the discussion, we assume that DD is negligible. It makes 
no difference in our conclusions; however, in previous work with alkanes [30], we 
found negligible dipole–dipole coupling for d-Tempone in decane at − 20 °C. In the 
more viscous alkane, squalane, we found [31] that HSE dominates the spin–spin 
interactions for Tempone at T∕� = 24 K/cP, accounting for 96% of the broadening 
For Tempol in decane at − 27 °C, T∕� = 114 K/cP [30], a factor of ~ 5 larger, from 
which we may conclude that HSE dominates in the present experiment.

3.2.1 � Varying the Temperature

Figure  5 shows spectra taken of 0.1  mM Tempol at − 27 and 32  °C. The upper 
traces display the spectra with fits (overlying dots every 20th point). The second 
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traces show, on an expanded scale, the cf spectra and fits, while the third traces 
show the residuals. ΔHL

pp
 determined from the Tempol map, Table 3, are within 

experimental uncertainties for the three nitrogen lines. After averaging, 
ΔHL

pp
 = 0.270 ± 0.012 G at − 27 °C and 0.402 ± 0.002 G at 32 °C. The heights are 

displayed on the same scale, demonstrating that the residual forms a major part of 
the spectrum at − 27 °C and less so at 32 °C. Thus, at − 27 °C, Vres ~ 0.65 Vfit and 
Vfit ~ 0.65 Vspc ; at 32 °C, Vres ~ 0.13 Vfit and Vfit ~ Vspc . In the past [16], we have pro-
posed that the ratio Vres∕Vspc be less than 1% for a line to be considered a good V  
in the case of unresolved lines. Obviously, for resolved lines, this criterion cannot 
apply, and the question of whether an experimental line in Fig. 5 is considered to 
be a good V  needs to be redefined. To reiterate our remarks in Sect. 2.2.2, ΔHL

pp
 

increases by approximately 49% while that of ΔH0
pp

 decreases by 3% upon chang-
ing the temperature from − 27 to 32 °C.

The changes in the spectra in Fig. 5 are mostly due to an increase in ΔHL
pp

 as 
the temperature increases; see Fig.  6. However, for this to be strictly true, C 
would need to be small enough for HSE to be negligible and 

√

P would need to 
be small enough for the line broadening to be negligible or comparable at the two 
temperatures. Furthermore, both non-negligible values of HSE and or 

√

P pro-
voke line shifts, the former is well known [32], the latter proposed theoretically 
but as yet unconfirmed experimentally [33]. These effects are likely to be quite 
small at C = 0.1 mM and 

√

P = 0.025 W1/2 but perhaps not negligible. More work 
is needed to quantify these effects, and as we move forward, we shall investigate 
if the residuals are more sensitive to them than are the spectra.

Figure 6 displays the variation in the line widths as a function of temperature 
showing the dramatic difference in the directly measurable width, ΔH0

pp
 , and the 

Fig. 5   Experimental EPR spectra of 0.1  mM Tempol at a − 27 and b 32  °C at 
√

P = 0.025 W1/2. Top 
traces, solid lines, spectra, overlying dots, fits, displaying every 20th point. Second traces, the cf spectra 
and fits, presented on an expanded magnetic sweep width. Third traces, residuals. The heights are dis-
played on the same scale
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desired width ΔHL
pp

 . The melting point of decane is − 29.7 °C [34]; therefore, the 
lowest data at − 32  °C are in the super-cooled region. Attempts to supercool 
to − 36 °C resulted in a frozen sample.

Not only is there a significant quantitative difference in ΔH0
pp

 , and ΔHL
pp

 , but also 
the qualitative behavior is different. While ΔH0

pp
 decreases slightly with temperature, 

ΔHL
pp

 increases slightly. Comparing Figs.  5 and 6, we notice that while ΔH0
pp

 and 
ΔHL

pp
 vary little, the residual varies significantly. Thanks to the DL, the width ΔHG

pp
 

is trivially available so that is plotted in Fig. 6 as well. As expected, the major con-
tribution to ΔH0

pp
 is provided by ΔHG

pp
 . The modest decrease in ΔHG

pp
 and the modest 

increase in ΔHL
pp

 , contrive to decrease � significantly, from 4.7 ± 0.2 to 3.22 ± 0.01, 
a factor of ~ 1.5. Note that in Fig. 5, the decrease in Vres∕Vfit is considerable larger, 
by a factor of ~ 5.

These preliminary data were obtained at a constant 
√

P = 0.025 W1/2. Significant 
improvement in the precision of these data would have been obtained by measuring 
a continuous-wave saturation curve (CWS) of ΔHL

pp
 ; i.e., by plotting ΔHL

pp
 against 

H1 . Finding the intercept of the CWS, by fitting the curve to Eq. (9) of [15], as sug-
gested in Ref. [15] and illustrated in Fig. 9, below offers significant improvement in 
the precision of ΔHL

pp
(C)

0
.

3.2.2 � Varying the Concentration: HSE

Figure  7 shows the effect of raising the concentration of Tempol from C = 0.1 to 
0.5 mM. It is well-known that HSE increases the linewidths which is expected to 

Fig. 6   Line widths vs temperature of 0.1 mM Tempol in n-decane. Circles, lf; diamonds, cf; and trian-
gles, hf, taken at 

√

P = 0.025 W1/2
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reduce the resolution; however, concentration-dependent measurements are consid-
erably more interesting than that as discussed in depth recently [16]. Briefly, the less 
intense proton lines are broadened the most; the proton lines move toward one 
another; and intra line HSE introduces HSE-induced signals with the form of disper-
sion signals [16]. This produces an interesting situation where the shifts tend to 
reduce ΔHG

pp
 and therefore � while the broadening increases ΔHL

pp
 also reducing � . 

By measuring the two CWS, shown in Fig. 9, and fitting them to Eq. (9) of [15], the 
intercepts yield the following values: ΔHL

pp
(0.1mM)

0
 = 0.313 ± 0.006  G and 

ΔHL
pp
(0.5mM)

0
 = 0.372 ± 0.001 G. These are mean values and standard deviations 

of two runs at each concentration. The change in the residual is less dramatic for 
increasing C , Fig. 7, than it is for increasing T  , Fig. 5.

3.2.3 � Varying the Microwave Power

Figure 8 shows the effect of applying saturating microwave power, P , to a sample of 
0.1 mM Tempol in decane at − 27 °C. To get an idea of the difference in 

√

P = 0.025 
and 0.014 W1/2, compare Figs. 5a and 8a, especially the residuals.

It is well-known that the proton lines broaden as microwave power satura-
tion sets in Refs. [14, 15, 35]. Therefore, the decrease in resolution evident as P 
is increased is expected; however, the situation is potentially considerably more 
interesting than that. Because HSE provides relaxation pathways to non-resonant 
lines [36], the effective relaxation rates of the proton line are expected to vary from 
one line to another. This has not been observed in nitroxides as yet; however, the 

Fig. 7   Experimental EPR spectra of the cf of Tempol in n-decane at − 27  °C of a C = 0.1  mM and b 
0.5 mM. Top traces, spectra and fits. Lower traces, the residuals. Relative heights are on the same scale. 
√

P = 0.014 W1/2
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reduction in the effective spin relaxation rate due to pathways between nitrogen 
lines was observed long ago [36]. Furthermore, a recent theory [33] predicts that 
the proton and the nitrogen lines shift as saturation sets in, an effect not yet observed 
experimentally.

Figure  9 shows CWS of ΔHL
pp

 for 0.1 and 0.5  mM Tempol. Each sample was 
measured twice, shown by triangles or circles; filled, 0.5 mM or open, 0.1 mM. The 
abscissa, 

√

P , is proportional to H1 [8, 14, 35, 37]. The solid lines are fits to Eq. (9) 
of Ref. [15] following a method proposed therein. There are four fit lines, two for 
each concentration, but the two for 0.5 mM are coincident on this scale and the two 
for 0.1 mM, nearly so. The experiments for Fig. 6 were collected for C = 0.1 mM at a 
constant 

√

P =  0.025 W1/2, where the 0.1 mM data (open circles) show considerable 
scatter both between the two runs and with respect to the fits to the CWS. From the 
fits, ΔHL

pp
(0.1mM)

0
 = 0.314 ± 0.009 G for one run and 0.311 ± 0.007 G for the other. 

As an estimate of the intercept of the 0.1 mM sample, not using the CWS, we aver-
age the 14 points for both runs for 

√

P < 0.02 W1/2 and obtain 
ΔHL

pp
(0.1mM)

0
 = 0.322 ± 0.036  G for the mean and standard deviation. If we had 

measured just one point at 
√

P = 0.02 W1/2 we would have obtained 
ΔHL

pp
(0.1mM)

0
 = 0.278 with no better way to estimate the uncertainty than the dif-

ference between the two runs ± 0.002 G. The discrepancy between the measurement 
of one point versus either the intercept of the fit or averaging 14 points is about 13%. 
For the higher concentration, ΔHL

pp
(0.5mM)

0
 = 0.372 ± 0.001  G. Figure  9 is 

included, even though treatment of the CWS to obtain values of T1 is beyond the 

Fig. 8   Experimental EPR spectra of the cl of 0.1 mM Tempol in n-decane at − 27 °C a 
√

P = 0.014 W1/2 
and b 

√

P = 0.159 W1/2. Top traces, spectra and fits. Lower traces, the residuals
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scope of this paper, because it illustrates dramatically the advantage of obtaining a 
CWS even though one is only interested in the intercept.

Our intention with Fig. 9 was to illustrate the advantage of measuring CWS, and 
leave it there. However, we find it quite interesting that the fits to the two concentrations 
in Fig. 9 are practically parallel; i.e., the shapes of the CWS are similar. Indeed, the fits 
also yield a quantity proportional to the product T1T2 [15, 35]. From the fits, T1T2 ∝ 
15.8 ± 1.5 and 15.4 ± 1.9 for the two runs of 0.1 mM and 15.6 ± 0.5 and 15.8 ± 0.4 for 
the two at 0.5 mM. The magnitudes of these products depend on the proportionality 
constant between 

√

P and H1 [15], so their absolute values are not available absent that 
calibration. However, the interesting (shocking!) thing is that all four values are equal, 
well within the estimates of the uncertainties. Qualitatively, we can see that because 
T1T2 is the same for both concentrations and T2 is larger for 0.1  mM (smaller 
ΔHL

pp
(C)

0
 ), T1 is smaller for 0.1 mM. In other words, saturation sets in at lower values 

of 
√

P for the lower concentration as expected.

Fig. 9   Experimental saturation broadening of ΔHL
pp

 of the cf of Tempol at − 27 °C. The open circles and 
triangles are two runs of 0.1 mM and the closed circles and triangles are two of 0.5 mM. The four solid 
lines are fits to Eq. (9) of [15]. The two for 0.5 mM are indistinguishable on this scale and the two for 
0.1 mM are nearly so; this latter despite significant scatter at low powers



1168	 M. M. Bakirov et al.

1 3

4 � Discussion

4.1 � Analyzing Spectra with Resolved Proton Hyperfine Structure

We have shown that an experimental partially resolved line may be analyzed in the 
same manner as an unresolved IHB line as detailed in Ref. [4]. A fit of the spectrum 
to SumF yields � , Vpp and ΔH0

pp
 . For a particular nitroxide, one uses the proper map 

to get � and the DL to obtained ΔHL
pp

 and ΔHG
pp

 . If the line is unresolved, the same 
procedure applies and the transition from unresolved to resolved is seamless, 
(Fig. 3). This is a crucial feature because varying experimental parameters such as 
T  , C , P , pressure, oxygen concentration, may involve spectra that are unresolved 
under some conditions and resolved under others. Furthermore, because ΔHL

pp
 is 

often different for lf and hf, both resolved and unresolved can appear in the same 
spectrum. See Fig. 8 of [16] that nearly fulfills this expectation. With � in hand, all 
of the correction procedures in Ref. [4] are available. An important procedure is to 
obtain an accurate estimate of I from noisy lines, perhaps overlapping, using a 
sweep width of the order of several line widths, not nearly enough to account for the 
long tail of the L [14]. The value of this cannot be overestimated.

4.2 � Why Study Resolved Spectra

In a paper published 45 years ago, Backer, et al. [38] used a nitroxide with resolved 
structure to study oxygen concentrations in a biological system. More modern work 
has been carried out by, for example, Hyde [39] and Halpern [40] and their co-work-
ers as well as others [41]. Empirical parameters, for example, that are defined in 
Fig.  2 of [39], were calibrated to obtain the oxygen concentrations. These proce-
dures were effective but labor intensive. By the methods described here, they would 
be amenable to rapid, automated analysis.

Other than for oximetry, a reasonable question is as follows: why go to the trouble 
to analyze partially resolved proton hyperfine patterns when one can simply buy 
deuterated nitroxides where resolution has never been observed? In most studies, 
where the purpose of an investigation is to study other systems, without being trou-
bled by unresolved spectra, there is none, except perhaps the cost. Nevertheless, as 
an example, when Lee and Shetty [7] studied 15N d-Tempol, they intended to com-
pare the results with Tempol but were dissuaded when they learned that spectra due 
to the latter were resolved. Those authors did not reveal their motive to study the 
protonated radical; could it be that they were curious if ΔHL

pp
 was equal in deuter-

ated versus non-deuterated nitroxides? We are curious; thus, this will be one of our 
first investigations.

To appreciate a more compelling interest in resolved lines, we note that a nitrox-
ide has two regions of hyperfine spacing: that of the proton structure and of the 
nitrogen. Interesting theoretical and experimental questions arise when the HSE fre-
quency [16] and/or H1 [33] become comparable with the hyperfine spacings. One of 
our honorees called the latter effects due to H1 “peculiar [33].”



1169

1 3

The Dobryakov–Lebedev Relation Extended to Partially Resolved…

To be more concrete, let us express our interest in analyzing resolved spectra 
by appealing to [16], which is a compendium of most of what we know about 
studying HSE and DD at small H1 . References therein show the progress through 
the years. First, from the experimental perspective, see Fig. 8 in Ref. [16], similar 
to Fig. 7b of this paper, except before we used 15N H-Tempol in 60 wt% aqueous 
glycerol. We were able to fit the 2017 spectrum to SumF, but were not able to use 
the data from it and other resolved spectra because we didn’t know how to ana-
lyze them. Because of that, in Fig. 11a, which are plots of ΔHL

pp
 vs C , the points 

from the protonated radical stopped well short of the origin. In contrast, the 
points for the deuterated radical in Fig. 11b were available down to very near the 
origin. We concluded that the slopes for D and H were the same but the intercepts 
were different; however, this conclusion required that the linear dependence 
would extend to lower values of C where we had no data. Should we expect that 
ΔHL

pp
 vs C is indeed linear all the way to the origin? After all, that assumption has 

been the bedrock of finding ΔHL

pp
(0)

0
 and therefore T2 [30, 42–45].

Now, let us see what the theory tells us by examining Fig. 3 of [16]. There, we 
see that the theory contradicts this bedrock. The values of ΔHL

pp
 near the origin 

are significantly smaller than those predicted by a linear fit to higher concentra-
tions. If the detail near the origin is missed, and the data at higher C is used to 
find the intercept, the value of ΔHL

pp
(0)

0
 is too large; i.e., T2 is too small. The 

change in slope of ΔHL
pp

 near the origin predicted by theory has never been 
observed experimentally, except for a hint of this result in Fig. 3 of [44] based on 
a single point, obviously not conclusive. That one result was obtained with 
16-doxylstearic acid methyl ester, which does have large proton couplings result-
ing in � ≈ 5 , but still yields spectra that are unresolved, because of a fortuitous 
combination of aj [46]. Other than that, we have never worked at low concentra-
tions with a nitroxide with proton spacings that are large enough to produce 
resolved spectra. This is tantamount to saying we have not measured dΔHL

pp
∕dC 

near the origin in resolved spectra to compare them with those obtained at higher 
values of C.

A similar situation occurs for DD, except that values of dΔHL
pp
∕dC near the 

origin are smaller than a linear extrapolation from higher C , Fig. 4 of [16]. For 
DD, the values of T2 deduced from a linear extrapolation would be too large.

The experimental and theoretical considerations are more complex than this 
brief summary can detail [16], chiefly due to dispersion signals induced by HSE 
or DD between proton lines of the same nitrogen line. These can become quite 
large as C increases until they begin to cancel one another. See Ref. [16] for 
details. Our purpose is not to reiterate the details, only to justify our interest.

Without going into detail, varying T  and H1 are also complicated. Changing 
T  of any sample where HSE/DD are not negligible, brings an interplay between 
HSE/DD and broadening due to rotational motion that is complicated. We know, 
in principle, how to separate the two mechanisms, but one must work near C → 0 
and one must have values of aj that are large enough to measure the departures 
of the curves from linearity. Interestingly, according to theory, very similar 
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complications enter as H1 is increased into the saturation region and when C 
increases; lines shift and broaden. It appears that both of these may be studied 
experimentally. Compare Figs. 7 and 8.

We have not mentioned the study of line shifts, although they have proved to be 
quite useful to study collisions [32] 43–45 and re-collisions [30, 47] in the reac-
tion cage and to study free volume [48]. That would take us far afield of the present 
purpose to demonstrate that resolved lines may be analyzed. From the experimental 
plots, Figs. 5, 7, and 8, it appears that the shifts of the nitrogen lines for resolved 
spectra will be just as easy to study as those for unresolved lines. It also appears to 
be promising to study proton line shifts, although as yet, this avenue has not been 
pursued. We just mention that there are two possible approaches to study proton line 
shifts: (a) average shifts from fits or (b) individual shifts. Obviously, (b) is more dif-
ficult but considerably more revealing.

Obviously, a couple of points in each experimental case presented here, where 
we change T  , C and H1 , cannot be analyzed in detail yet. With the correct experi-
ments, following the procedures developed through the years, we are encouraged 
that results near the origin of C and H1 may be correctly analyzed. In short, our brief 
exploratory experimental work demonstrates the feasibility of doing more complete 
experiments.

Let us mention one more consideration in an experimental program to study 
resolve spectra near C → 0 . One needs to vary C in increments small enough so that 
KexC is small compared with �aj a region that shows resolution. For typical nitrox-
ides like Tempol or Tempone, Kex ∼ 100G∕M in alkanes, thus to get enough points 
near the origin, one needs increments of C , �C , of about 4 mM or less for Tempol 
and 1 mM for Tempone. There is no problem in principle to carry out these experi-
ments; however, in practice, a large number of spectra must be analyzed. To analyze 
a large number of spectra by methods employed by early workers [27, 49, 50] which 
involved simulating a spectrum, comparing it with the experimental spectrum, and 
proceeding by trial and error to find satisfactory fits, is prohibitively labor intensive. 
While this worked in the old days when there was no other choice, it is impractical 
for ambitious programs involving numerous spectra. The situation to study deuter-
ated nitroxides is simplified in that the spectra are unresolved; however, near C = 0, 
where ad = 0.153ap [4], which would require �C ∼ 0.6 mG or 0.15 mG or less, for 
d-Tempone or d-Tempol, respectively.

4.3 � Voigts, SumFs, and Patterns

It is clear that SumF or V  which have no structure are only approximations to pat-
terns. This is true even if the patterns are unresolved as in Fig. 1. In the unresolved 
case, the rationale for using an inappropriate fit function is that it yields accurate 
values for the average values of ΔHL

pp
 and may be automated. It is clear that an unre-

solved line cannot have much more information than its position, height, width, and 
shape. For resolved spectra, more information becomes available so what is the 
rationale to continue to fit with SumF or V  ? If accurate average values of ΔHL

pp
 are 

sufficient for the goals of an experiment, then because of the validity of the DL, the 
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same advantages of speed and automation are available. Furthermore, in some 
experiments, both resolved and unresolved spectra may be encountered and the pre-
sent methods allow the entire series of measurements to be analyzed with the same 
model. If more information is desired, spectral simulation becomes an option; how-
ever, the transition from unresolved to resolved spectra may present a problem.

We speculate that a further benefit of fitting partially resolved spectra with SumF 
or V  will be the availability of the residuals as assets as discussed in Sect. 4.4.

We turn to the question of whether SumF is an appropriate fit function for pat-
terns in EPR. Most unresolved nitroxides may be fit to excellent precision by SumF ; 
thus, because V  and SumF are the same within a maximum discrepancy of 0.7% [6], 
V  also would provide an excellent fit [1].

Why not use V  routinely to fit nitroxide spectra? Our excuse 32 years ago [4] was 
that V  was prohibitively slow in computing, comparing, and adjusting until a proper 
fit could be found. We used a roomful of primitive personal computers to do the 
analysis running overnight, transferred the data to a cassette, and repeated the pro-
cess night after night; thus, we adopted the SumF and have used it ever since [16]. 
In EPR, the argument that the computations take too long is not as compelling now 
that the computing power available to use on the desktop is enormous, following, 
more or less, Moore’s Law [51]. Thus, we offer another rational to continue with the 
SumF. We recognize that speed is of great importance in some fields, where real-
time analysis is desired but probably not in EPR.

We have already seen from Fig. 1 that V  gives values of ΔHL
pp

 that are 18% too 
small while SumF gives results that are utterly negligible. This is for a spectrum 
with a rather small value of � = 2 where one must amplify the residuals by a factor 
of 10 to see them well. This large difference in precision is not because SumF is a 
superior fit function, rather it is because it has been calibrated to that particular pat-
tern. Because one could fit just as well with V  , one probably could figure out a way 
to map the output values of � obtained from V  to those that would yield precise val-
ues of ΔHL

pp
 . One would have to do this for every pattern, although this is not as for-

midable as it may sound: there are many nitroxides, but only a handful of different 
patterns [4]. We have not done this, and would be interested to see the results of a 
worker who would undertake this exercise. Let us assume that this exercise would be 
successful. For us, V  would lose its charm as a physically sound model and become 
merely a different, phenomenological approach to estimate ΔHL

pp
 . For SumF , cor-

recting output parameters has always been straightforward for unresolved spectra by 
constructing the correct map for each nitroxide especially for � > 2 [4]. Now, for 
resolved spectra, the same is true.

4.4 � Is the Residual a Potential Resource?

Here, we speculate that the residual from fits of resolved or nearly resolved spectra 
may be of significant utility, perhaps in some cases more so than the spectrum. From 
this work, we have noticed that a more sensitive method to judge if C is low enough 
to avoid HSE/DD would be to monitor Vres rather than the traditional ΔH0

pp
 . This 

speculation comes from a comparison of the spectra and the residuals in Figs. 5, 7, 
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and 8. For example, in Fig. 5, the decrease in � is about a factor of 1.5 while that in 
Vres∕Vfit is by a factor ~ 5.

The experimental residuals are symmetrical and show sharp lines whose intensi-
ties vary significantly with the conditions. Comparing the theoretical Fig. 2c with 
the experimental Fig.  5a, second trace, one notices not just the lines but similar 
“bumps” in both residuals. These bumps could be a quite sensitive test of the cor-
respondence of the theory and the experiment, especially useful in fine tuning values 
of aj.

5 � Conclusions

Resolved nitroxide spectra may be fit with SumF and the DL employed to extract 
accurate values of ΔHL

pp
 and all of the quantities that depend on it. Brief experimen-

tal measurements show that such fits are feasible for real spectra and yield what we 
expect when we change T  , C , and H1 which offers opportunities to study challenging 

Fig. 10   A series of simulated Tempol spectra at � = a 1.17, b 2.54, c 2.98, d 3.44, e 4.13, and f 5.29. The 
residuals are amplified as indicated; for example, in b, the residual has been amplified by a factor of 7.55
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experimental conditions which were previously inaccessible except by tedious 
numerical means.

Appendix: Criterion for Incipient Resolution

The criterion for incipient resolution has always been subjective, defined as the 
value of � where a visual distortion of an IHB occurs. Before, we observed the peak 
of the line and decided if it was a normal smooth curve or not.

Figure 10 shows a series of simulated Tempol spectra at � = a 1.17, b 2.54, c 2.98, 
d 3.44, e 4.13, and f 5.29. The residuals are amplified as indicated; for example, in 
b, the residual has been amplified by a factor of 7.55. In our opinion, a practiced 
eye may discern incipient resolution in c at a glance, without any fitting. The insert 
shows the peak region in more detail. d with its insert shows a definite distortion 
that anyone may discern. This criterion is still subjective; however, once we decide, 
we may quantify it by specifying the ratio Vres∕Vpp. For c, � = 2.98, Vres∕Vpp. = 0.02. 
If it becomes important, one could subtract the broad resonances evident in Fig. 1c 
to be more precise because it is the narrow residual lines that yield the information.
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